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Concerns about sharing data

There are many issues with sharing sensitive data:
e Technological : how do we make information private?

e Ethical : what is the harm caused by a breach of privacy?

e Legal : what are the obligations of the data holder to protect
privacy?
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Linkage and privacy attacks
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Data Table
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Linkage and privacy attacks

"Anonymized" : oth biic d
Data Table o] ¥ ther public data
%8
data set o Z e
#1 [ data ‘ . A | other data
#2 [ B

TTI-C Sarwate




4 /53

Bellairs Workshop > Introduction
Linkage and privacy attacks

"Anonymized"
Data Table Other public data
data set
#1 [ data A [ other data
#2 [ B

SOLT
Sarwate

<
k

NHOYy
TUTS

S




4 /53

Bellairs Workshop > Introduction
Linkage and privacy attacks
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Cautionary tales

Visit date

Diagnoses

Procedures

Dataset

Sweeney 1997
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Cautionary tales
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Data flows are often invisible
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Share results, not data

Summary Statistic
Prediction Rule
Statistical Model

7 |

Study Cohort Research Center

O ? a

Institutions Researchers

Public

Challenge : design useful algorithms that protect privacy.
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The statistical setting and privacy-utility tradeoffs

approximation error

privacy risk

Less Data

The more data we have the better off we are:
e Stronger evidence for structure — more accuracy

e Less dependence on individuals — more privacy
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The statistical setting and privacy-utility tradeoffs

approximation error
approximation error

privacy risk privacy risk

Less Data More Data

The more data we have the better off we are:
e Stronger evidence for structure — more accuracy

e Less dependence on individuals — more privacy
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The statistical setting and privacy-utility tradeoffs
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The statistical setting and privacy-utility tradeoffs
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The more data we have the better off we are:
e Stronger evidence for structure — more accuracy
e Less dependence on individuals — more privacy

How much data do we need?
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Introduce
@ An introduction to differential privacy
® Privacy preserving algorithms
® Algorithms for classification
O Algorithms for dimension reduction

@ Some thoughts for signal processing
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ecrp

f
Defining privacy
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e Privacy is something that
matters to individuals.
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Privacy is something that
matters to individuals.

Data is itself inherently
identifying.

Privacy depends on what is
already “known publicly”

The only way to “maintain
privacy” is to release nothing.

Privacy erodes over time.
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What is privac

Privacy is “lost” when we handle the data.
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What is privacy?

Protect privacy while processing the data.
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An example

ages average result

D — 21.3

{21,16,...,20,24}
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An example
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An example

ages approx. avg. estimate

D — 22.1

{21,16,...,20

leaked
{21,16,...,20} » attack
Ty =7
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Privacy via randomization

database
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Algorithms that provide privacy are randomized:
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Privacy via randomization

randomness

database i result

D —| algorithm —> f

Algorithms that provide privacy are randomized:

e Database D has n private data points.
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randomness

database i result

D —| algorithm —> f

Algorithms that provide privacy are randomized:
e Database D has n private data points.

e Algorithm A is a randomized approximation to a desired function.
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Privacy via randomization

randomness

database i result

D —| algorithm —> f

Algorithms that provide privacy are randomized:
e Database D has n private data points.
e Algorithm A is a randomized approximation to a desired function.

e Output f is a random variable.
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The definition of differential privacy
algorithm —VA

§
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/
D ' algorithm —»A
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The definition of differential privacy

An algorithm Ais ep-differentially private if for any set of outputs F,
and all (D, D') differing in a single point,

P (A(D) e ]-') < exp(ey) - P (A(D') e }">

The distribution of the outputs under neighboring databases is close.
(Dwork et al., 2006)
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The definition of differential privacy

ecp

f

An algorithm Ais ep-differentially private if for any set of outputs F,
and all (D, D') differing in a single point,

P (A(D) e ]-') < exp(ey) - P (A(D') e }">

The distribution of the outputs under neighboring databases is close.
(Dwork et al., 2006)
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Differential privacy and process

@ Privacy for individuals: If output /l(D) has a density, then

Small LLR means difficulty in disambiguation even when DND’ is
revealed.
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Differential privacy and process

@ Privacy for individuals: If output /l(D) has a density, then

Small LLR means difficulty in disambiguation even when DND’ is
revealed.

@® Privacy for data: No assumption that one can be “lost in the
crowd” or that there is a metric on data points to measure
“closeness.” Distance between databases is Hamming distance.
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Input perturbation

noise

|
D (D - A _’fin

e Target function A(D) that we want to approximate.
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Input perturbation

noise

!
D (D - A _’fin

e Target function A(D) that we want to approximate.
e Add noise to data D and then compute A.

e Mapping from D to noisy version has to satisfy differential privacy.

Sarwate
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Output perturbation : adding noise

noise

!
D——»A >®>out

e Compute desired A, then add noise to output before release.

e Tune noise to the “sensitivity” of A to changes in its input.
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Some difficulties

There are many technical hurdles to overcome:
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Some difficulties

There are many technical hurdles to overcome:

Guarantees are different for discrete versus continuous data.

Guarantees often scale poorly with data dimension.

Modest changes in ¢, have a large effect empirically.

All computations must be made differentially private (even
oy, Parameter tuning).
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Other definitions of privacy

Previous privacy approaches enforce ambiguity in the map from data
to individuals. Idea is to “quantize” data values so that many
individuals have the same data.

e k-anonymity (Sweeney, 1998) , /-diversity (Machanavajjhala et al.,
2006) , t-closeness (Li et al., 2007) , m-invariance (Xiao and Tian,
2007)

e Data can still be combined to re-identify individuals (Dwork et al.,
2006) (Ganta et al., 2008)
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Other definitions of privacy

Previous privacy approaches enforce ambiguity in the map from data
to individuals. Idea is to “quantize” data values so that many
individuals have the same data.

e k-anonymity (Sweeney, 1998) , /-diversity (Machanavajjhala et al.,
2006) , t-closeness (Li et al., 2007) , m-invariance (Xiao and Tian,
2007)

e Data can still be combined to re-identify individuals (Dwork et al.,
2006) (Ganta et al., 2008)
Other approaches to quantifying privacy : information theoretic
security (Sankar et al. 2010) or secure multiparty computation (Vaidya
and Clifton 2005)
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A perspective from learning theory

Learning theory is concerned with what things can be learned:

e PAC learning is possible under differential privacy
(Kasiviswanathan et al 2008)

e Private learning is not characterized by VC dimension (Beimel et
al. 2012)

o Parametric inference is possible (Smith 2011)

e Various learning algorithms will work with enough data (lots of
people)
There is a complex interplay between assumptions on the data and the
feasibility or efficiency of differentially private learning.




Bellairs Workshop > Privacy in ERM 21 /53

Differentially private classification
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Classification

Input : Dataset D = {(x;,y;):i=1,...,n}.
Data x; € R? with ||x;|| < 1 and labels y; € {—1,+1}.

Output : Vector f € R?, label points sgn(f7x).
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Using ERM

In empirical risk minimization, we choose f to minimize

A
D i, i) + 5 I

Want low empirical risk without overfitting.
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Why is ERM non-private?

Suppose a single point changes in the data set D:

D/ = {(X17y1)7 LR (Xn—la yn—l)a (X;my;J}‘

TTI-C Sarwate
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Why is ERM non-private?

Suppose a single point changes in the data set D:

D/ = {(Xl7yl)7 LR (Xn—la yn—l)a (X;my;J}‘

Solution of ERM will change:
J(E,D) = 2 (£, 1 }:e i i) + g2
b n Ty ./TI 1y J1 2

1 LA
f,D) = efT’ (%, vi) + = |IF)1°
J(£, D) (£ %, 0p) + — Z i ui) + 5 |f]
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Why is ERM non-private?

Suppose a single point changes in the data set D:

D/ = {(Xl7yl)7 LR (Xn—la yn—l)a (Ximy;J}‘

Solution of ERM will change:
J(E,D) = 067, ) Ze xi i) + L[]
) n mny JIN 1y J1 2
J(£, D) = 1€(fT AN Ze xi i)+ L)
? Xn>Yn 1y J1 2

That is, argming J(f, D) # argming J(f, D). Change in the n-th
individual can be detected if other data are known.

TTI-C Sarwate
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Output perturbation for ERM

noise

|
D—'A v D— £,

Sensitivity method (output perturbation) : add noise to output

foue = (argmin J(f)> +a
£

Choose a with density o exp(—a ||al|) to guarantee €, privacy.

Sarwate
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Why output perturbation works

26 / 53

ecp

Density of output f,,t is just shifted density of a:

P(fout|D) = pa(fout — arg;nin J(f))

Parameter oo chosen to match the shift in ERM solution between D
and D'.
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Objective perturbation for ERM

D —»arg min (J(f) + be) —> lobj

fon; = argmin (J(f) + b'f)
f
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Objective perturbation for ERM

D —»arg min (J(f) + be) —> lobj

fon; = argmin (J(f) + b'f)
f

e Add perturbation inside the objective function.
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Objective perturbation for ERM

D —»arg min (J(f) + be) —> lobj

fon; = argmin (J(f) + b'f)
f

e Add perturbation inside the objective function.
e Choose b with density o« exp(—£||b]|)
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Sample complexity for the two methods

For privacy €, and generalization error €,:
@ Output perturbation
1 dlogd
n=04, sTg
€ & ¢

® Objective perturbation

1
n= Q{%, d ogd}
€5 €py

28 / 53
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Sample complexity for objective perturbation

Theorem (Excess error of f,,;)

Let ¢ be convex, doubly differentiable, and let its derivatives satisfy
V() <1 and ¢"(-) < ¢ and let D be drawn i.i.d. according to P. For
any fy with expected loss L(fy) = L*, if

2 2 d
nzc.max{llfoll log(1/0) |[fol] dlog(amfou}

2 ) )
€5 EiEn EiFe
we have

P (L(fpj) < L* +¢5) > 1— 4.

=T TI-C Sarwate
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Proof sketch

@ Fix a distribution P on the data and define

T(6) = E{U(Ex, )] + 5 1612

Let the minimizer be .

® For a given “good” fy, decompose the objective into:

L(foriv) = L(fo) + (J (fpriv) — J (fetr)) + (J (Fee) — J (f0))
A
+ §(||f0||2 — |[fpriv 1)
©® Show that the “non-bar” version of the first term is small, then

show that the first term is close to the “non-bar” version. Second
term is small by standard ERM results.
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Simulation results

05~
Sensitivity LR
- * Objective LR
045y = Non-Private LR

015

Misclassification error rate

0.1+

I | 1 I I I I I | |
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Privacy parameter ap
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Why is objective perturbation better on real data?
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Why is objective perturbation better on real data?

e Objective function is more convex in some directions in other.
Loss is higher in these directions.
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Why is objective perturbation better on real data?

e Objective function is more convex in some directions in other.
Loss is higher in these directions.

e Output perturbation is agnostic to this variation : noise affects
sensitive directions adversely.
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Why is objective perturbation better on real data?

e Objective function is more convex in some directions in other.
Loss is higher in these directions.

e Output perturbation is agnostic to this variation : noise affects
sensitive directions adversely.

e Objective perturbation allows optimization to smooth out noise in
sensitive directions more effectively.
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% %%
x |\ =% %
® 8 % [
% L™
% % b ®

Differentially private dimension reduction
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Dimension reduction by projection

b 888
% \ 8% “
% 8 % % %
b4 b4
b
b " % %®

e Data may be presented in very high dimension.

e Fundamental structure is low-dimensional.

e Other dimensions contain mostly noise.
.
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The PCA problem

Data in RY:

{x;:1=1,2,...,n}

Capture structure by the second moment matrix:

1 n
A:—E XX}
U
=1

The matrix A captures the “geometry” of the data.

Sarwate
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The top-k subspace

If the eigenvalues of A are A\j(A) > \a(A4) > -+ > Ag(A) >0, and if
A=VAVT

where A is diagonal with A;; = \;(A) and V is an orthonormal matrix
of eigenvectors, then the rank-k PCA approximation is

A=vAVT

where A is diagonal with A;; = X\;(A) for ¢ < k and A;; = 0 for i > k.
The Schmidt Approximation Theorem says that A minimizes the
Frobenius norm:

|4 -4,

TTI-C Sarwate
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Goals

Goal 0: approximate the top-k subspace under € differential privacy.

Sarwate




Bellairs Workshop > Privacy-preserving PCA 37 /53

Goals

Goal 0: approximate the top-k subspace under € differential privacy.

Goal 1: understand the fundamental (distribution-free) limits for PCA.

KOYO0%,
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Goals

Goal 0: approximate the top-k subspace under € differential privacy.

Goal 1: understand the fundamental (distribution-free) limits for PCA.

Goal 2: examine the performance on real data.

KOYO0%,
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Main results

We analyze and implement the exponential mechanism (McSherry and
Talwar 2007) for this problem.
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Bellairs Workshop > Privacy-preserving PCA
Main results

We analyze and implement the exponential mechanism (McSherry and

Talwar 2007) for this problem.
e Upper bound on the number of samples needed for our method.
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Main results

We analyze and implement the exponential mechanism (McSherry and
Talwar 2007) for this problem.

e Upper bound on the number of samples needed for our method.

e Nearly matching bound on the sample complexity for any
algorithm.
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Main results

We analyze and implement the exponential mechanism (McSherry and
Talwar 2007) for this problem.

e Upper bound on the number of samples needed for our method.

e Nearly matching bound on the sample complexity for any
algorithm.

e Different lower bound on the sample complexity for input
perturbation.
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The past and the future

e Blum, Dwork, McSherry, and Nissim (PODS 2005) : proposed
adding noise to the second moment matrix

e Hardt and Roth (STOC 2012) : low rank matrix reconstruction
e Kapralov and Talwar (SODA 2013) : a different approach to this
problem

e Hardt and Roth (unpublished) : different model based on matrix
coherence

TTI-C Sarwate
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Privacy concerns

Turing

Shannon

X0Y07;
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Privacy concerns

Turing

Shannon

X0Y07;
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Privacy concerns

Turing

Shannon

e | don't want my data (or participation) to be revealed.
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Privacy concerns

Turing

Shannon

N 41

e | don't want my data (or participation) to be revealed.

e | don't trust other people to keep their data secret.
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Privacy concerns

Turing
N +1

U1 Shannon

N

e | don't want my data (or participation) to be revealed.

e | don't trust other people to keep their data secret.
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Privacy concerns

Turing
N +1

U1 Shannon

N

e | don't want my data (or participation) to be revealed.
e | don't trust other people to keep their data secret.

e Can the data holder still publish the subspace?

Sarwate
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PCA and differential privacy
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PCA and differential privacy

The PCA algorithm is not differentially private:

D = {el,el,.. .e1,€eg,eq, .. .e2}

N/2 N/2—1
Then v1(D) = ey, but change one e; to ez and v; changes to es.

Sensitivity depends on the eigenvalue gap.
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SULQ : Input perturbation for PCA

N
' .

A —PH— PCA — V

e Add noise to A and then compute PCA on A + N.
e This is the SULQ algorithm proposed by Blum et al. (2005)

Sarwate
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Lower bound on sample complexity

There are constants ¢ and ¢’ such that for any p, if

d3/2\/log(d/s

ne<C. og(d/ )’
€p

then there is a dataset of size n in dimension d, s.t. the top PCA

direction v and the output v of SULQ satisfy

E[l(01, v)[] < p.

b
=T TI-C Sarwate
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PPCA : exponential mechanism

A Bingham
Sampler

A

U

Sample a subspace V' from the vector Bingham distribution:

f(V) o exp (n%p . tr(VTAV)>

W
\:2 TTI-C Sarwate
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PPCA : exponential mechanism

A

Bingham
A Sampler /U

Sample a subspace V' from the vector Bingham distribution:

f(V) o exp (n%p . tr(VTAV)>
1

_ €p T
— = (%k‘, %d, A) exp (n 5 tr(V AV))

This is the exponential mechanism with score function tr(V7 AV).
Works for general k.

TTI-C Sarwate
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Performance for our method

Theorem (PPCA needs less data)

There exists an absolute constant C' such that the following holds. For
anyy>0,¢>0,t>0,if

d 1 1
- —r2) ST = )= Ag)’

then the top PCA direction vi and the output of our algorithm 1 with
privacy parameter €, satisfy:

n>C-

P([{v1, 01)[ > p) = 1 =1

TTI-C Sarwate
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Proof sketch

The proof is a refined analysis of the Exponential Mechanism
(McSherry and Talwar, 2007):

@ Want to upper bound probability of landing in the set

Uy = {u: (u,01) < p}

® An ugly bound:

< exp(n(a/2)(p? M + (1 — p*)Aa)  Surf (U),)
= exp(n(a/2)(c2M + (1 — 02)Ng)  Surf (U,)

©® Then do some algebra.
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Theorem (General lower bound)

Fix d, €, and \y — Xa. Then there is a constant C' such that if

d
(M — o) yI—p’

the top PCA direction v1 and the output of our algorithm v with
privacy parameter €, satisfy:

n<C

E [[{vr,90)[] < p

b
=T TI-C Sarwate
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Proof idea for lower bound
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Let D1, Ds, ..., D be K databases which differ in the value of at
most w points, and let u1,...,ux be the top eigenvectors of

D1,Ds, ..., Di. If A is any a-differentially private algorithm, then,

s 1
> EAAD) )l < K (1= 501 —maxl ) ).

Then construct K databases with this property.

>
=T TI-C Sarwate
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Implementing the exponential mechanism

A

Bingham
A Sampler /U

A major difficulty is sampling from the Bingham distribution:

TTI-C Sarwate
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Implementing the exponential mechanism

A

Bingham
A Sampler /U

A major difficulty is sampling from the Bingham distribution:

e “Closed form" involves special functions.
e Markov Chain Monte Carlo (MCMC) sampling.

e New set of challenges to explore.
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Error versus data set size

Theoretical guarantees are for k = 1 but we can implement the
method for general k:

Dataset #tinstances | #dimensions | k
kddcup 494,021 116 4
census 199,523 513 8
localization 164,860 44 10
insurance 9,822 150 11

Table : Parameters of each dataset. The second column is the number of
dimensions after preprocessing. k is the dimensionality of the PCA, and the
fourth column contains ¢(U)/ || Al|  where U is the top k PCA subspace.
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versus data set size

i i
; —FE Algorithm !
N — e — Nonprivate '
i — PPCA X
! = Random |
I 1
| i
|
|
1
|

— SULQ
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Utility ¢(U) for kddcup for d = 116, k = 4.
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versus data set size
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versus data set size
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— PPCA

= Random

— SULQ

Utility ¢(U) for insurance for d = 115, k = 11.
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e Kernel learning, online learning, convex optimization
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New challenges

Currently there is lots of active research on the theory side:

e Kernel learning, online learning, convex optimization

e New and variant definitions of privacy
but there are important practical issues ahead:

e Need more algorithms tuned to domain-specific assumptions.

o Extensions to complex data sources (e.g. images)

KOYO0,

\ TTI-C

Sarwate
GIcAL>
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o Privacy-preserving data analysis is a rich and growing research
area.

e Demonstrated and evaluated methods for ERM and PCA.

e Incorporating domain knowledge can make a big impact.

Sarwate
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Thank you!

Sarwate
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