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Concerns about sharing data

There are many issues with sharing sensitive data:

• Technological : how do we make information private?

• Ethical : what is the harm caused by a breach of privacy?

• Legal : what are the obligations of the data holder to protect
privacy?
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Linkage and privacy attacks
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Cautionary tales

Sweeney 1997
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Cautionary tales

Narayanan and Shmatikov 2008
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Data flows are often invisible
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Share results, not data
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Challenge : design useful algorithms that protect privacy.
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The statistical setting and privacy-utility tradeoffs
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• Less dependence on individuals → more privacy

How much data do we need?
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This talk
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Introduce

1 An introduction to differential privacy

2 Privacy preserving algorithms

3 Algorithms for classification

4 Algorithms for dimension reduction

5 Some thoughts for signal processing
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What is privacy?

• Privacy is something that
matters to individuals.

• Data is itself inherently
identifying.

• Privacy depends on what is
already “known publicly”

• The only way to “maintain
privacy” is to release nothing.

• Privacy erodes over time.
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What is privacy?

Privacy is “lost” when we handle the data.
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What is privacy?

Protect privacy while processing the data.

TTI-C Sarwate



Bellairs Workshop > Defining privacy 12 / 53

An example
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An example

ages average result

21.3D 1

n

∑

i

xi

{21, 16, . . . , 20, 24}

{21, 16, . . . , 20}

leaked

xn = 24

attack
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An example

ages approx. avg. estimate

D
{21, 16, . . . , 20, 24}

{21, 16, . . . , 20}

leaked

attack

1

n

∑
xi + b 22.1

xn =?
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Privacy via randomization

D algorithm

randomness

resultdatabase

f

Algorithms that provide privacy are randomized :

• Database D has n private data points.

• Algorithm Â is a randomized approximation to a desired function.

• Output f is a random variable.

TTI-C Sarwate



Bellairs Workshop > Defining privacy 13 / 53

Privacy via randomization

D algorithm

randomness

resultdatabase

f

Algorithms that provide privacy are randomized :

• Database D has n private data points.
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The definition of differential privacy

algorithm

algorithm

"similar" 

D

D′

An algorithm Â is εp-differentially private if for any set of outputs F ,
and all (D,D′) differing in a single point,

P
(
Â(D) ∈ F

)
≤ exp(εp) · P

(
Â(D′) ∈ F

)

The distribution of the outputs under neighboring databases is close.
(Dwork et al., 2006)
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Differential privacy and process

1 Privacy for individuals: If output Â(D) has a density, then

∣∣∣∣∣∣
log

p
(
Â(D) = f

)

p
(
Â(D′) = f

)

∣∣∣∣∣∣
≤ εp.

Small LLR means difficulty in disambiguation even when D ∩D′ is
revealed.

2 Privacy for data: No assumption that one can be “lost in the
crowd” or that there is a metric on data points to measure
“closeness.” Distance between databases is Hamming distance.
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Input perturbation

D � A

noise

fin

• Target function A(D) that we want to approximate.

• Add noise to data D and then compute A.

• Mapping from D to noisy version has to satisfy differential privacy.
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Output perturbation : adding noise

D � foutA

noise

• Compute desired A, then add noise to output before release.

• Tune noise to the “sensitivity” of A to changes in its input.
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Some difficulties

There are many technical hurdles to overcome:

• Guarantees are different for discrete versus continuous data.

• Guarantees often scale poorly with data dimension.

• Modest changes in εp have a large effect empirically.

• All computations must be made differentially private (even
parameter tuning).
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Other definitions of privacy

Previous privacy approaches enforce ambiguity in the map from data
to individuals. Idea is to “quantize” data values so that many
individuals have the same data.

• k-anonymity (Sweeney, 1998) , `-diversity (Machanavajjhala et al.,

2006) , t-closeness (Li et al., 2007) , m-invariance (Xiao and Tian,

2007)

• Data can still be combined to re-identify individuals (Dwork et al.,

2006) (Ganta et al., 2008)

Other approaches to quantifying privacy : information theoretic
security (Sankar et al. 2010) or secure multiparty computation (Vaidya
and Clifton 2005)
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A perspective from learning theory

Learning theory is concerned with what things can be learned :

• PAC learning is possible under differential privacy
(Kasiviswanathan et al 2008)

• Private learning is not characterized by VC dimension (Beimel et
al. 2012)

• Parametric inference is possible (Smith 2011)

• Various learning algorithms will work with enough data (lots of
people)

There is a complex interplay between assumptions on the data and the
feasibility or efficiency of differentially private learning.
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Differentially private classification
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Classification
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Input : Data set D = {(xi, yi) : i = 1, . . . , n}.
Data xi ∈ Rd with ‖xi‖ ≤ 1 and labels yi ∈ {−1,+1}.

Output : Vector f ∈ Rd, label points sgn(fTx).
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Using ERM

+
+

+
+ ++ +
+
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In empirical risk minimization, we choose f to minimize

J(f ,D) =
1

n

n∑

i=1

`(fTxi, yi) +
Λ

2
‖f‖2

Want low empirical risk without overfitting.
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Why is ERM non-private?

Suppose a single point changes in the data set D:

D′ = {(x1, y1), . . . , (xn−1, yn−1), (x
′
n, y
′
n)}.

Solution of ERM will change:

J(f ,D) =
1

n
`(fTxn, yn) +

1

n

n−1∑

i=1

`(fTxi, yi) +
Λ

2
‖f‖2

J(f ,D′) =
1

n
`(fTx′n, y

′
n) +

1

n

n−1∑

i=1

`(fTxi, yi) +
Λ

2
‖f‖2

That is, argminf J(f ,D) 6= argminf J(f ,D′). Change in the n-th
individual can be detected if other data are known.
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Output perturbation for ERM

D � foutA

noise

Sensitivity method (output perturbation) : add noise to output

fout =

(
argmin

f
J(f)

)
+ a

Choose a with density ∝ exp(−α ‖a‖) to guarantee εp privacy.
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Why output perturbation works

f

}
eεp

Density of output fout is just shifted density of a:

p(fout|D) = pa(fout − argmin
f

J(f))

Parameter α chosen to match the shift in ERM solution between D
and D′.
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Objective perturbation for ERM

D arg min
�
J(f) + bT f

⇥
fobj

fobj = argmin
f

(
J(f) + bT f

)

• Add perturbation inside the objective function.

• Choose b with density ∝ exp(−β ‖b‖)
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Sample complexity for the two methods

+
+

+
+ ++ +
+

+
--
-

--
--- -- -+

For privacy εp and generalization error εg:

1 Output perturbation

n = Ω

{
1

ε2g
,
d log d

ε
3/2
p εg

}

2 Objective perturbation

n = Ω

{
1

ε2g
,
d log d

εpεg

}
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Sample complexity for objective perturbation

Theorem (Excess error of fobj)

Let ` be convex, doubly differentiable, and let its derivatives satisfy
`′(·) ≤ 1 and `′′(·) ≤ c and let D be drawn i.i.d. according to P . For
any f0 with expected loss L(f0) = L∗, if

n ≥ C ·max

{
||f0||2 log(1/δ)

ε2g
,
||f0||2
εgεp

,
d log(dδ )||f0||

εgεp

}

we have

P (L(fobj) ≤ L∗ + εg) ≥ 1− δ.
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Proof sketch

1 Fix a distribution P on the data and define

J̄(f) = E[`(fTx, y)] +
Λ

2
‖f‖2 .

Let the minimizer be frtf

2 For a given “good” f0, decompose the objective into:

L(fpriv) = L(f0) + (J̄(fpriv)− J̄(frtr)) + (J̄(frtr)− J̄(f0))

+
Λ

2
(‖f0‖2 − ‖fpriv‖2)

3 Show that the “non-bar” version of the first term is small, then
show that the first term is close to the “non-bar” version. Second
term is small by standard ERM results.
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Simulation results
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Intuitions

Why is objective perturbation better on real data?

• Objective function is more convex in some directions in other.
Loss is higher in these directions.

• Output perturbation is agnostic to this variation : noise affects
sensitive directions adversely.

• Objective perturbation allows optimization to smooth out noise in
sensitive directions more effectively.
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Differentially private dimension reduction
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Dimension reduction by projection

• Data may be presented in very high dimension.

• Fundamental structure is low-dimensional.

• Other dimensions contain mostly noise.
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The PCA problem

Data in Rd:
{xi : i = 1, 2, . . . , n}

Capture structure by the second moment matrix:

A =
1

n

n∑

i=1

xix
T
i

The matrix A captures the “geometry” of the data.
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The top-k subspace

If the eigenvalues of A are λ1(A) ≥ λ2(A) ≥ · · · ≥ λd(A) ≥ 0, and if

A = V ΛV T

where Λ is diagonal with Λii = λi(A) and V is an orthonormal matrix
of eigenvectors, then the rank-k PCA approximation is

Â = V ΛkV
T

where Λ is diagonal with Λii = λi(A) for i ≤ k and Λii = 0 for i > k.
The Schmidt Approximation Theorem says that Â minimizes the
Frobenius norm: ∥∥∥A− Â

∥∥∥
F
.
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Goals

Goal 0: approximate the top-k subspace under ε differential privacy.

Goal 1: understand the fundamental (distribution-free) limits for PCA.

Goal 2: examine the performance on real data.
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Main results

We analyze and implement the exponential mechanism (McSherry and
Talwar 2007) for this problem.

• Upper bound on the number of samples needed for our method.

• Nearly matching bound on the sample complexity for any
algorithm.

• Different lower bound on the sample complexity for input
perturbation.
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The past and the future

• Blum, Dwork, McSherry, and Nissim (PODS 2005) : proposed
adding noise to the second moment matrix

• Hardt and Roth (STOC 2012) : low rank matrix reconstruction

• Kapralov and Talwar (SODA 2013) : a different approach to this
problem

• Hardt and Roth (unpublished) : different model based on matrix
coherence
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Privacy concerns

Shannon

Turing

• I don’t want my data (or participation) to be revealed.

• I don’t trust other people to keep their data secret.

• Can the data holder still publish the subspace?
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Privacy concerns

N + 1

N
Shannon

Turing

v1
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PCA and differential privacy

The PCA algorithm is not differentially private:

D = {e1, e1, . . . e1︸ ︷︷ ︸
N/2

, e2, e2, . . . e2︸ ︷︷ ︸
N/2−1

}

Then v1(D) = e1, but change one e1 to e2 and v1 changes to e2.

Sensitivity depends on the eigenvalue gap.
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SULQ : Input perturbation for PCA

�A

N

PCA v̂

• Add noise to A and then compute PCA on A+N .

• This is the SULQ algorithm proposed by Blum et al. (2005)
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Lower bound on sample complexity

Theorem

There are constants c and c′ such that for any ρ, if

n < C · d
3/2
√

log(d/δ)

εp
,

then there is a dataset of size n in dimension d, s.t. the top PCA
direction v and the output v̂ of SULQ satisfy

E[|〈v̂1, v1〉|] ≤ ρ.
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PPCA : exponential mechanism

Bingham 
SamplerA v̂

Sample a subspace V from the vector Bingham distribution:

f(V ) ∝ exp
(
n
εp
2
· tr(V TAV )

)

=
1

F1 1

(
1
2k,

1
2d,A

) exp
(
n
εp
2

tr(V TAV )
)

This is the exponential mechanism with score function tr(V TAV ).
Works for general k.
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Performance for our method

Theorem (PPCA needs less data)

There exists an absolute constant C such that the following holds. For
any γ > 0, εp > 0, t > 0, if

n > C · d

εp(1− ρ)(λ1 − λ2)
· log

1

(1− ρ2)(λ1 − λ2)
,

then the top PCA direction v1 and the output of our algorithm v̂1 with
privacy parameter εp satisfy:

P(|〈v1, v̂1〉| > ρ) ≥ 1− η
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Proof sketch

The proof is a refined analysis of the Exponential Mechanism
(McSherry and Talwar, 2007):

1 Want to upper bound probability of landing in the set

Ūρ = {u : 〈u, v1〉 ≤ ρ}

2 An ugly bound:

P
(
Ūρ
)
≤ P

(
Ūρ
)

P (Uσ)

≤ exp(n(α/2)(ρ2λ1 + (1− ρ2)λ2)
exp(n(α/2)(σ2λ1 + (1− σ2)λd)

· Surf
(
Ūρ
)

Surf (Uσ)

3 Then do some algebra.
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Lower bound for any method

Theorem (General lower bound)

Fix d, εp, and λ1 − λ2. Then there is a constant C such that if

n < C · d

εp(λ1 − λ2)
√

1− ρ,

the top PCA direction v1 and the output of our algorithm v̂1 with
privacy parameter εp satisfy:

E [|〈v1, v̂1〉|] < ρ
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Proof idea for lower bound

Lemma

Let D1,D2, . . . ,DK be K databases which differ in the value of at
most ln(K−1)

α points, and let u1, . . . , uK be the top eigenvectors of
D1,D2, . . . ,DK . If A is any α-differentially private algorithm, then,

K∑

i=1

EA [|〈A(Di), ui〉|] ≤ K
(

1− 1

16
(1−max |〈ui, uj〉|)

)
.

Then construct K databases with this property.
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Implementing the exponential mechanism

Bingham 
SamplerA v̂

A major difficulty is sampling from the Bingham distribution:

• “Closed form” involves special functions.

• Markov Chain Monte Carlo (MCMC) sampling.

• New set of challenges to explore.
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Error versus data set size

Theoretical guarantees are for k = 1 but we can implement the
method for general k:

Dataset #instances #dimensions k

kddcup 494,021 116 4

census 199,523 513 8

localization 164,860 44 10

insurance 9,822 150 11

Table : Parameters of each dataset. The second column is the number of
dimensions after preprocessing. k is the dimensionality of the PCA, and the
fourth column contains q(U)/ ‖A‖F where U is the top k PCA subspace.
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Error versus data set size
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Algorithm
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PPCA
Random
SULQ

Utility q(U) for localization for d = 44, k = 10.

TTI-C Sarwate



Bellairs Workshop > Privacy-preserving PCA 50 / 53

Error versus data set size
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Error versus data set size
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Error versus data set size
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New challenges

Currently there is lots of active research on the theory side:

• Kernel learning, online learning, convex optimization

• New and variant definitions of privacy

but there are important practical issues ahead:

• Need more algorithms tuned to domain-specific assumptions.

• Extensions to complex data sources (e.g. images)
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Summary
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• Privacy-preserving data analysis is a rich and growing research
area.

• Demonstrated and evaluated methods for ERM and PCA.

• Incorporating domain knowledge can make a big impact.

TTI-C Sarwate



Bellairs Workshop > Conclusions 53 / 53

Thank you!
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