Conclusions

Deep Gaussian Processes: Theory and Applications

Petar M. Djurić

Bellairs Workshop, Barbados

February 13, 2019

Stony Brook University

Petar M. Djurić — Deep Gaussian Processes: Theory and Applications

Outline

- Introduction
- Gaussian processes
- Deep Gaussian processes
- Applications
- Conclusions

Introduction

- Probabilistic modeling allows for representing and modifying uncertainty about models and predictions.
- This is done according to well defined rules.
- Probabilistic modeling has a central role in machine learning, cognitive science and artificial intelligence.

Stony Brook University

The Concept of Uncertainty

- Learning and intelligence depend on the amount of uncertainty in the information extracted from data.
- Probability theory is the main framework for handling uncertainty.
- Interestingly, in the recent progress of deep learning with deep neural networks, which are based on learning from huge amounts of data, the concept of uncertainty is somewhat bypassed.
- In the years to come, we will see further advances in artificial intelligence and machine learning within the probabilistic framework.

The Role of a Model

- To make inference from data, one needs models.
- Models can be simple (like linear models) or highly complex (like large and deep neural networks).
- In most settings, the models must be able to make predictions.
- Uncertainty plays a fundamental role in modeling observed data and in interpreting model parameters, the results of models, and the correctness of models.

Introduction 000●	Gaussian Processes 0000000000000000	Deep Gaussian Processes 00000000000	Applications 0000000000 000000000	Conclusions 0

The Learning

- Probability distributions are used to represent uncertainty.
- Learning from data occurs by transforming prior distributions (defined before seeing the data) to posterior distributions (after seeing the data).
- The optimal transformation from information-theoretic point of view is the Bayes rule.
- The beauty of the approach is the simplicity of the Bayes mechanism.

Introduction 0000	Gaussian Processes ●0000000000000000000	Deep Gaussian Processes 00000000000	Applications 0000000000 000000000	Conclusions 0

Gaussian Processes Regression

 Essentially, a GP can be seen as the distribution of a real-valued function f(x),

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k_f(\mathbf{x}_i, \mathbf{x}_j))$$

- Some assumptions are often made when using GP regression
 - 1. the mean function $m(\mathbf{x}) = 0$ for simplicity, and
 - 2. the observation noise is additive white Gaussian noise for tractability.

Deep Gaussian Processes 00000000000 Applications

Conclusions

Gaussian Processes Regression (contd.)

Let $\mathbf{X} = {\{\mathbf{x}_i\}_{i=1}^N}$ and \mathbf{y} denote the collection of all input vectors and all observations, respectively, with the above assumptions, i.e.,

 $\mathbf{y} = \mathbf{f}(\mathbf{X}) + \boldsymbol{\epsilon}$

where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma_{\epsilon}^2 \mathbf{I})$. We also have

- Likelihood: $p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma_{\epsilon}^2 \mathbf{I})$, and
- Prior: p(f|X, θ) = N(f|0, K_{ff}), where K_{ff} = k_f(X, X) and θ denote the hyper-parameters in the covariance function.

Deep Gaussian Processes 00000000000 Applications

Conclusions

Gaussian Processes Regression (contd.)

The hyper-parameters θ can be learned from the training data $\{X, y\}$ by maximizing the log-marginal-likelihood

• Log-marginal-likelihood: $\log p(\mathbf{y}|\mathbf{X}, \theta)$

$$\begin{split} \log p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) &= \log \mathcal{N}(\mathbf{y}|\mathbf{0}, \ \mathbf{K}_{ff} + \sigma_{\epsilon}^{2}\mathbf{I}) \\ &= \log \mathcal{N}(\mathbf{y}|\mathbf{0}, \ \mathbf{K}) \\ &= -\frac{1}{2}\mathbf{y}^{T}\mathbf{K}^{-1}\mathbf{y} - \frac{1}{2}\log|\mathbf{K}| - \frac{N}{2}\log 2\pi \end{split}$$

The Occam's razor is embedded in the model.

Deep Gaussian Processes

Applications

Conclusions

Gaussian Processes Regression (contd.)

Let X_* and f_* denote the collection of test inputs and the corresponding latent function values, respectively. Then we can express the predictive posterior as

▶ Predictive posterior: $p(\mathbf{f}_*|\mathbf{X}_*, \mathbf{X}, \mathbf{y}, \theta) = \mathcal{N}(\mathbf{f}_*|\mathbb{E}(\mathbf{f}_*), cov(\mathbf{f}_*))$

$$\mathbb{E}(\mathbf{f}_*) = [\mathbf{K}_f(\mathbf{X}_*, \mathbf{X})]\mathbf{K}^{-1}\mathbf{y}$$

 $cov(\mathbf{f}_*) = \mathbf{K}_f(\mathbf{X}_*, \mathbf{X}_*) - [\mathbf{K}_f(\mathbf{X}_*, \mathbf{X})]\mathbf{K}^{-1}[\mathbf{K}_f(\mathbf{X}_*, \mathbf{X})]^T$

Introduction	Gaussian Processes	Deep Gaussian Processes	Applications	Conclusions
	000000000000000000000000000000000000000		0000000000 000000000	

Covariance Function

 For example: Radial basis function (RBF) or squared exponential (SE)

One dimensional form:

$$k_{rbf}(x_i, x_j) = \sigma_f^2 \exp(-\frac{1}{\ell}(x_i - x_j)^2)$$

- σ_f^2 measures strength of signal, $\frac{\sigma_f^2}{\sigma_\epsilon^2}$ is equivalent to signal-to-noise ratio (SNR).
- ► The characteristic length scale ℓ encodes the model complexity in that dimension.
- $r = \frac{1}{\ell}$ measures the relevance of that dimension.
- Automatic relevance determination (ARD)

Introd	

Conclusions

Toy Example

- Goal: learn f(x) from 5 noisy observations $\{x_i, y_i\}_{i=1}^5$.
- Ground truth: $y = \sin(x) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$.
- Test inputs: $\mathbf{x}_* \in \mathbb{R}^{300 \times 1}$ equally spaced from x = 0 to 2π .
- Test outputs: $\mathbf{f}_* = f(\mathbf{x}_*)$

Stony Brook University

Introduction 0000	Gaussian Processes 00000000000000000	Deep Gaussian Processes 00000000000	Applications 000000000 00000000	Conclusions 0
Prior Di	stribution			

Deep Gaussian Processes 00000000000 Applications

Conclusions

Predictive (Posterior) Distribution

Deep Gaussian Processes

Applications

Conclusions

Another Toy Example: The Function $\sin x/x$

Gaussian Processes

Deep Gaussian Processes 00000000000 Applications 0000000000 000000000 Conclusions

Example: Recovery of Missing Samples in FHR¹

 Goal: recover missing samples in FHR, using not only observed FHR but also UA samples

Model:

$$y_i = y(\mathbf{x}_i) = f(\mathbf{x}_i) + \epsilon_i$$

- y_i: i-th sample in an FHR segment
- $\mathbf{x}_i = [i, u_i]'$ where u_i is the *i*-th UA sample
- ϵ_i : Gaussian white noise
- f(x_i): i-th latent noise-free FHR sample

¹Guanchao Feng, J Gerald Quirk, and Petar M Djurić. "Recovery of missing samples in fetal heart rate recordings with Gaussian processes". In: Signal Processing Conference (EUSIPCO), 2017 25th European. IEEE 2017, pp. 261–265.

Stony Brook

University

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

CTG Segment for Experiments

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

CTG Segment for Experiments

Introduction 0000	Gaussian Processes 000000000000000000000000000000000	Deep Gaussian Processes 00000000000	Applications 0000000000 000000000	Conclusions O
Evnerim	ont l			

 120 missing samples were randomly selected, and we tried to recover their true values.

Introduction 0000	Gaussian Processes 000000000000000000000000000000000	Deep Gaussian Processes 00000000000	Applications 0000000000 000000000	Conclusions O
Experim	ient II			

The percentage of missing samples was increased from 1% to 85% with a step size of 1%.

95% confidence interval without UA Mean predictions without UA (estimated values)

150

Mean predictions with UA (estimated values) 95% confidence interval with UA

250 300 350 400 450 500

time[samples]

115

110

105

50

Stony Brook

University

Conclusions

Experiment VI (An Extreme Case)

▶ 10 seconds of consecutive missing samples.

Limitations

- ► The general framework is computationally expensive, $O(N^3)$, due to the term $\mathbf{K}_{N \times N}^{-1}$.
- Another limitation is the joint Gaussianity that is required by the definition of GPs.

Deep Gaussian Processes •0000000000 Applications

Conclusions

Deep Gaussian Processes

• $\mathbf{Y} \in \mathbb{R}^{N \times d_y}$: observations, output of the network

- N is the number of observation vectors.
- d_y is the dimension of the vectors \mathbf{y}_n .
- $\{\mathbf{X}_h\}_{h=1}^{H-1}$: intermediate latent states
 - dimensions $\{d_h\}_{h=1}^{H-1}$ are potentially different.
- ▶ $\mathbf{Z} \in \mathbb{R}^{N \times d_z}$: the input to the network
 - **Z** is observed for supervised learning.
 - Z is unobserved for unsupervised learning.

Deep Gaussian Processes (contd.)

- The joint Gaussianity limitation is overcome because nonlinear mappings generally will not preserve Gaussianity.
- DGPs immediately introduce intractabilities.
- One way of handling the difficulties is by introducing a set of inducing points and where within the variational framework, sparsity and a tractable lower bound on the marginal likelihood are obtained.

Stony Brook University

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Example: Functions Sampled From DGP

 Gaussianity limitation is overcome by nonlinear function composition.

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Example: Learning a Step Function²

- Standard GP (top), two- and four-layer DGP (middle, bottom).
- DGPs achieved much better performance.

²James Hensman and Neil D Lawrence. "Nested variational compression in deep Gaussian processes". arXiv preprint arXiv:1412.1370 (2014). Stony Brook University

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Deep GPs and Deep Neural Networks (a comparison)

- A single layer of fully connected neural network with an independent and identically distributed (iid) prior over its parameters and with an infinite width is equivalent to a GP.
- Therefore, deep GPs are equivalent to neural networks with multiple, infinitely wide hidden layers.
- Mappings of a DGP are governed by its GPs instead of activation functions.
- A DGP allows for propagations and quantifications of uncertainties through each layer as a fully Bayesian probabilistic model.
- There is ARD at each layer.

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Generative Process

Figure: A two-layer DGP.

The generative process takes the form:

$$\begin{aligned} x_{nl} &= f_l^X(\mathbf{z}_n) + \epsilon_{nl}^X, \quad l = 1, \dots, d_x, \quad \mathbf{z}_n \in \mathbb{R}^{d_z} \\ y_{ni} &= f_i^Y(\mathbf{x}_n) + \epsilon_{ni}^Y, \quad i = 1, \dots, d_y, \quad \mathbf{x}_n \in \mathbb{R}^{d_x} \end{aligned}$$

• ϵ_{nl}^{X} and ϵ_{ni}^{Y} are additive white Gaussian processes.

Stony Brook University

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Generative Process (contd.)

$$Z \xrightarrow{f^X} X \xrightarrow{f^Y} Y$$

- We assume Z is unobserved with a prior $p(Z) = \mathcal{N}(Z|0, I)$
- If we have specific prior knowledge about Z, we should quantify this knowledge into a prior accordingly.

Stony Brook University

Introduction 0000	Gaussian Processes 000000000000000000	Deep Gaussian Processes 000000000000	Applications 0000000000 000000000	Conclusion O

Inference

$$Z \xrightarrow{f^X} X \xrightarrow{f^Y} Y$$

▶ The inference takes the reverse route, i.e., we observe high-dimensional data **Y**, and we learn the low-dimensional manifold **Z** (of dimension d_z , where $d_z < d_x < d_y$) that is responsible for generating **Y**.

Introduction 0000	Gaussian Processes 0000000000000000	Deep Gaussian Processes	Applications 0000000000 000000000	Conclusions 0

Inference Challenges

The learning requires maximization of the log-marginal-likelihood,

$$\log p(\mathbf{Y}) = \log \int_{\mathbf{X},\mathbf{Z}} p(\mathbf{Y}|\mathbf{X}) p(\mathbf{X}|\mathbf{Z}) p(\mathbf{Z}) \mathrm{d}\mathbf{X} \mathrm{d}\mathbf{Z}$$

which is intractable.

Petar M. Djurić — Deep Gaussian Processes: Theory and Applications

Gaussian Processes

Deep Gaussian Processes

Conclusions

Augmentation of Probability Space

Original probability space:

$$p(\mathbf{Y}, \mathbf{F}^{Y}, \mathbf{F}^{X}, \mathbf{X}, \mathbf{Z}) = p(\mathbf{Y}|\mathbf{F}^{Y})p(\mathbf{F}^{Y}|\mathbf{X})p(\mathbf{X}|\mathbf{F}^{X})$$

 $\times p(\mathbf{F}^{X}|\mathbf{Z})p(\mathbf{Z})$

Augmentation using inducing points:

▶
$$\mathbf{U}^X = f^X(\mathbf{\tilde{Z}}), \, \mathbf{\tilde{Z}} \in \mathbb{R}^{N_p \times d_Z} \text{ and } \mathbf{U}^X \in \mathbb{R}^{N_p \times d_x}$$

►
$$\mathbf{U}^{Y} = f^{Y}(\mathbf{\tilde{X}}), \ \mathbf{\tilde{X}} \in \mathbb{R}^{N_{p} \times d_{x}} \text{ and } \mathbf{\tilde{X}} \in \mathbb{R}^{N_{p} \times d_{x}}$$

► $N_{p} \leq N$

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Augmentation of Probability Space

Augmented probability space:

$$p(\mathbf{Y}, \mathbf{F}^{Y}, \mathbf{F}^{X}, \mathbf{X}, \mathbf{Z}, \mathbf{U}^{Y}, \mathbf{U}^{X}, \tilde{\mathbf{X}}, \tilde{\mathbf{Z}})$$

$$= p(\mathbf{Y}|\mathbf{F}^{Y})p(\mathbf{F}^{Y}|\mathbf{U}^{Y}, \mathbf{X})p(\mathbf{U}^{Y}|\tilde{\mathbf{X}})$$

$$\times p(\mathbf{X}|\mathbf{F}^{X})p(\mathbf{F}^{X}|\mathbf{U}^{X}, \mathbf{Z})p(\mathbf{U}^{X}|\tilde{\mathbf{Z}})p(\mathbf{Z})$$

- Problematic terms:
 - $\blacktriangleright \mathcal{A} = p(\mathbf{F}^{Y}|\mathbf{U}^{Y},\mathbf{X})$
 - $\blacktriangleright \mathcal{B} = p(\mathbf{F}^X | \mathbf{U}^X, \mathbf{Z})$

Stony Brook University

Introduction 0000	Gaussian Processes 0000000000000000	Deep Gaussian Processes	Applications 0000000000 000000000	Conclusions O

Variational Inference

- A variational distribution: $Q = q(\mathbf{U}^Y)q(\mathbf{X})q(\mathbf{U}^X)q(\mathbf{Z})$
- By Jensen's inequality:

$$\log p(\mathbf{Y}) \geq \mathcal{F}_{v} = \int \mathcal{Q} \cdot \mathcal{A} \cdot \mathcal{B} \log \mathcal{G} \, \mathrm{d} \mathbf{F}^{\mathbf{Y}} \mathrm{d} \mathbf{X} \mathrm{d} \mathbf{F}^{\mathbf{X}} \mathrm{d} \mathbf{Z} \mathrm{d} \mathbf{U}^{\mathbf{X}} \mathrm{d} \mathbf{U}^{\mathbf{Y}}$$

► The function *G* is defined as:

$$\mathcal{G}(\mathbf{Y}, \mathbf{F}^{Y}, \mathbf{X}, \mathbf{F}^{X}, \mathbf{Z}, \mathbf{U}^{X}, \mathbf{U}^{Y}) = \frac{p(\mathbf{Y}|\mathbf{F}^{Y})p(\mathbf{U}^{Y})p(\mathbf{X}|\mathbf{F}^{X})p(\mathbf{U}^{X})p(\mathbf{Z})}{Q}.$$

\$\mathcal{F}_v\$ is tractable for a collection of covariance functions, since \$\mathcal{A}\$ and \$\mathcal{B}\$ are canceled out in \$\mathcal{G}\$.

Deep Gaussian Processes

Applications

Conclusions

Studying Complex Systems

Used principles

- algorithmic compressibility,
- locality, and
- deep probabilistic modeling.

Stony Brook University

Deep Gaussian Processes

Applications

Conclusions

Applications-contd.

Petar M. Djurić — Deep Gaussian Processes: Theory and Applications

Introduction 0000	Gaussian Processes 000000000000000000	Deep Gaussian Processes 00000000000	Applications 000000000 00000000	Conclusions O
Applicat	ions-contd ³			

Conclusions

Example: Binary pH-based Classification⁴

- Goal: to have the DGP classify CTG recordings into health and unhealthy classes.
- Features:
 - 14 FHR features
 - 6 (categorical) UA features
- Labeling:
 - Positive (unhealthy): pH < 7.1</p>
 - Negative (healthy): pH > 7.2

⁴Guanchao Feng, J Gerald Quirk, and Petar M Djurić. "Supervised and Unsupervised Learning of Fetal Hert University Rate Tracings with Deep Gaussian Processes". In: 2018 14th Symposium on Neural Networks and Applications (NEUREL). IEEE. 2018, pp. 1–6.

Introduction 0000	Gaussian Processes 0000000000000000	Deep Gaussian Processes 00000000000	Applications 0000000000 00000000	0

- Structure of DGP: our DGP network had two layers, and in each layer, we set the initial latent dimension to five.
- Performance metrics:
 - 1. Sensitivity (true positive rate)
 - 2. Specificity (true negative rate)
 - 3. Geometric mean of specificity and sensitivity

Features

Table: Features for FHR

Category	Feature		
Time domain	Mean, Standard deviation, STV, STI, LTV, LTI		
Non-linear	Poincaré SD1, Poincaré SD2, CCM		
Frequency domain	VLF, LF, MF, HF, ratio		

Table: Features for UA

	Normal (0)	Abnormal (1)
Frequency	\leq 8 contractions	> 8 UC (tachysystole)
Duration	< 90s	> 90s
Increased tonus	With toco	Prolonged > 120s
Interval A	Interval – peak to peak	< 2min
Interval B	Interval – offset of UC to onset of next UC	< 1min
Rest time	> 50%	< 50%

Classification Results

 Support vector machine (SVM) was used as a benchmarking model.

Classifier	Feature	Specificity	Sensitivity	Geometric Mean
C)/M	FHR	0.82	0.73	0.77
5 V IVI	FHR+UA	0.82	0.82	0.82
Deep GP	FHR	0.91	0.73	0.82
	FHR+UA	0.82	0.91	0.86

Table: Classification results

Gaussian Processes

Deep Gaussian Processes 00000000000 Applications

Conclusions

Unsupervised Learning for FHR Recordings

- Goal: to have the DGP learn informative low-dimensional latent spaces that can generate the recordings.
- Labeling:
 - pH-based labeling combined with obstetrician's evaluation.
 - Labels are only used for evaluation of learning results.
- Data:
 - The last 30 minutes of 10 FHR recordings, $\mathbf{Y} \in \mathbb{R}^{10 \times 7200}$.
 - Three of them are abnormal and 7 are normal.

Performance Metric and Network Structure

- Performance metric: the number of errors in the latent space for one nearest neighbor.
- Structure of DGP: a five-layer DGP, and the initial dimensions of the latent spaces in the layers were d_{x1:5} = [6, 5, 5, 4, 3]^T.

Deep Gaussian Processes

Applications

Conclusions

Automatic Structure Learning

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions 0

Visualization of the Latent Spaces with 2-D Projection.

- Red: the normal recordings
- Blue: the abnormal recordings
- Pixel intensity: proportional to precision
- ▶ The total errors in layers 1 to 5 are 2, 2, 1, 1, 0, respectively.

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

Example: Deep Gaussian Processes with Convolutional Kernels⁵

- Goal: multi-class image classification
- Database: MNIST (handwritten digits)
- Methods:
 - 1. SGP: Sparse Gaussian processes
 - 2. DGP: Deep Gaussian processes
 - 3. CGP: Convolutional Gaussian processes
 - 4. CDGP: Convolutional deep Gaussian processes

Stony Brook Iniversity

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

MNIST

Model	Layer 1	Layer 2	Layer 3	Layer 4	Accuracy%	NLPP
SGP	RBF	-	-	-	97.48	-
DGP1	RBF	RBF	-	-	97.94	0.073
DGP2	RBF	RBF	RBF	-	97.99	0.070
CGP1	Conv	_	_	-	95.59	0.170
CGP2	Wconv	_	-	-	97.54	0.103
CDGP1	Wconv	RBF	_	-	98.66	0.046
CDGP2	Conv	RBF	-	-	98.53	0.536
CDGP3	Conv	RBF	RBF	-	98.40	0.055
CDGP4	Conv	RBF	RBF	RBF	98.41	0.051
CDGP5	Wconv	Wconv	RBF	_	98.44	0.048
CDGP6	Wconv	Wconv	RBF	RBF	98.60	0.046

Gaussian Processes

Deep Gaussian Processes 00000000000 Applications

Conclusions 0

Example: Identification of Atmospheric Variable Using Deep Gaussian Processes⁶

- Goal: modeling temperature using meteorological variables (features).
- Domain of interest: 25Km × 25Km around the nuclear power plant in Krško, Slovenia.
- Features: relative humidity, atmosphere stability, air pressure, global solar radiation, wind speed.

⁶Mitja Jančič, Juš Kocijan, and Boštjan Grašič. "Identification of Atmospheric Variable Using Deep Gaussian Processes". In: *IFAC-PapersOnLine* 51.5 (2018), pp. 43–48.

Stony Brook University

Gaussian Processes

Deep Gaussian Processes

Applications

Conclusions

The Geographical Features of the Surrounding Terrain

The plant and its measurement station (marked as STOLP – Postaja) are situated in the basin surrounded by hills and valleys, which influence micro-climate conditions.

Deep Gaussian Processes

Applications

Conclusions 0

One-Step-Ahead Prediction

Prediction results:

Example: Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data⁷

- Goal: predicting crop yields before harvest
- Model: CNN and LSTM combined with GP

Baselines			Deep models				
Year	Ridge	Tree	DNN	LSTM	LSTM + GP	CNN	CNN + GP
2011	9.00	7.98	9.97	5.83	5.77	5.76	5.7
2012	6.95	7.40	7.58	6.22	6.23	5.91	5.68
2013	7.31	8.13	9.20	6.39	5.96	5.50	5.83
2014	8.46	7.50	7.66	6.42	5.70	5.27	4.89
2015	8.10	7.64	7.19	6.47	5.49	6.40	5.67
Avg	7.96	7.73	8.32	6.27	5.83	5.77	5.55

⁷ Jiaxuan You et al. "Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data.". AAAI. 2017, pp. 4559–4566.

Deep Gaussian Processes

Applications

Conclusions 0

Comparing County-Level Error Maps

• The color represents the prediction error in bushel per acre.

Introduction	Gaussian Processes	Deep Gaussian Processes	Applications	Conclusions
0000	000000000000000000000000000000000000000	000000000000	0000000000	•

Conclusions

- A case was made for using probability theory in treating uncertainties in inference from data.
- Deep probabilistic modeling based on deep Gaussian processes was addressed.
- The use of DGPs in studying complex interacting systems was described.
- Applications in various fields using DGPs were provided.
- Although the development of DGPs is still in its relatively early stages, DGPs showed great potentials in many challenging machine learning tasks.

