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Network Science analytics

Online social media Internet Clean energy and grid analytics

» Network as graph G = (V, £): encode pairwise relationships

> Desiderata: Process, analyze and learn from network data [Kolaczyk'09]
= Use G to study graph signals, data associated with nodes in V

» Ex: Opinion profile, buffer congestion levels, neural activity, epidemic



Graph signal processing and Fourier transform

)
» Directed graph (digraph) G with adjacency matrix A e
= A; = Edge weight from node / to node j
» Define a signal x¢ RN on V °
X
= x; = Signal value at node / 504 ' xg
g
> Associated with G is the underlying undirected graph G
= Laplacian marix L = D — AY, eigenvectors V = [vq,-- -, vp]

> Graph Signal Processing (GSP): exploit structure in A or L to process x

» Graph Fourier Transform (GFT): X = VTx for undirected graphs
= Decompose x into different modes of variation

= Inverse (i)GFT x = VX, eigenvectors as frequency atoms



Frequency modes of the Laplacian

> Let us plot some of the eigenvectors v, of L (also graph signals)

» Ex: gene network, N=10, k=1, k=2, k=9

» Ex: smooth natural images, N =216 k=2,....6
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Frequency analysis of brain signals

» GFT of brain activity signals during a visual-motor learning task
= Decomposed into low, medium and high frequency components

> Brain: Complex system where regularity coexists with disorder [Sporns'11]
= Signal energy mostly in the low and high frequencies

= In brain regions alike to the visual and sensorimotor cortices



Our work in context

> Spectral analysis and filter design [Tremblay et al'17], [Isufi et al'16]
= GFT as a promising tool in neuroscience [Huang et al'16]

» Noteworthy GFT approaches

» Jordan decomposition of A [Sandryhaila-Moura’14], [Deri-Moura'17]
> Lovasz extension of the graph cut size [Sardellitti et al'17]
> Generalized variation operators and inner products [Girault et al'18]

» Dictionary learning (DL) for GSP

» Joint topology- and online data-driven prediction [Forero et al'14]
» Parametric dictionaries for graph signals [Thanou et al'14]
» Dual graph-regularized DL [Yankelevsky-Elad'17]

» Our contribution: digraph (D)GFT (dictionary) design
» Orthonormal basis signals (atoms) offer notions of frequency
» Frequencies are distributed as even as possible in [0, fmax]
» Sparsely represents bandlimited graph signals



Signal variation on digraphs

» Total variation of signal x with respect to L

N
TV(x) = x"Lx = Z Al(xi — x;)?

ij=1,j>i
=- Smoothness measure on the graph G

> For Laplacian eigenvectors V = [vq,--- ,vy] = TV(vk) = Ak
= Can view 0 = A\; < --- < Ay as frequencies

» Def: Directed variation for signals over digraphs
N
DV(x) = > Ayl — x]%
ij=1

= Captures signal variation (flow) along directed edges
= Consistent, since DV(x) = TV(x) for undirected graphs



DGFT with spread frequeny components

v

Goal: find N orthonormal basis vectors capturing different modes of DV

v

Collect the desired basis signals in U = [uy, -+ ,uy] € RV*N
DGFT: %=U"x

= Atom uy represents the kth frequency mode with f, := DV(uy)

v

Similar to the DFT, seek N equidistributed graph frequencies

k—1
fk = DV(Uk) :mfmax, k = 17 ey N

= finax IS the maximum DV of a unit-norm graph signal on G

v

Q: Why spread frequencies?
» Parsimonious representations of slowly-varying signals
> Interpretability = better capture low, medium, and high frequencies
> Aid filter design in the graph spectral domain



Motivation for spread frequencies

Ex: Directed variation minimization [Sardellitti et al'17]
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> U* is the optimum basis where a = Y5 p = 1=¥5 and c = —0.5

> All columns of U* satisfy DV(u;) =0, k=1,...,4
= Expansion x = U*X fails to capture different modes of variation

> Q: Can we always find equidistributed frequencies in [0, fnax]?



Challenges: Maximum directed variation

» Finding 7.« is in general challenging

Unax = argmax DV(u) and . = DV(upax)
[lul|=1

» Let vy be the dominant eigenvector of L

= Can 1/2-approximate fyax with Omax = argmax DV(v)

ve{vy,—vn}

> frnax can be obtained analytically for particular graph families

veov

0 1 2 k-1 k k+1

Srmax = 2 max; ;A
Fr =2 W%, Fae = A



Challenges: Equidistributed frequencies

» Equidistributed f, = %fmax may not be feasible. Ex: Undirected G

N N
fu

e =Amax and > fi=> TV(u) = trace(L)
> ldea: Set u; = upi, = ﬁl,\, and Uy = Umayx and minimize

N-1
(V) = Z [DV(ujy1) — DV(Ui)]2
i—1

= §(U) is the spectral dispersion function

= Minimized when free DV values form an arithmetic sequence



Spectral dispersion minimization

» Non-convex optimization problem for finding spread frequencies

N—-1

mUin Z [DV(ui11) — DV(u;)]”

i=1
subject to UTU =1
Ui = Umin

Uy = Umax

» Orthogonality-constrained minimization of smooth 6(U)
> Feasible since umax L umin

» Feasible method in the Stiefel manifold to design the DGFT:
(i) Obtain fiax (and Umax) by minimizing —DV(u) over {u |u"u =1}
(i) Find the orthonormal basis U with minimum spectral dispersion



Feasible method in the Stiefel manifold

» Rewrite the problem of finding orthonormal basis as

) ‘ A
mdn O(U) = 5(U) + 5 (”ul - umin||2 + HUN - umax||2)

subject to v'u=1I

> Let Uy be a feasible point at iteration k and the gradient G, = V¢(Uy)
— Skew-symmetric matrix By := G, U, — U, G,

> Follow the update rule U, 1(7) = (1+ 3By) " (1 - By) Uy

> Cayley transform preserves orthogonality (i.e., Uit Upyr = 1)
> Is a descent path for a proper step size 7

Theorem (Wen-Yin’13) The procedure converges to a stationary point
of smooth ¢(U), while generating feasible points at every iteration




Algorithm

Input: Adjacency matrix A, parameters A > 0 and ¢ > 0

. - . 1
Find umax by a similar feasible method and set u,;, = \WIN

Initialize k = 0 and orthonormal Uy € RV*N at random
repeat
Compute gradient G, = Vo(U,) € RVXN
Form Bk = GkUkT — UkaT
Select 7y satisfying Armijo-Wolfe conditions
Update Uk+1(7—k) = (l + %Bk)71(| — %Bk)Uk
k< k+1
10: until HUk — Uk,1||p <e
. Return U = Uy,

COoND R MR

[u—y
[,

» Overall run-time is O(N3) per iteration

» Q: Can we make the DGFT design data-adaptive?



Spectral dispersion and sparsity minimization

» Sparsify a set of bandlimited signals X € RN*P — Minimize |[UTX||;

» Problem: given G and X, find sparsifying DGFT with spread frequencies

N—-1
min V() := Z [DV(u;-1) — DV(un)] + ulUTX||x

subjectto UTU =1
Ui = Umin
uy = Umax
» Non-convex, orthogonality-constrained minimization
» Non-differentiable W(U)
» Variable-splitting solver:
(i) Obtain fiax (and Umax) by minimizing —DV(u) over {u |u"u =1}
(i) Replace U™ X with an auxiliary variable Y € RV*? enforce Y = U”X
(iii) Alternate between feasible method and soft thresholding



Numerical test: Synthetic graph

15
» Compute U and directed variations using 11
Directed Laplacian eigenvectors [Chung'05] -
PAMAL method [Sardellitti et al'17] 12 14
Greedy heuristic
Spectral dispersion minimization -
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> Rescale DV values to [0, 1] and calculate spectral dispersion §(U)
= 0.256, 0.301, 0.118, and 0.076 respectively
= Confirms the proposed methods yield a better frequency spread



Numerical test: US average temperatures

» Consider the graph of the N = 48 contiguous United States
=- Connect two states if they share a border

= Set arc directions from lower to higher latitudes

> Graph signal x — Average annual temperature of each state



Numerical test: Denoising US temperatures

» Noisy signal y = x + n, with n ~ A/(0,10 x ly)
> Define low-pass filter H = diag(h), where h; = 1{i < w}
» Recover signal via filtering 8 = UHy = UHU Ty

= Compute recovery error ef = H)I(IZ\)I(H ~ 12%

= Pick random edge orientations and repeat the experiment
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» DGFT basis offers a parsimonious (i.e., bandlimited) signal representation

= Adequate network model improves the denoising performance



Numerical test: Convergence behavior

» Average monthly temperature over ~ 60 years for each state
= Training signals X € R%x12

» Monte-Carlo simulations to study the convergence behavior
= Plot fmax, 5(U), and W(U) = §(U) + p||UTX||;
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» Convergence is apparent, with limited variability on the solution



Numerical test: Spread and sparse

> Heat maps of the trained X » Spectral representation of test signal

(Koo, | with 12 =0
45 70 45
40 40
60
35 35
50
30 30
25 o 25
20 30 20
15 15
20
10+ 10
h { | {10
50 ,‘ 5

2 4 6 8 10 12

Xo.v, | with 0
[Xouv, | with g # w00

350

O

Lol L .
L 15 20 25 30 35 40 45 50
2 4 6 8 10 12 Frequency Index

DGFT

» Distribution of all the frequencies
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» Tradeoff: spectral dispersion for a sparser representation

» Still attain well dispersed frequencies



Closing remarks

v

Measure of directed variation to capture the notion of frequency on G

v

Find an orthonormal set of Fourier basis vectors for signals on digraphs

> Span a maximal frequency range [0, fmax]
» Frequency modes are as evenly distributed as possible

v

Two-step DGFT basis design via a feasible method over Stiefel manifold
i) Find the maximum directed variation fmax over the unit sphere
ii) Minimize a smooth spectral dispersion criterion over [0, fmax]
= Provable convergence guarantees to a stationary point

v

Ongoing work and future directions

» Complexity of finding the maximum frequency fn.x on a digraph?
= If NP-hard, what is the best approximation ratio
» Optimality gap between the local and global optimal dispersions?

» Scalable and fast(er) digraph Fourier transform?



