Active Learning on Graphs -Sampling the Initial Set

Florence Regol Dep. Electrical and Computer Engineering McGill University Montréal, Québec, Canada

How do we study for a test?

- We choose what to study
- As we go, we **re-evaluate** what we should focus on
- Our goal is to **optimize our grade**

... Active Learning

Active Learning

Problem Setting:

- Unlabeled data
- Able to **query** an oracle to obtain labels

Goal : Choose the optimal queries to maximize performance

Active Learning Strategies - Graph Context

Strategies

Heterogeneity

(Uncertainty, query by committee)

Performance

(Expected error/variance reduction)

Representativeness

(choose better representation of underlying distribution)

Graph context

Nodes far from labeled nodes

Directly optimize the cost function of the graph learning algorithm

Use embeddings to run K-mean and compute distances to the centroides

Strategies for choosing the initial set

- Assuming IID on Euclidean space
 - → Nothing better than random
- Data on graph, with some smoothness assumptions
 - → Can leverage graph structure

Sampling Methods relying only on graph structure

Max Degree Sampling

- Order nodes by highest degree
- If we have to choose, sample uniformly.

```
G = {}
for # nodes to select
Max Degree Set = maxDegree(remaining nodes)
if |G| + |Max Degree Set| > # nodes to select:
    selected_nodes ~ Uniform(Max Degree Set)
    G = G U selected_node
    break
G = G U (Max Degree Set)
```

Intuition : Nodes with more connections are more representative, "central" to the graph

Experimentally Designed Sampling (EDS)

- Sampling to recover a **k-sparse signal** :
- Sample node relative to their sampling score :

$$egin{aligned} Adj &= V\Lambda U \ \hat{x}_k &= U_k x \ x &= V_k \hat{x}_k \end{aligned}$$

$$p_i = ||u_{ki}||_2 / \sum_{j \in Training} ||u_{kj}||_2$$

Intuition : Nodes selected to fully recovers a signal are more important and more representative of the graph

^[3] S. Chen, R. Varma, A. Singh, and J. Kovacevic, "Signal recovery on graphs: Random versus experimentally designed sampling," 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 337–341, 2015.

Greedy Sampling - Problem Setting

- Bayesian Estimation problem
- Goal : Estimate a signal *z* from a noisy observation *y* of a k-sparse signal *x*
- The recovered signal can be obtained through a linear transformation
- **Prior** on initial signal and noise
- Estimator is a linear interpolation from sampled observation y_s

9

[3] L. F. O. Chamon and A. Ribeiro, "Greedy sampling of graph signals," IEEE Transactions on Signal Processing, vol.66, no. 1, pp. 34–47, 2018.

Greedy Sampling - Defining MSE

• The **Optimal** interpolation operator can be found by minimizing the **Interpolation Error Covariance Matrix**:

$$K[\hat{z}(s)]=E[(z-\hat{z}(s))(z-\hat{z}(s)^H)|x,w]$$

• The error is only dependant on the set

$$K^*(S) = HV_K(\Lambda^{-1} + \sum_{i \in s} \lambda_{w,i}^{-1} v_i v_i^H)^{-1} V_K^H H^H$$

• Can define the Mean Square Error on a set

$$MSE(S) = Tr[K^*(S)]$$

Greedy Sampling

- Still a Combinatorial Problem
- Use a Greedy algorithm instead to minimize the MSE
- Derive **bounds** on the performance; function of the sparsity, the size of the set and α-supermodularity

G = {}
for # nodes to select
 selected_node = argmin MSE(G U {i})
 G = G U ({selectd_node})

 $f(Greedy) \leq (1-e^{-lpha s/k}) fopt^*$

Taking the identity matrix as the transformation makes the results hard to interpret. (Same goes for EDS)

 $\binom{n}{s}$

Problem Setting - Experiment Description

Graph Convolutional Network(GCN)

Architecture used : $f(X, A) = softmax(\hat{A}ReLU(\hat{A}XW^0)W^1)$

[2] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

Role of Â

- Recall $H^{l+1} = \sigma(\hat{A}H^lW^l)$
- The identity matrix ensures that we keep the features of the "main node"
- Regularized to avoid vanishing/exploding gradient as we add layers
- No Edges -> Neural Networks

$$\hat{A} = {\hat{D}}^{-1/2} (A+I) {\hat{D}}^{-1/2}$$

Sampling (Semi-Supervised)

Testing/Validation set

Unlabeled Training set

Labeled Training set

Sampling Technique Choosing the labeled training set

Experiment Description

Experiment Parameter	Values
Sampled Node (%)	5, 10, 15, 20, 30, 40, 50, 60, 75, 85, 100
Noise Covariance Prior (when applicable)	0.01, 1, 100
Num Eigenvector k (when applicable)	5, 10, 100
Dataset	Cora (2708 feature, 7 classes)
Num. of Sampling Trials (when applicable)	20
Num. of Cross Validation (when applicable)	4

Results

Known labels of training set (%)

Known labels of training set (%)

Known labels of training set (%)

EDS

20

Binary Label Signals in Frequency domain

Top 100 eigenvectors

Conclusion and Future Work

- Greedy sampling gave a small increase of performance
 - \circ $\,$ We could try to bring closer the H matrix and the GCN $\,$
- Active learning to select following nodes

References

[1] H. Cai, V. W. Zheng, and K. C. Chang, "Active learning for graph embedding,"CoRR, vol. abs/1705.05085, 2017.

[2] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.

[3] S. Chen, R. Varma, A. Singh, and J. Kovacevic, "Signal recovery on graphs: Random versus experimentally designed sampling," 2015 International Conference on Sampling Theory and Applications (SampTA), pp. 337–341, 2015.

[4] L. F. O. Chamon and A. Ribeiro, "Greedy sampling of graph signals," IEEE Transactions on Signal Processing, vol.66, no. 1, pp. 34–47, 2018.