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Network Science analytics

Clean	energy	and	grid	analy,cs	Online	social	media	 Internet	

I Network as graph G = (V, E): encode pairwise relationships

I Desiderata: Process, analyze and learn from network data [Kolaczyk’09]

⇒ Use G to study graph signals, data associated with nodes in V

I Ex: Opinion profile, buffer congestion levels, neural activity, epidemic

Digraph Fourier Transform via Spectral Dispersion Minimization Bellairs Workshop 2019 2



Graph signal processing and Fourier transform

I Directed graph (digraph) G with adjacency matrix A

⇒ Aij = Edge weight from node i to node j

I Define a signal x∈ RN on V (N := |V|)
⇒ xi = Signal value at node i 4

2

3

1

I Associated with G is the underlying undirected graph Gu

⇒ Laplacian marix L = D− Au, eigenvectors V = [v1, · · · , vN ]

I Graph Signal Processing (GSP): exploit structure in A or L to process x

I Graph Fourier Transform (GFT): x̃ = VTx for undirected graphs

⇒ Decompose x into different modes of variation

⇒ Inverse (i)GFT x = Vx̃, eigenvectors as frequency atoms
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Frequency modes of the Laplacian

I Let us plot some of the eigenvectors vk of L (also graph signals)

I Ex: gene network, N=10, k=1, k=2, k=9
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I Ex: smooth natural images, N = 216, k = 2, ..., 6
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Frequency analysis of brain signals

I GFT of brain activity signals during a visual-motor learning task

⇒ Decomposed into low, medium and high frequency components

10

Fig. 6. Distribution of decomposed signals for the 6 week experiment. (a) Absolute magnitudes for all brain regions with respect to xL – brain signals varing smoothly
across the network – averaged across all sample points for each individual and across all participants at the first scan session of the 6 week dataset. (b) With respect
to xM and (c) with respect to xH – signals fluctuating vibrantly across the brain. (d), (e), and (f) are averaged xL,xM and xH at the last scan session of the 6 week
dataset, respectively. Only regions with absolute magnitudes higher than a fixed threshold is colored.

Fig. 7. Distribution of decomposed signals for the 3 day experiment. (a), (b), and (c) are xL,xM and xH averaged across all sample points for each subject and across
participants in the 3 day experiment, respectively. Regions with absolute value less than a threshold are not colored.

xM and xH. At the macro or large timescale, we average the
decomposed signals xL for all sample points within each scanning
session with different sequence type, and evaluate the variance
of the magnitudes of the averaged signals across all the scanning
sessions and sequence types [40], [41]. For the 6 week experiment,
there are 4 scanning sessions and 3 different sequence types, so
the variance is with respect to 12 points. For the 3 day experiment,
there are 3 scanning sessions and only 1 sequence type, and
therefore the variance is for 3 points. As for the micro or minute-
scale, we average the decomposed signals xL for all sample points
within each minute, and evaluate the variance of the magnitudes of
the averaged signals across all minute windows for each scanning

session with different sequence types. The evaluated variance is
then averaged across all participants of the experiment of interest.

Figure 8 displays the variance of the decomposed signals
xL,xM and xH at two different temporal scales of the two
experiments. For the 6 week dataset, 3 session-sequence com-
binations, with number proportional to the level of exposure of
participants to the sequence (1-MIN refers to MIN sequence at
session 1, 5 denotes MIN sequence at session 4, 9 entails EXT
sequence at session 3) are selected out of the 12 combinations in
total for a cleaner illustration, but all the other session-sequence
combinations exhibit similar properties. Following the definition
of frequency decomposition as in (14), it is expected for the low
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I Brain: Complex system where regularity coexists with disorder [Sporns’11]

⇒ Signal energy mostly in the low and high frequencies

⇒ In brain regions alike to the visual and sensorimotor cortices
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Our work in context

I Spectral analysis and filter design [Tremblay et al’17], [Isufi et al’16]

⇒ GFT as a promising tool in neuroscience [Huang et al’16]

I Noteworthy GFT approaches

I Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura’17]
I Lovaśz extension of the graph cut size [Sardellitti et al’17]
I Generalized variation operators and inner products [Girault et al’18]

I Dictionary learning (DL) for GSP
I Joint topology- and online data-driven prediction [Forero et al’14]
I Parametric dictionaries for graph signals [Thanou et al’14]
I Dual graph-regularized DL [Yankelevsky-Elad’17]

I Our contribution: digraph (D)GFT (dictionary) design
I Orthonormal basis signals (atoms) offer notions of frequency
I Frequencies are distributed as even as possible in [0, fmax]
I Sparsely represents bandlimited graph signals
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Signal variation on digraphs

I Total variation of signal x with respect to L

TV(x) = xTLx =
N∑

i,j=1,j>i

Au
ij(xi − xj)

2

⇒ Smoothness measure on the graph Gu

I For Laplacian eigenvectors V = [v1, · · · , vN ] ⇒ TV(vk) = λk

⇒ Can view 0 = λ1 < · · · ≤ λN as frequencies

I Def: Directed variation for signals over digraphs ([x ]+ = max(0, x))

DV(x) :=
N∑

i,j=1

Aij [xi − xj ]
2
+

⇒ Captures signal variation (flow) along directed edges

⇒ Consistent, since DV(x) ≡ TV(x) for undirected graphs
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DGFT with spread frequeny components

I Goal: find N orthonormal basis vectors capturing different modes of DV

I Collect the desired basis signals in U = [u1, · · · ,uN ] ∈ RN×N

DGFT: x̃ = UTx

⇒ Atom uk represents the kth frequency mode with fk := DV(uk)

I Similar to the DFT, seek N equidistributed graph frequencies

fk = DV(uk) =
k − 1

N − 1
fmax, k = 1, . . . ,N

⇒ fmax is the maximum DV of a unit-norm graph signal on G

I Q: Why spread frequencies?
I Parsimonious representations of slowly-varying signals
I Interpretability ⇒ better capture low, medium, and high frequencies
I Aid filter design in the graph spectral domain
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Motivation for spread frequencies

Ex: Directed variation minimization [Sardellitti et al’17]

min
U

∑N

i,j=1
Aij [ui − uj ]+

s.t. UTU = I 4

2

3

1

I U∗ is the optimum basis where a = 1+
√
5

4 , b = 1−
√
5

4 , and c = −0.5

I All columns of U∗ satisfy DV(u∗k) = 0, k = 1, . . . , 4

⇒ Expansion x = U∗x̃ fails to capture different modes of variation

I Q: Can we always find equidistributed frequencies in [0, fmax]?
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Challenges: Maximum directed variation

I Finding fmax is in general challenging

umax = argmax
‖u‖=1

DV(u) and fmax := DV(umax)

I Let vN be the dominant eigenvector of L

⇒ Can 1/2-approximate fmax with ũmax = argmax
v∈{vN ,−vN}

DV(v)

I fmax can be obtained analytically for particular graph families
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Challenges: Equidistributed frequencies

I Equidistributed fk = k−1
N−1 fmax may not be feasible. Ex: Undirected Gu

f umax = λmax and
N∑

k=1

fk =
N∑

k=1

TV(uk) = trace(L)

I Idea: Set u1 = umin :=
1√
N
1N and uN = umax and minimize

δ(U) :=
N−1∑
i=1

[DV(ui+1)− DV(ui )]
2

⇒ δ(U) is the spectral dispersion function

⇒ Minimized when free DV values form an arithmetic sequence

Digraph Fourier Transform via Spectral Dispersion Minimization Bellairs Workshop 2019 11



Spectral dispersion minimization

I Non-convex optimization problem for finding spread frequencies

min
U

N−1∑
i=1

[DV(ui+1)− DV(ui )]
2

subject to UTU = I

u1 = umin

uN = umax

I Orthogonality-constrained minimization of smooth δ(U)
I Feasible since umax ⊥ umin

I Feasible method in the Stiefel manifold to design the DGFT:

(i) Obtain fmax (and umax) by minimizing −DV(u) over {u | uTu = 1}
(ii) Find the orthonormal basis U with minimum spectral dispersion
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Feasible method in the Stiefel manifold

I Rewrite the problem of finding orthonormal basis as

min
U

φ(U) := δ(U) +
λ

2

(
‖u1 − umin‖2 + ‖uN − umax‖2

)
subject to UTU = I

I Let Uk be a feasible point at iteration k and the gradient Gk = ∇φ(Uk)

⇒ Skew-symmetric matrix Bk := GkUk
T −UkGk

T

I Follow the update rule Uk+1(τ) =
(
I+ τ

2Bk

)−1 (
I− τ

2Bk

)
Uk

I Cayley transform preserves orthogonality (i.e., Uk+1
TUk+1 = I)

I Is a descent path for a proper step size τ

Theorem (Wen-Yin’13) The procedure converges to a stationary point
of smooth φ(U), while generating feasible points at every iteration
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Algorithm

1: Input: Adjacency matrix A, parameters λ > 0 and ε > 0
2: Find umax by a similar feasible method and set umin =

1√
N
1N

3: Initialize k = 0 and orthonormal U0 ∈ RN×N at random
4: repeat
5: Compute gradient Gk = ∇φ(Uk) ∈ RN×N

6: Form Bk = GkUk
T −UkGk

T

7: Select τk satisfying Armijo-Wolfe conditions
8: Update Uk+1(τk) = (I+ τk

2 Bk)
−1(I− τk

2 Bk)Uk

9: k ← k + 1
10: until ‖Uk −Uk−1‖F ≤ ε
11: Return Û = Uk

I Overall run-time is O(N3) per iteration

Additional details in arXiv:1804.03000 [eess.SP]

I Q: Can we make the DGFT design data-adaptive?
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Spectral dispersion and sparsity minimization

I Sparsify a set of bandlimited signals X ∈ RN×P → Minimize ||UTX||1

I Problem: given G and X, find sparsifying DGFT with spread frequencies

min
U

Ψ(U) :=
N−1∑
i=1

[DV(ui+1)− DV(ui )]
2 + µ||UTX||1

subject to UTU = I

u1 = umin

uN = umax

I Non-convex, orthogonality-constrained minimization
I Non-differentiable Ψ(U)

I Variable-splitting solver:

(i) Obtain fmax (and umax) by minimizing −DV(u) over {u | uTu = 1}
(ii) Replace UTX with an auxiliary variable Y ∈ RN×P , enforce Y = UTX
(iii) Alternate between feasible method and soft thresholding
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Numerical test: Synthetic graph

I Compute U and directed variations using
I Directed Laplacian eigenvectors [Chung’05]
I PAMAL method [Sardellitti et al’17]
I Greedy heuristic
I Spectral dispersion minimization

0 1 2 3 4 5 6

1

2

3

4

I Rescale DV values to [0, 1] and calculate spectral dispersion δ(U)

⇒ 0.256, 0.301, 0.118, and 0.076 respectively

⇒ Confirms the proposed methods yield a better frequency spread
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Numerical test: US average temperatures

I Consider the graph of the N = 48 contiguous United States

⇒ Connect two states if they share a border

⇒ Set arc directions from lower to higher latitudes
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I Graph signal x → Average annual temperature of each state
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Numerical test: Denoising US temperatures

I Noisy signal y = x+ n, with n ∼ N (0, 10× IN)

I Define low-pass filter H̃ = diag(h̃), where h̃i = I {i ≤ w} (for w = 3)

I Recover signal via filtering x̂ = UH̃ỹ = UH̃UTy

⇒ Compute recovery error ef =
‖x̂−x‖
‖x‖ ≈ 12%

⇒ Pick random edge orientations and repeat the experiment
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I DGFT basis offers a parsimonious (i.e., bandlimited) signal representation

⇒ Adequate network model improves the denoising performance
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Numerical test: Convergence behavior

I Average monthly temperature over ∼ 60 years for each state

⇒ Training signals X ∈ R48×12

I Monte-Carlo simulations to study the convergence behavior

⇒ Plot fmax, δ(U), and Ψ(U) = δ(U) + µ||UTX||1
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I Convergence is apparent, with limited variability on the solution
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Numerical test: Spread and sparse

I Heat maps of the trained X̃ I Spectral representation of test signal
|X̃ 2:N,· | with µ = 0
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I Distribution of all the frequencies
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I Tradeoff: spectral dispersion for a sparser representation
I Still attain well dispersed frequencies
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Closing remarks

I Measure of directed variation to capture the notion of frequency on G

I Find an orthonormal set of Fourier basis vectors for signals on digraphs
I Span a maximal frequency range [0, fmax]
I Frequency modes are as evenly distributed as possible

I Two-step DGFT basis design via a feasible method over Stiefel manifold

i) Find the maximum directed variation fmax over the unit sphere
ii) Minimize a smooth spectral dispersion criterion over [0, fmax]

⇒ Provable convergence guarantees to a stationary point

I Ongoing work and future directions
I Complexity of finding the maximum frequency fmax on a digraph?

⇒ If NP-hard, what is the best approximation ratio
I Optimality gap between the local and global optimal dispersions?

I Scalable and fast(er) digraph Fourier transform?
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