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Introduction

State-of-the-art

– Graph convolution + recurrent networks1

– Temporal convolution2

– Attention mechanism3

Provide point forecast, no measure of uncertainty

Existing probabilistic models4

This work: Bayesian framework to assess forecast uncertainty

1 Li et al. 2018, Bai et al. 2020
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Problem Formulation

State-space model

Initial state distribution: x1 ∼ p1(·, z1, ρ) ,

State transition model: xt = gG,ψ(xt−1, yt−1, zt , vt), for t > 1 ,

Emission model: yt = hG,φ(xt , zt ,wt), for t > 1 .

– yt : time series, xt : hidden state, zt : known covariate(s)

– vt ∼ pv (·|xt−1, σ): dynamic noise

– wt ∼ pw (·|xt , γ): measurement noise

– gG,ψ: GNN+RNN (e.g. AGCGRU5, DCGRU6)

– hG,φ: NN (e.g. linear layer)

– Unknown model parameters: Θ = {ρ, ψ, σ, φ, γ}
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An Example of gG,ψ

Diffusion Convolutional GRU

rt = σ (Wr ?G [yt , xt−1] + br )

ut = σ (Wu ?G [yt , xt−1] + bu)

ct = tanh (Wc ?G [yt , (rt � xt−1)] + bc)

xt = ut � xt−1 + (1− ut)� ct

Diffusion Convolution

W ?G X =
K−1∑
k=0

(
Tk(D−1

O A)XWk,O + Tk(D−1
I AT )XWk,I

)
Tk(·): k-th order Chebyshev polynomial

DO ,DI : out-degree, in-degree matrices, A: adjacency
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Problem Formulation

Graphical model representation

Task

Predict yt0+P+1:t0+P+Q based on yt0+1:t0+P , zt0+1:t0+P+Q , and
(possibly) G

– Train the model to learn Θ

– Approximate pΘ(yP+1:P+Q |y1:P , z1:P+Q) for test data
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Computing Forecast Distribution

pΘ(yP+1:P+Q |y1:P , z1:P+Q) =

∫ P+Q∏
t=P+1

(
pφ,γ(yt |xt , zt)

pψ,σ(xt |xt−1, yt−1, zt)
)

pΘ(xP |y1:P , z1:P)dxP:P+Q .

– Intractable, Monte Carlo approximation

– pΘ(xP |y1:P , z1:P): posterior distribution of the state

– Need particle filter/particle flow for approximation

– pψ,σ(xt |xt−1, yt−1, zt): state transition using gG,ψ

– pφ,γ(yt |xt , zt): sampling forecast using hG,φ
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Importance Sampling
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Particle Filter: Weight Degeneracy

Particle filter suffers from weight degeneracy for high dimensional
state/ informative observations.
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Particle Filter: Weight Degeneracy

Particle filter suffers from weight degeneracy for high dimensional
state/ informative observations.

Resampling of the particles
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Particle Flow

Particles flow7 migrates particles from the prior to the posterior
distribution.

7F. Daum and J. Huang, “Nonlinear filters with log-homotopy,”
in Proc. SPIE Signal and Data Proc. Small Targets, Sep. 2007.

10



Particle Flow

Particles flow7 migrates particles from the prior to the posterior
distribution.

7F. Daum and J. Huang, “Nonlinear filters with log-homotopy,”
in Proc. SPIE Signal and Data Proc. Small Targets, Sep. 2007.

10



Computing Forecast Distribution

pΘ(yP+1:P+Q |y1:P , z1:P+Q) =

∫ P+Q∏
t=P+1

(
pφ,γ(yt |xt , zt)

pψ,σ(xt |xt−1, yt−1, zt)
)

pΘ(xP |y1:P , z1:P)dxP:P+Q .

11



Computing Forecast Distribution

pΘ(yP+1:P+Q |y1:P , z1:P+Q) =

∫ P+Q∏
t=P+1

(
pφ,γ(yt |xt , zt)

pψ,σ(xt |xt−1, yt−1, zt)
)

pΘ(xP |y1:P , z1:P)dxP:P+Q .

Particle flow 

Emission modelState transition 
model

(c)(b)(a)
(a) Samples (asterisk) from the prior distribution 
(b) Contours of the posterior distribution and the direction of flow for the particles at an intermediate step
(c) Particles after the flow,  approximately distributed according to the posterior distribution

11



Computing Forecast Distribution

Particle flow 

12



Computing Forecast Distribution

Particle flow 
State transition 

model

12



Computing Forecast Distribution

State transition 
model

Emission model

12



Computing Forecast Distribution

State transition 
model

Emission model

12



Computing Forecast Distribution

Initial state 

...

...

...

...

Particle flow 

Emission modelState transition 
model

Particle flow Particle flow Particle flow 
State transition 

model
State transition 

model

State transition 
model

State transition 
model

State transition 
model

Emission model Emission model Emission model

(c)(b)(a)
(a) Samples (asterisk) from the prior distribution 
(b) Contours of the posterior distribution and the direction of flow for the particles at an intermediate step
(c) Particles after the flow,  approximately distributed according to the posterior distribution

Approximation of the joint posterior distribution of the forecasts
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Loss Function

For point forecasting: MAE, MSE

For probabilistic forecasting: negative log likelihood

Lprob(Θ,D) = − 1

|D|
∑
n∈D

log pΘ(y
(n)
P+1:P+Q |y

(n)
1:P , z

(n)
1:P+Q) ,

p̂Θ(yP+1:P+Q |y1:P , zP+1:P+Q) =
P+Q∏
t=P+1

[
1

Np

Np∑
j=1

pφ,γ(yt |xjt , zt)

]
.
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Experiments

Road traffic datasets: PeMSD3/4/7/88

Node: loop detector, time series: speed, interval: 5 minutes

predicting one hour from an hour of historical data
(P = Q = 12)

70/10/20% data for training/validation/testing

Performance metrics for point forecasting:

– MAE, RMSE, and MAPE

Performance metrics for probabilistic forecasting:

– Continuous Ranked Probability Score (CRPS)9

– P10, P50, and P90 Quantile Losses10

8 Chen et al. 2000
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Baselines

Statistical and ML point forecast models:

– HA, ARIMA11, VAR12, SVR13, FNN, FC-LSTM14

Spatio-temporal point forecast models:

– DCRNN15, STGCN16, ASTGCN17, GWN18, GMAN19,
AGCRN20, LSGCN21

Graph agnostic point forecast models:

– DeepGLO22, N-BEATS23, FC-GAGA24

Graph agnostic probabilistic forecast models:

– DeepAR25, DeepFactors26, MQRNN27

11 Makridakis & Hibon 1997, 12 Hamilton 1994, 13 Chun-Hsin et al. 2004, 14 Sutskever et al. 2014
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Experimental Results: Point Forecasting

1 3 5 7 9 11 13 15 17
Rank

AGCGRU 
 + flow    

AGCRN
GMAN

FC-GAGA
MQRNN

GWN
LSGCN
DCRNN
STGCN

FNN

AGCGRU+flow achieves the best average rank.
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Experimental Results: Node by Node Comparison

AGCGRU+flow outperforms AGCRN at majority of nodes in PeMSD7
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Experimental Results: Probabilistic Forecasting

CRPS(F , x) =

∫ ∞
−∞

(
F (z)− 1{x 6 z}

)2
dz

1 2 3 4 5
Rank

AGCGRU 
 + flow    

DCGRU 
 + flow  

GRU 
 + flow

DeepAR

Deep-
    Factors

Our approaches obtain lower average CRPS.
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Experimental Results: Quantile Estimation
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AGCGRU+flow has the lowest quantile error on average.
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Experimental Results: Confidence Intervals

Confidence intervals for 15 minutes ahead predictions at node 4 of
PeMSD7 for the first day in the test set.
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Conclusion

– General Bayesian framework to represent forecast uncertainty

– Can incorporate various RNNs, sophisticated inference tools

– Univariate/multivariate forecasting with/without graphs

– Comparable point forecasting to state-of-the-art

– Better characterization of prediction uncertainty

– Results for non-graph data, component analyses in the paper

– Code: https://github.com/networkslab/rnn_flow
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