RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting

Soumyasundar Pal¹, Liheng Ma¹, Yingxue Zhang², Mark Coates¹

Dept. of Electrical and Computer Engineering, McGill University
 Huawei Noah's Ark Lab, Montreal Research Center

December 13, 2021

- Exploit underlying graph structure for time series forecasting

- Exploit underlying graph structure for time series forecasting
- Applications: road traffic, wireless networks

- Exploit underlying graph structure for time series forecasting
- Applications: road traffic, wireless networks

reproduced from https://www.tomtom.com/blog/traffic-and-travel-information/road-traffic-prediction/

- Exploit underlying graph structure for time series forecasting
- Applications: road traffic, wireless networks

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution²
 - Attention mechanism 3

¹ Li et al. 2018, Bai et al. 2020

 2 Yu et al. 2018, Huang et al. 2020

³ Guo et al. 2019, Zheng et al. 2020

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution $^{2}\,$
 - Attention mechanism³
- Provide point forecast, no measure of uncertainty

¹ Li et al. 2018, Bai et al. 2020

 2 Yu et al. 2018, Huang et al. 2020

³ Guo et al. 2019, Zheng et al. 2020

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution $^{2}\,$
 - Attention mechanism³
- Provide point forecast, no measure of uncertainty
- Existing probabilistic models⁴ cannot process a graph.

- ¹ Li et al. 2018, Bai et al. 2020
- 2 Yu et al. 2018, Huang et al. 2020
- ³ Guo et al. 2019, Zheng et al. 2020
- ⁴ Salinas et al. 2020, Wang et al. 2019, Rasul et al. 2021

- State-of-the-art
 - Graph convolution + recurrent networks¹
 - Temporal convolution $^{2}\,$
 - Attention mechanism³
- Provide point forecast, no measure of uncertainty
- Existing probabilistic models⁴ cannot process a graph.
- This work: Bayesian framework to assess forecast uncertainty
- ¹ Li et al. 2018, Bai et al. 2020
- $^2\,$ Yu et al. 2018, Huang et al. 2020
- ³ Guo et al. 2019, Zheng et al. 2020
- ⁴ Salinas et al. 2020, Wang et al. 2019, Rasul et al. 2021

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

- $v_t \sim p_v(\cdot | x_{t-1}, \sigma)$: dynamic noise

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

-
$$v_t \sim p_v(\cdot | x_{t-1}, \sigma)$$
: dynamic noise

- w_t ~ $p_w(\cdot|x_t, \gamma)$: measurement noise

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

$$-\mathsf{v}_t \sim p_{\mathsf{v}}(\cdot|\mathsf{x}_{t-1},\sigma)$$
: dynamic noise

- w_t \sim $p_w(\cdot|\mathsf{x}_t,\gamma)$: measurement noise
- $g_{\mathcal{G},\psi}$: GNN+RNN (e.g. AGCGRU⁵, DCGRU⁶)

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

$$-\mathsf{v}_t \sim p_{\mathsf{v}}(\cdot|\mathsf{x}_{t-1},\sigma)$$
: dynamic noise

- w_t $\sim p_w(\cdot|\mathsf{x}_t,\gamma)$: measurement noise

 $- g_{\mathcal{G},\psi}$: GNN+RNN (e.g. AGCGRU⁵, DCGRU⁶)

$$-h_{\mathcal{G},\phi}$$
: NN (e.g. linear layer)

 5 Bai et al. 2020, 6 Li et al. 2018

State-space model

Initial state distribution: $x_1 \sim p_1(\cdot, z_1, \rho)$,

State transition model: $x_t = g_{\mathcal{G},\psi}(x_{t-1}, y_{t-1}, z_t, v_t)$, for t > 1,

Emission model: $y_t = h_{\mathcal{G},\phi}(x_t, z_t, w_t)$, for $t \ge 1$.

- y_t : time series, x_t : hidden state, z_t : known covariate(s)

$$-\mathsf{v}_t \sim p_v(\cdot|\mathsf{x}_{t-1},\sigma)$$
: dynamic noise

- w_t $\sim p_w(\cdot|\mathsf{x}_t,\gamma)$: measurement noise

 $- g_{\mathcal{G},\psi}$: GNN+RNN (e.g. AGCGRU⁵, DCGRU⁶)

$$-h_{\mathcal{G},\phi}$$
: NN (e.g. linear layer)

– Unknown model parameters: $\Theta = \{\rho, \psi, \sigma, \phi, \gamma\}$

 5 Bai et al. 2020, 6 Li et al. 2018

Diffusion Convolutional GRU

$$r_{t} = \sigma \left(W_{r} \star_{\mathcal{G}} [y_{t}, x_{t-1}] + b_{r} \right)$$

$$u_{t} = \sigma \left(W_{u} \star_{\mathcal{G}} [y_{t}, x_{t-1}] + b_{u} \right)$$

$$c_{t} = \tanh \left(W_{c} \star_{\mathcal{G}} [y_{t}, (r_{t} \odot x_{t-1})] + b_{c} \right)$$

$$x_{t} = u_{t} \odot x_{t-1} + (1 - u_{t}) \odot c_{t}$$

Diffusion Convolutional GRU

$$r_{t} = \sigma \left(W_{r} \star_{\mathcal{G}} [y_{t}, x_{t-1}] + b_{r} \right)$$

$$u_{t} = \sigma \left(W_{u} \star_{\mathcal{G}} [y_{t}, x_{t-1}] + b_{u} \right)$$

$$c_{t} = \tanh \left(W_{c} \star_{\mathcal{G}} [y_{t}, (r_{t} \odot x_{t-1})] + b_{c} \right)$$

$$x_{t} = u_{t} \odot x_{t-1} + (1 - u_{t}) \odot c_{t}$$

Diffusion Convolution

$$W \star_{\mathcal{G}} X = \sum_{k=0}^{K-1} \left(T_k (D_O^{-1} A) X W_{k,O} + T_k (D_I^{-1} A^T) X W_{k,I} \right)$$

Diffusion Convolutional GRU

$$r_{t} = \sigma \left(W_{r} \star_{\mathcal{G}} [y_{t}, x_{t-1}] + b_{r} \right)$$

$$u_{t} = \sigma \left(W_{u} \star_{\mathcal{G}} [y_{t}, x_{t-1}] + b_{u} \right)$$

$$c_{t} = \tanh \left(W_{c} \star_{\mathcal{G}} [y_{t}, (r_{t} \odot x_{t-1})] + b_{c} \right)$$

$$x_{t} = u_{t} \odot x_{t-1} + (1 - u_{t}) \odot c_{t}$$

Diffusion Convolution

$$W \star_{\mathcal{G}} X = \sum_{k=0}^{K-1} \left(T_k (D_O^{-1} A) X W_{k,O} + T_k (D_I^{-1} A^T) X W_{k,I} \right)$$

 $T_k(\cdot)$: k-th order Chebyshev polynomial D_O, D_I : out-degree, in-degree matrices, A: adjacency

Graphical model representation

Graphical model representation

Task

Predict $y_{t_0+P+1:t_0+P+Q}$ based on $y_{t_0+1:t_0+P}$, $z_{t_0+1:t_0+P+Q}$, and (possibly) G

Graphical model representation

Task

Predict $y_{t_0+P+1:t_0+P+Q}$ based on $y_{t_0+1:t_0+P}$, $z_{t_0+1:t_0+P+Q}$, and (possibly) \mathcal{G}

– Train the model to learn Θ

Graphical model representation

Task

Predict $y_{t_0+P+1:t_0+P+Q}$ based on $y_{t_0+1:t_0+P}$, $z_{t_0+1:t_0+P+Q}$, and (possibly) \mathcal{G}

- Train the model to learn Θ
- Approximate $p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q})$ for test data

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \\ p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right) \\ p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \\ p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right) \\ p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right.$$
$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right)$$
$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $p_{\Theta}(x_P|y_{1:P}, z_{1:P})$: posterior distribution of the state

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right.$$
$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right)$$
$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $p_{\Theta}(x_P|y_{1:P}, z_{1:P})$: posterior distribution of the state
- Need particle filter/particle flow for approximation

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \right.$$
$$p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right)$$
$$p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $p_{\Theta}(x_P|y_{1:P}, z_{1:P})$: posterior distribution of the state
- Need particle filter/particle flow for approximation
- $p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$: state transition using $g_{\mathcal{G},\psi}$

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \\ p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right) \\ p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- Intractable, Monte Carlo approximation
- $p_{\Theta}(x_P|y_{1:P}, z_{1:P})$: posterior distribution of the state
- Need particle filter/particle flow for approximation
- $p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t)$: state transition using $g_{\mathcal{G},\psi}$
- $p_{\phi,\gamma}(y_t|x_t, z_t)$: sampling forecast using $h_{\mathcal{G},\phi}$

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Contours of the prior distribution

Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Contours of the posterior distribution
Particle filter suffers from weight degeneracy for high dimensional state/ informative observations.

Particles flow^7 migrates particles from the prior to the posterior distribution.

⁷F. Daum and J. Huang, "Nonlinear filters with log-homotopy," in *Proc. SPIE Signal and Data Proc. Small Targets*, Sep. 2007. Particles flow^7 migrates particles from the prior to the posterior distribution.

⁷F. Daum and J. Huang, "Nonlinear filters with log-homotopy," in *Proc. SPIE Signal and Data Proc. Small Targets*, Sep. 2007.

$$p_{\Theta}(y_{P+1:P+Q}|y_{1:P}, z_{1:P+Q}) = \int \prod_{t=P+1}^{P+Q} \left(p_{\phi,\gamma}(y_t|x_t, z_t) \\ p_{\psi,\sigma}(x_t|x_{t-1}, y_{t-1}, z_t) \right) \\ p_{\Theta}(x_P|y_{1:P}, z_{1:P}) dx_{P:P+Q}.$$

- (a) Samples (asterisk) from the prior distribution
- (b) Contours of the posterior distribution and the direction of flow for the particles at an intermediate step
- (c) Particles after the flow, approximately distributed according to the posterior distribution

 $2 \leqslant t \leqslant P$

Approximation of the joint posterior distribution of the forecasts

Loss Function

- For point forecasting: MAE, MSE
- For probabilistic forecasting: negative log likelihood

Loss Function

- For point forecasting: MAE, MSE
- For probabilistic forecasting: negative log likelihood

$$\mathcal{L}_{\text{prob}}(\Theta, \mathcal{D}) = -\frac{1}{|\mathcal{D}|} \sum_{n \in \mathcal{D}} \log p_{\Theta}(y_{P+1:P+Q}^{(n)} | y_{1:P}^{(n)}, z_{1:P+Q}^{(n)}),$$
$$\widehat{p}_{\Theta}(y_{P+1:P+Q} | y_{1:P}, z_{P+1:P+Q}) = \prod_{t=P+1}^{P+Q} \left[\frac{1}{N_{p}} \sum_{j=1}^{N_{p}} p_{\phi,\gamma}(y_{t} | x_{t}^{j}, z_{t}) \right].$$

• Road traffic datasets: PeMSD3/4/7/8⁸

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P = Q = 12)

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P = Q = 12)
- $\bullet~70/10/20\%$ data for training/validation/testing

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P = Q = 12)
- $\bullet~70/10/20\%$ data for training/validation/testing
- Performance metrics for point forecasting:
 - MAE, RMSE, and MAPE

- Road traffic datasets: PeMSD3/4/7/8⁸
- Node: loop detector, time series: speed, interval: 5 minutes
- predicting one hour from an hour of historical data (P = Q = 12)
- 70/10/20% data for training/validation/testing
- Performance metrics for point forecasting:
 - MAE, RMSE, and MAPE
- Performance metrics for probabilistic forecasting:
 - Continuous Ranked Probability Score (CRPS)⁹
 - P10, P50, and P90 Quantile Losses¹⁰
- ⁸ Chen et al. 2000
- ⁹ Gneiting & Raftery 2007
- ¹⁰ Wang et al. 2019

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴

 11 Makridakis & Hibon 1997, 12 Hamilton 1994, 13 Chun-Hsin et al. 2004, 14 Sutskever et al. 2014

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴
- Spatio-temporal point forecast models:
 - DCRNN¹⁵, STGCN¹⁶, ASTGCN¹⁷, GWN¹⁸, GMAN¹⁹, AGCRN²⁰, LSGCN²¹

 11 Makridakis & Hibon 1997, 12 Hamilton 1994, 13 Chun-Hsin et al. 2004, 14 Sutskever et al. 2014 15 Li et al. 2018, 16 Yu et al. 2018, 17 Guo et al. 2019, 18 Wu et al. 2019, 19 Zheng et al. 2020, 20 Bai et al. 2020, 21 Huang et al. 2021

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴
- Spatio-temporal point forecast models:
 - DCRNN¹⁵, STGCN¹⁶, ASTGCN¹⁷, GWN¹⁸, GMAN¹⁹, AGCRN²⁰, LSGCN²¹
- Graph agnostic point forecast models:
 DeepGLO²², N-BEATS²³, FC-GAGA²⁴

 $^{11} \text{ Makridakis \& Hibon 1997, } ^{12} \text{ Hamilton 1994, } ^{13} \text{ Chun-Hsin et al. 2004, } ^{14} \text{ Sutskever et al. 2014}$ $^{15} \text{ Li et al. 2018, } ^{16} \text{ Yu et al. 2018, } ^{17} \text{ Guo et al. 2019, } ^{18} \text{ Wu et al. 2019, } ^{19} \text{ Zheng et al. 2020, } ^{20} \text{ Bai et al. 2020, } ^{21} \text{ Huang et al. 2021}$ $^{22} \text{ Sen et al. 2019, } ^{23} \text{ Oreshkin et al. 2020, } ^{24} \text{ Oreshkin et al. 2021}$

- Statistical and ML point forecast models:
 - HA, ARIMA¹¹, VAR¹², SVR¹³, FNN, FC-LSTM¹⁴
- Spatio-temporal point forecast models:
 - DCRNN¹⁵, STGCN¹⁶, ASTGCN¹⁷, GWN¹⁸, GMAN¹⁹, AGCRN²⁰, LSGCN²¹
- Graph agnostic point forecast models:
 DeepGLO²², N-BEATS²³, FC-GAGA²⁴
- Graph agnostic probabilistic forecast models:
 DeepAR²⁵, DeepFactors²⁶, MQRNN²⁷

 $^{11} \mbox{ Makridakis & Hibon 1997, 12 Hamilton 1994, 13 Chun-Hsin et al. 2004, 14 Sutskever et al. 2014, 15 Li et al. 2018, 16 Yu et al. 2018, 17 Guo et al. 2019, 18 Wu et al. 2019, 19 Zheng et al. 2020, 20 Bai et al. 2020, 21 Huang et al. 2021 22 Sen et al. 2019, 23 Oreshkin et al. 2020, 24 Oreshkin et al. 2021 25 Salinas et al. 2020, 26 Wang et al. 2019, 27 Wen et al. 2017 27 Wen et al. 2017 21 Huang et al. 2020, 26 Wang et al. 2019, 27 Wen et al. 2017 21 Wen et al. 2017 22 Wen et al. 2017 21

AGCGRU+flow achieves the best average rank.

Experimental Results: Node by Node Comparison

AGCGRU+flow outperforms AGCRN at majority of nodes in PeMSD7

Experimental Results: Probabilistic Forecasting

$$CRPS(F, x) = \int_{-\infty}^{\infty} (F(z) - 1\{x \le z\})^2 dz$$

Experimental Results: Probabilistic Forecasting

$$CRPS(F, x) = \int_{-\infty}^{\infty} (F(z) - 1\{x \le z\})^2 dz$$

Our approaches obtain lower average CRPS.

Experimental Results: Quantile Estimation

$$\mathsf{QL}(x, \hat{x}(\alpha)) = 2\Big(\alpha\big(x - \hat{x}(\alpha)\big)\mathbf{1}\{x > \hat{x}(\alpha)\} + (1 - \alpha)\big(\hat{x}(\alpha) - x\big)\mathbf{1}\{x \leqslant \hat{x}(\alpha)\}\Big)$$

Experimental Results: Quantile Estimation

$$\mathsf{QL}\big(x,\hat{x}(\alpha)\big) = 2\Big(\alpha\big(x-\hat{x}(\alpha)\big)\mathbf{1}\{x>\hat{x}(\alpha)\} + (1-\alpha)\big(\hat{x}(\alpha)-x\big)\mathbf{1}\{x\leqslant\hat{x}(\alpha)\}\Big)$$

AGCGRU+flow has the lowest quantile error on average.

Experimental Results: Confidence Intervals

Confidence intervals for 15 minutes ahead predictions at node 4 of PeMSD7 for the first day in the test set.

- General Bayesian framework to represent forecast uncertainty

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art
- Better characterization of prediction uncertainty

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art
- Better characterization of prediction uncertainty
- Results for non-graph data, component analyses in the paper

- General Bayesian framework to represent forecast uncertainty
- Can incorporate various RNNs, sophisticated inference tools
- Univariate/multivariate forecasting with/without graphs
- Comparable point forecasting to state-of-the-art
- Better characterization of prediction uncertainty
- Results for non-graph data, component analyses in the paper
- Code: https://github.com/networkslab/rnn_flow