Disease Outcome Prediction Using Graph Auto-encoders

Juliette Valenchon

Department of Electrical and Computer Engineering, McGill University, Montreal Under the supervision of Mark Coates

February 13, 2019

Motivation

Head and Neck Cancer¹

Breast Cancer²

Cardiovascular disease³

Colorectal Cancer⁴

Lung Cancer⁵

Alzheimer's Disease⁶

¹Reproduced from "Head and Neck Cancer is not Just a Smoker's Disease Anymore", Mount Sinai News. ² S. Roan, "Early Stage Breast Cancer: Do You Really Need Your Lymph Nodes Removed?", Everyday Health. ³ "Conquering Cardiovascular Disease", NIH. ⁴ "Colorectal Cancers", Dr. Fuhrman. ⁵ K. O'Sullican, "New drug approved for advanced lung cancer by HSE". The Irish Times. ⁶ M. Casalino, "Alzheimer's Association Offers Virtual Dementia Tour". Patch 2

Motivation

- ► Traditionally: risk calculator for possibility of disease development.
- Framingham study: prediction for hospitalization for long-term cardiovascular disease

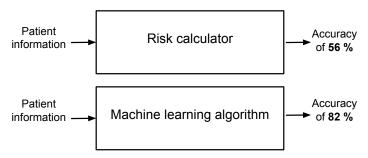
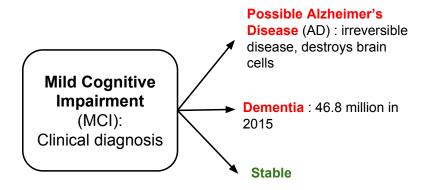


Figure 2: Comparison of a risk calculator and a machine learning algorithm⁷

⁷W. Dai et al., "Prediction of hospitalization due to heart diseases by supervised learning methods" Int. J. medical informatics, vol. 84, no. 3, pp. 189–197, 2015.

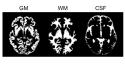
Motivation



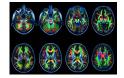
 \rightarrow Early and accurate diagnosis for an early treatment to improve the quality of life for some time

Goal

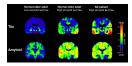
- Predict conversion from MCI to AD
- Multimodal data with missing values



(a) MRI⁸



(b) DTI⁹



(c) PET¹⁰

⁸Clinica developers, "Volume pre-processing - Clinica Documentation". ⁹ Rachel VanCott, "NOVA — scienceNOW — Diagnosing Damage image 3 — PBS". ¹⁰ University of California - Berkeley, "PET scans reveal key details of Alzheimer's protein growth in aging brains" 5/19

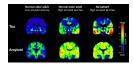
Goal

- Predict conversion from MCI to AD
- Multimodal data with missing values

(a) MRI⁸

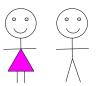


(b) DTI⁹



(c) PET¹⁰

Use characteristics of subjects



 $^{^8}$ Clinica developers, "Volume pre-processing - Clinica Documentation". 9 Rachel VanCott, "NOVA — scienceNOW — Diagnosing Damage image 3 — PBS". ¹⁰ University of California - Berkeley, "PET scans reveal key details of Alzheimer's protein growth in aging brains" 5/19

Problem formulation

- \rightarrow Deal with missing values
- \rightarrow Perform classification

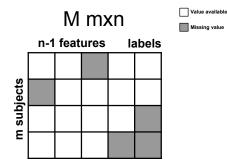
Problem formulation

- \rightarrow Deal with missing values
- \rightarrow Perform classification
- \rightarrow Matrix completion
- \rightarrow Label as feature

Matrix completion

- Recover missing values by solving optimization problem
- Loss function :

$$I = ||\Omega * (M - \tilde{M})|| + \gamma I_{\Omega_b}(M, \tilde{M}) + \beta \sum_{i=1}^{q} W_i$$
(1)



Graph methods for the prediction of MCI to AD conversion

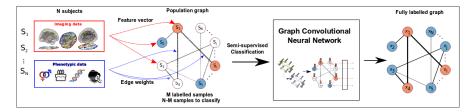
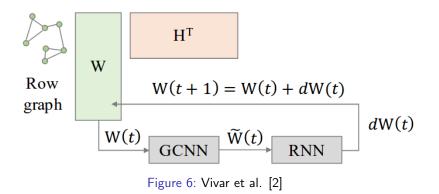


Figure 5: Overview of the pipeline used for classification of population graphs using Graph Convolutional Networks. Reproduced from Parisot et al. [1]

No missing data

One graph

Graph methods for the prediction of MCI to AD conversion



- Matrix completion
- Missing data
- One graph

A novel graph-based method for the prediction of MCI to AD conversion

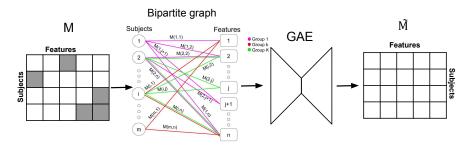


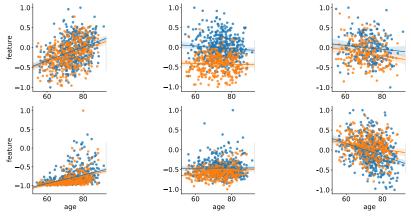
Figure 7: Proposed architecture

- Matrix completion : Van den Berg et al. [3]
- Missing data
- Multiple graphs

Disease Outcome Prediction Using GAE

Architecture

Defining the feature dependencies



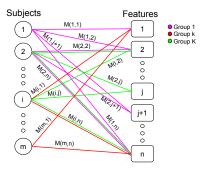
Age-related features.

Sex-related features.

Age & Sex features.

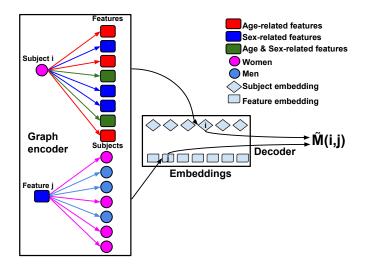
Figure 8: Relationships of age and sex (Men and Women) with six different features in the case of Alzheimer's disease.

Bipartite graph



 Relationship between a group of subjects and a group of features

Graph Auto-encoder



Implementation details

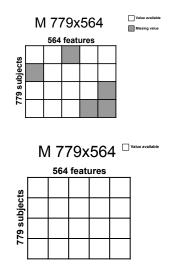
Datasets

TADPOLE dataset

- 779 subjects
- 564 features
- 21 % missing data

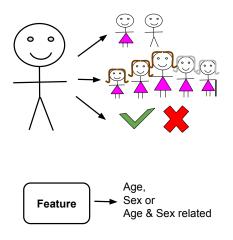
Creation of a synthetic dataset

- 779 subjects
- 564 features
- No missing data



Implementation details

Creation of the synthetic dataset



$$M(i,j) = m_j f_{ij} + i_j + \epsilon_{ij} + v_j * y_i \quad (2)$$

$$f_{ij} = x_i \text{ if age} \tag{3}$$

$$= s_i$$
 if sex (4)

$$= s_i x_i$$
 if age & sex (5)

$$m_j \sim \mathcal{U}[-m,m]$$
 (6)

$$i_j \sim \mathcal{U}[a, b]$$
 (7)

$$\epsilon_{ij} \sim \mathcal{N}(0,\sigma)$$
 (8)

$$v_j \sim \mathcal{U}[c,d]$$
 (9)

Implementation details

Evaluation measure for performance

- Chosen Metrics: Integral of ROC : AUC (Area Under the Curve)
- ROC measures the true positive rate, relative to the number of false positives
- ▶ Integral of ROC ranges from 0 to 1, with 1 being the best

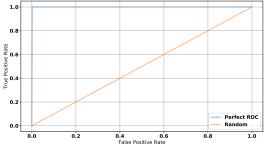
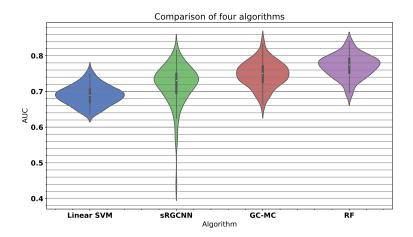


Figure 9: Perfect and random ROC curve

16/19

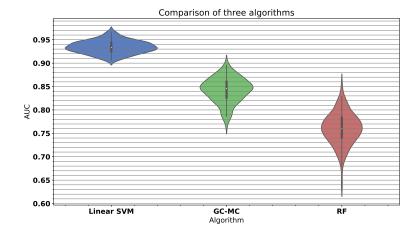
Results

Results on the real dataset



Results

Results on the synthetic dataset



-Results

Conclusion

- Better than baseline methods linear SVM and MLP
- Better performance than sRGNN by 2.9 %
- Random Forest performs better

Future work:

Remove missing values in the dataset