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Petar M. Djurić — Deep Gaussian Processes: Theory and Applications 2/55



Introduction Gaussian Processes Deep Gaussian Processes Applications Conclusions

Introduction

I Probabilistic modeling allows for representing and modifying
uncertainty about models and predictions.

I This is done according to well defined rules.

I Probabilistic modeling has a central role in machine learning,
cognitive science and artificial intelligence.
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The Concept of Uncertainty

I Learning and intelligence depend on the amount of
uncertainty in the information extracted from data.

I Probability theory is the main framework for handling
uncertainty.

I Interestingly, in the recent progress of deep learning with deep
neural networks, which are based on learning from huge
amounts of data, the concept of uncertainty is somewhat
bypassed.

I In the years to come, we will see further advances in artificial
intelligence and machine learning within the probabilistic
framework.
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The Role of a Model

I To make inference from data, one needs models.

I Models can be simple (like linear models) or highly complex
(like large and deep neural networks).

I In most settings, the models must be able to make predictions.

I Uncertainty plays a fundamental role in modeling observed
data and in interpreting model parameters, the results of
models, and the correctness of models.
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The Learning

I Probability distributions are used to represent uncertainty.

I Learning from data occurs by transforming prior distributions
(defined before seeing the data) to posterior distributions
(after seeing the data).

I The optimal transformation from information-theoretic point
of view is the Bayes rule.

I The beauty of the approach is the simplicity of the Bayes
mechanism.
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Gaussian Processes Regression

I Essentially, a GP can be seen as the distribution of a
real-valued function f (x),

f (x) ∼ GP(m(x), kf (xi , xj ))

I Some assumptions are often made when using GP regression

1. the mean function m(x) = 0 for simplicity, and

2. the observation noise is additive white Gaussian noise for
tractability.
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Gaussian Processes Regression (contd.)

Let X = {xi}N
i=1 and y denote the collection of all input vectors

and all observations, respectively, with the above assumptions, i.e.,

y = f(X) + ε

where ε ∼ N (0, σ2
ε I). We also have

I Likelihood: p(y|f) = N (y|f, σ2
ε I), and

I Prior: p(f|X,θ) = N (f|0,Kff ), where Kff = kf (X,X) and θ
denote the hyper-parameters in the covariance function.
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Gaussian Processes Regression (contd.)

The hyper-parameters θ can be learned from the training data
{X, y} by maximizing the log-marginal-likelihood

I Log-marginal-likelihood: log p(y|X,θ)

log p(y|X,θ) = logN (y|0, Kff + σ2
ε I)

= logN (y|0, K)

= −1

2
yTK−1y − 1

2
log |K| − N

2
log 2π

I The Occam’s razor is embedded in the model.
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Gaussian Processes Regression (contd.)

Let X∗ and f∗ denote the collection of test inputs and the
corresponding latent function values, respectively. Then we can
express the predictive posterior as

I Predictive posterior: p(f∗|X∗,X, y,θ) = N (f∗|E(f∗), cov(f∗))

E(f∗) = [Kf (X∗,X)]K−1y

cov(f∗) = Kf (X∗,X∗)− [Kf (X∗,X)]K−1[Kf (X∗,X)]T

Petar M. Djurić — Deep Gaussian Processes: Theory and Applications 10/55



Introduction Gaussian Processes Deep Gaussian Processes Applications Conclusions

Covariance Function

I For example: Radial basis function (RBF) or squared
exponential (SE)

One dimensional form:

krbf (xi , xj ) = σ2
f exp(−1

`
(xi − xj )

2)

I σ2
f measures strength of signal,

σ2
f
σ2
ε

is equivalent to

signal-to-noise ratio (SNR).

I The characteristic length scale ` encodes the model
complexity in that dimension.

I r = 1
` measures the relevance of that dimension.

I Automatic relevance determination (ARD)
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Toy Example

I Goal: learn f (x) from 5 noisy observations {xi , yi}5
i=1.

I Ground truth: y = sin(x) + ε, ε ∼ N (0, σ2
ε ).

I Test inputs: x∗ ∈ R300×1 equally spaced from x = 0 to 2π.

I Test outputs: f∗ = f (x∗)
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Prior Distribution
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Predictive (Posterior) Distribution
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Another Toy Example: The Function sin x/x

Petar M. Djurić — Deep Gaussian Processes: Theory and Applications 15/55



Introduction Gaussian Processes Deep Gaussian Processes Applications Conclusions

Example: Recovery of Missing Samples in FHR1

I Goal: recover missing samples in FHR, using not only
observed FHR but also UA samples

I Model:
yi = y(xi ) = f (xi ) + εi

I yi : i-th sample in an FHR segment
I xi = [i , ui ]

′ where ui is the i-th UA sample
I εi : Gaussian white noise
I f (xi ): i-th latent noise-free FHR sample

1Guanchao Feng, J Gerald Quirk, and Petar M Djurić. “Recovery of missing samples in fetal heart rate
recordings with Gaussian processes”. In: Signal Processing Conference (EUSIPCO), 2017 25th European. IEEE.
2017, pp. 261–265.
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CTG Segment for Experiments
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CTG Segment for Experiments
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Experiment I

I 120 missing samples were randomly selected, and we tried to
recover their true values.
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Experiment II

I The percentage of missing samples was increased from 1% to
85% with a step size of 1%.
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Experiment III
I To demonstrate contribution of UA, we repeated the

experiment I, but excluded ui from the input vector xi .
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Experiment VI (An Extreme Case)

I 10 seconds of consecutive missing samples.
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Limitations

I The general framework is computationally expensive, O(N3),
due to the term K−1

N×N .

I Another limitation is the joint Gaussianity that is required by
the definition of GPs.
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Deep Gaussian Processes

Z XH−1 . . . X2 X1 Y

I Y ∈ RN×dy : observations, output of the network

I N is the number of observation vectors.
I dy is the dimension of the vectors yn.

I {Xh}H−1
h=1 : intermediate latent states

I dimensions {dh}H−1
h=1 are potentially different.

I Z ∈ RN×dz : the input to the network
I Z is observed for supervised learning.
I Z is unobserved for unsupervised learning.
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Deep Gaussian Processes (contd.)

I The joint Gaussianity limitation is overcome because nonlinear
mappings generally will not preserve Gaussianity.

I DGPs immediately introduce intractabilities.

I One way of handling the difficulties is by introducing a set of
inducing points and where within the variational framework,
sparsity and a tractable lower bound on the marginal
likelihood are obtained.
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Example: Functions Sampled From DGP

I Gaussianity limitation is overcome by nonlinear function
composition.
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Example: Learning a Step Function2

I Standard GP (top), two- and four-layer DGP (middle,
bottom).

I DGPs achieved much better performance.

2James Hensman and Neil D Lawrence. “Nested variational compression in deep Gaussian processes”. In:
arXiv preprint arXiv:1412.1370 (2014).
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Deep GPs and Deep Neural Networks (a comparison)

I A single layer of fully connected neural network with an
independent and identically distributed (iid) prior over its
parameters and with an infinite width is equivalent to a GP.

I Therefore, deep GPs are equivalent to neural networks with
multiple, infinitely wide hidden layers.

I Mappings of a DGP are governed by its GPs instead of
activation functions.

I A DGP allows for propagations and quantifications of
uncertainties through each layer as a fully Bayesian
probabilistic model.

I There is ARD at each layer.
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Generative Process

Z X Y
f X f Y

Figure: A two-layer DGP.

I The generative process takes the form:

xnl = f X
l (zn) + εX

nl , l = 1, . . . , dx , zn ∈ RdZ

yni = f Y
i (xn) + εY

ni , i = 1, . . . , dy , xn ∈ Rdx

I εX
nl and εY

ni are additive white Gaussian processes.
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Generative Process (contd.)

Z X Y
f X f Y

I We assume Z is unobserved with a prior p(Z) = N (Z|0, I)
I If we have specific prior knowledge about Z, we should

quantify this knowledge into a prior accordingly.
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Inference

Z X Y
f X f Y

I The inference takes the reverse route, i.e., we observe
high-dimensional data Y, and we learn the low-dimensional
manifold Z (of dimension dz , where dz < dx < dy ) that is
responsible for generating Y.
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Inference Challenges

The learning requires maximization of the log-marginal-likelihood,

log p(Y) = log

∫
X,Z

p(Y|X)p(X|Z)p(Z)dXdZ

which is intractable.
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Augmentation of Probability Space

Z X Y
f X f Y

I Original probability space:

p(Y,FY ,FX ,X,Z) =p(Y|FY )p(FY |X)p(X|FX )

× p(FX |Z)p(Z)

I Augmentation using inducing points:
I UX = f X (Z̃), Z̃ ∈ RNp×dZ and UX ∈ RNp×dx

I UY = f Y (X̃), X̃ ∈ RNp×dx and X̃ ∈ RNp×dx

I Np ≤ N
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Augmentation of Probability Space

I Augmented probability space:

p(Y,FY ,FX ,X,Z,UY ,UX , X̃, Z̃)

= p(Y|FY )p(FY |UY ,X)p(UY |X̃)

× p(X|FX )p(FX |UX ,Z)p(UX |Z̃)p(Z)

I Problematic terms:

I A = p(FY |UY ,X)

I B = p(FX |UX ,Z)
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Variational Inference
I A variational distribution: Q = q(UY )q(X)q(UX )q(Z)

I By Jensen’s inequality:

log p(Y) ≥ Fv =

∫
Q · A · B log G dFY dXdFXdZdUXdUY

I The function G is defined as:

G(Y,FY ,X,FX ,Z,UX ,UY )

=
p(Y|FY )p(UY )p(X|FX )p(UX )p(Z)

Q
.

I Fv is tractable for a collection of covariance functions, since
A and B are canceled out in G.
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Studying Complex Systems

Used principles

I algorithmic compressibility,

I locality, and

I deep probabilistic modeling.
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Applications
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Applications-contd.
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Petar M. Djurić — Deep Gaussian Processes: Theory and Applications 38/55



Introduction Gaussian Processes Deep Gaussian Processes Applications Conclusions

Applications-contd.3

3Figures obtained by Sima Mofakham and Chuck Mikell.
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Example: Binary pH-based Classification4

I Goal: to have the DGP classify CTG recordings into health
and unhealthy classes.

I Features:

I 14 FHR features
I 6 (categorical) UA features

I Labeling:
I Positive (unhealthy): pH < 7.1
I Negative (healthy): pH > 7.2

4Guanchao Feng, J Gerald Quirk, and Petar M Djurić. “Supervised and Unsupervised Learning of Fetal Heart
Rate Tracings with Deep Gaussian Processes”. In: 2018 14th Symposium on Neural Networks and Applications
(NEUREL). IEEE. 2018, pp. 1–6.
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I Structure of DGP: our DGP network had two layers, and in
each layer, we set the initial latent dimension to five.

I Performance metrics:

1. Sensitivity (true positive rate)

2. Specificity (true negative rate)

3. Geometric mean of specificity and sensitivity
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Features

Table: Features for FHR

Category Feature

Time domain Mean, Standard deviation, STV, STI, LTV, LTI

Non-linear Poincaré SD1, Poincaré SD2, CCM

Frequency domain VLF, LF, MF, HF, ratio

Table: Features for UA

Normal (0) Abnormal (1)

Frequency ≤ 8 contractions > 8 UC (tachysystole)

Duration < 90s > 90s

Increased tonus With toco Prolonged > 120s

Interval A Interval – peak to peak < 2min

Interval B
Interval – offset of UC to

onset of next UC
< 1min

Rest time > 50% < 50%
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Classification Results

I Support vector machine (SVM) was used as a benchmarking
model.

Table: Classification results

Classifier Feature Specificity Sensitivity Geometric Mean

SVM
FHR 0.82 0.73 0.77

FHR+UA 0.82 0.82 0.82

Deep GP
FHR 0.91 0.73 0.82

FHR+UA 0.82 0.91 0.86
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Unsupervised Learning for FHR Recordings

I Goal: to have the DGP learn informative low-dimensional
latent spaces that can generate the recordings.

I Labeling:

I pH-based labeling combined with obstetrician’s evaluation.

I Labels are only used for evaluation of learning results.

I Data:

I The last 30 minutes of 10 FHR recordings, Y ∈ R10×7200.

I Three of them are abnormal and 7 are normal.
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Performance Metric and Network Structure

I Performance metric: the number of errors in the latent space
for one nearest neighbor.

I Structure of DGP: a five-layer DGP, and the initial dimensions
of the latent spaces in the layers were dx1:5 = [6, 5, 5, 4, 3]T .
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Automatic Structure Learning
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Petar M. Djurić — Deep Gaussian Processes: Theory and Applications 46/55



Introduction Gaussian Processes Deep Gaussian Processes Applications Conclusions

Visualization of the Latent Spaces with 2-D Projection.

I Red: the normal recordings

I Blue: the abnormal recordings

I Pixel intensity: proportional to precision

I The total errors in layers 1 to 5 are 2, 2, 1, 1, 0, respectively.
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Example: Deep Gaussian Processes with Convolutional
Kernels5

I Goal: multi-class image classification

I Database: MNIST (handwritten digits)

I Methods:

1. SGP: Sparse Gaussian processes
2. DGP: Deep Gaussian processes
3. CGP: Convolutional Gaussian processes
4. CDGP: Convolutional deep Gaussian processes

5Vinayak Kumar et al. “Deep Gaussian Processes with Convolutional Kernels”. In: arXiv preprint
arXiv:1806.01655 (2018).
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MNIST
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Example: Identification of Atmospheric Variable Using
Deep Gaussian Processes6

I Goal: modeling temperature using meteorological variables
(features).

I Domain of interest: 25Km × 25Km around the nuclear power
plant in Křsko, Slovenia.

I Features: relative humidity, atmosphere stability, air pressure,
global solar radiation, wind speed.

6Mitja Jančič, Juš Kocijan, and Boštjan Grašič. “Identification of Atmospheric Variable Using Deep Gaussian
Processes”. In: IFAC-PapersOnLine 51.5 (2018), pp. 43–48.
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The Geographical Features of the Surrounding Terrain

I The plant and its measurement station (marked as STOLP –
Postaja) are situated in the basin surrounded by hills and
valleys, which influence micro-climate conditions.
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One-Step-Ahead Prediction

I Prediction results:
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Example: Deep Gaussian Process for Crop Yield Prediction
Based on Remote Sensing Data7

I Goal: predicting crop yields before harvest

I Model: CNN and LSTM combined with GP

7Jiaxuan You et al. “Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data.”. In:
AAAI. 2017, pp. 4559–4566.
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Comparing County-Level Error Maps

I The color represents the prediction error in bushel per acre.
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Conclusions

I A case was made for using probability theory in treating
uncertainties in inference from data.

I Deep probabilistic modeling based on deep Gaussian processes
was addressed.

I The use of DGPs in studying complex interacting systems was
described.

I Applications in various fields using DGPs were provided.

I Although the development of DGPs is still in its relatively
early stages, DGPs showed great potentials in many
challenging machine learning tasks.
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