Looking at the BiG Picture: Incorporating Bipartite Graphs in Drug Response Prediction

David Earl Hostallero^{1,2}, Yihui Li¹, and Amin Emad^{1,2}

¹ Dept. of Electrical and Computer Engineering, McGill University ² Mila - Quebec AI Institute

Cancer is one of the deadliest diseases worldwide

Traditional methods of prescribing cancer drugs do not ensure positive results.

Increase survival rate through precision medicine

- Prediction of preclinical drug responses is a good step towards individualized medicine
 - more data available
 - many methods are being developed to adapt preclinical models to clinical data

The drug response prediction (DRP) problem

Drug Response Prediction

Implicitly learn drug similarities during training

Pattern Logic

"similar" cancer cell lines (CCLs) \rightarrow probably similar responses

"similar" drugs \rightarrow probably similar effect

Similar in terms of what?

CCLs: gene expression, mutation, tissue types

Drugs: molecular structure, properties, targets

```
Are these enough?
```


What if we define representation of the drug according to the properties of the CCLs that are highly sensitive/resistant to the drug?

Bipartite Graph-Represented DR Predictor (BiG-DRP)

BiG-DRP

Graph Convolutional Network (GCN)

COMBINE Lab

Heterogenous GCN (H-GCN)

BiG-DRP+

- Preserve (i.e. freeze) the embeddings
- Lower the learning rate (to avoid overfitting)

Data

Genomics of Drug Sensitivity in Cancer (GDSC) Database (Yang et al., 2012)

- 990 unique cell lines (RNAseq from Sanger Cell Model Passports)
- 238 unique compounds (descriptors from RDkit)
- ~200k drug responses (z-scored per drug)

Performance Evaluation & Comparison

	Drug Features Other input featur		
BiG-DRP+	Descriptors	Gene expression	
BiG-DRP	Descriptors	Gene expression	
MLP	Descriptors	Gene expression	
SVR-RBF	Descriptors	Gene expression	
SVR-Linear	Descriptors	Gene expression	
PathDNN (Deng et al., 2020)	Drug Targets	Gene expression, pathway information	
tCNN (Liu et al., 2019)	One-hot SMILES encoding	Genetic Features (mutations)	
NRL2DRP (Yang et al., 2019)	N/A	Drug-CCL-Gene network	

Leave-pairs-out 5-fold CV

method	mean SCC (± std.)	mean RMSE (± std.)
BiG-DRP+	0.748 (± 0.100)	0.843 (± 0.241)
BiG-DRP	0.742 (± 0.100)	0.855 (± 0.244)
MLP	0.675 (± 0.120)	0.954 (± 0.274)
tCNN (Liu et al., 2019)	0.587 (± 0.119)	1.086 (± 0.336)
PathDNN (Deng et al., 2020)	0.516 (± 0.115)	1.165 (± 0.355)
NRL2DRP (Yang et al., 2019)	0.516 (± 0.119)	1.153 (± 0.345)
SVR-RBF	0.502 (± 0.123)	1.181 (± 0.383)
SVR-Linear	0.494 (± 0.129)	1.184 (± 0.393)

Drug-wise comparison of Spearman Correlation (p := p-values of Wilcoxon signed rank test)

Leave-cell lines-out 5-fold CV

method	mean SCC (± std.)	mean RMSE (± std.)
BiG-DRP+	0.431 (± 0.094)	1.205 (± 0.367)
BiG-DRP	0.426 (± 0.095)	1.210 (± 0.368)
MLP	0.413 (± 0.100)	1.219 (± 0.374)
SVR-RBF	0.348 (± 0.120)	1.278 (± 0.403)
SVR-Linear	0.324 (± 0.119)	1.292 (± 0.420)
PathDNN (Deng et al., 2020)	0.193 (± 0.074)	2.201 (± 0.698)
tCNN (Liu et al., 2019)	0.147 (± 0.068)	1.369 (± 0.427)

Drug-wise comparison of Spearman Correlation (p := p-values of Wilcoxon signed rank test)

Drug Feature Assessment

Method	Drug Attribute	leave-pairs-out		leave-CLs-out	
		AUROC* SCC mean (± std.) mean (± std.)		AUROC* mean (± std.)	SCC mean (± std.)
BiG-DRP+	Descriptors	0.878 (±0.068)	0.748 (±0.100)	0.746 (±0.077)	0.431 (±0.094)
	Morgan FP	0.878 (±0.068)	0.748 (±0.100)	0.743 (±0.080)	0.426 (±0.098)
	Both	0.879 (±0.068)	0.748 (±0.099)	0.746 (±0.077)	0.433 (±0.095)

The method is not sensitive to the drug features

 16 calculated using continuous value predictions vs binarized labels provided in GDSC

Drugs with the same MoAs may form clusters

13/20 protein kinase inhibitors 8 - serine/threonine protein kinase family 5 - tyrosine kinase family

17

Gene (feature) attributions

COMBINE Lab

Identifying and clustering top-performing drugs and their most predictive genes

inhibit the mitogen-activated protein kinase kinase enzymes (i.e., MEK inhibitors)

ETV4 and ETV5 are the most predictive genes for Trametinib

- part of the ETS family of oncogenic* transcription factors
- (Sizemore et al., 2017) Upregulated in solid tumors and involved in:
 - Tumor progression
 - Tumor metastasis
 - Chemoresistance

20

Clinical Drug Response Prediction

Tested on The Cancer Genome Atlas (TCGA) Database

• Only drugs with at least 150 patients (samples)

	sensitive	resistant	1-sided Mann Whitney U p-value	
			BiG-DRP+	BiG-DRP
cisplatin	238	71	2.66e-6	2.01e-2
gemcitabine	74	84	2.25e-6	1.58e-2

Summary

- Presented a drug response prediction method that incorporates bipartite graphs
- BiG-DRP and BiG-DRP+ creates drug representation through the propagation of drug and cell line information using graph convolutions
- Our models surpassed baselines and other competing models in different data-splitting scenarios
- The bipartite graph could provide similarities beyond the molecular structure/properties of the drug

Code: github.com/ddhostallero/BiG-DRP

Future/ongoing work

- Combinational drug therapy
- Preclinical-to-clinical drug response prediction
- Conditional molecule generation

Thank you Questions?

References

- Geeleher P, Cox NJ, Huang RS: Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 2014, 15:R47
- Costello JC, Heiser LM, Georgii E, et al.: A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014
- Liu P, Li H, Li S, Leung KS: Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinformatics 2019
- Deng L, Cai Y, Zhang W, Yang W, Gao B, Liu H: Pathway-Guided Deep Neural Network toward Interpretable and Predictive Modeling of Drug Sensitivity. J Chem Inf Model 2020
- Yang J, Li A, Li Y, Guo X, Wang M: A novel approach for drug response prediction in cancer cell lines via network representation learning. Bioinformatics 2019
- Yang W, Soares J, Greninger P, et al.: Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic acids research 2012, 41:D955-D961
- Schwab P, Karlen W: CXPlain: Causal Explanations for Model Interpretation under Uncertainty. In Advances in Neural Information Processing Systems (NeurIPS). 2019
- Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC: The ETS family of oncogenic 628 transcription factors in solid tumours. Nat Rev Cancer 2017, 17:337-351

