THE UNIVERSITY of EDINBURGH

Modeling, filtering, and graph discovery in state-space models

Víctor Elvira
School of Mathematics
University of Edinburgh

Joint work with: M. F. Bugallo, N. Branchini,
E. Chouzenoux, P. M. Djuric, L. Martino

Bellairs Research Institute of McGill University, Barbados
December 14, 2021

Outline

Intro: State-space models (SSMs) and Bayesian filtering
Part I: Linear-Gaussian model and Kalman filter
Part I: GraphEM: Graph discovery in linear-Gaussian SSMs
Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)
Part II: PFs from the MIS perspective

Motivation

- A large class of problems in statistics, machine learning, and signal processing requires sequential processing of observed data.
- Examples of applications:
- Geophysical systems (atmosphere, oceans)
- Robotics
- Target tracking, positioning, navigation
- Communications
- Biomedical signal processing
- Financial engineering
- Ecology

Inference in State-Space Models (SSM)

- Let us consider:
- a set of hidden states $\mathbf{x}_{t} \in \mathbb{R}^{d_{x}}, t=1, \ldots, T$.
- a set of observations $\mathbf{y}_{t} \in \mathbb{R}^{d_{y}}, t=1, \ldots, T$.
- A SSM is an underlying hidden process of \mathbf{x}_{t} that evolves and that, partially and noisily, expresses itself through \mathbf{y}_{t}.

- Two ways or describing the system:

1. Deterministic notation:

- Hidden state $\rightarrow \mathbf{x}_{t}=g\left(\mathbf{x}_{t-1}, \mathbf{q}_{t}\right)$
- Observations $\rightarrow \mathbf{y}_{t}=h\left(\mathrm{x}_{t}, \mathrm{r}_{t}\right)$
where \mathbf{q}_{t} and \mathbf{r}_{t} are random noise vector (with known distributions of \mathbf{q}_{t} and \mathbf{r}_{t}) and $g(\cdot)$ and $h(\cdot)$ are also known.

2. Probabilistic notation:

- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)$
\rightarrow Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)$

The estimation problem

- We sequentially observe observations \mathbf{y}_{t} related to the hidden state \mathbf{x}_{t}.
- At time t, we have accumulated t observations, $\mathbf{y}_{1: t} \equiv\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{t}\right\}$.
- Interesting problems:
- Filtering: estimate current state $\widehat{\mathbf{x}}_{t}$ given all observations $\mathbf{y}_{1: t}$
- State prediction: predict the future state $\widehat{\mathbf{x}}_{t+\tau}$ given $\mathbf{y}_{1: t}(\tau>0)$
- Obs. prediction: predict the future observation $\hat{\mathbf{y}}_{t+\tau}$ given $\mathbf{y}_{1: t}$
- Better estimate a past state (aka smoothing): Estimate $\widehat{\mathbf{x}}_{t-\tau}$ given $\mathbf{y}_{1: t}$ ($\tau>0$)
- We want to do it sequentially and efficiently.
- At time t, we want to process only \mathbf{y}_{t}, but not reprocess all $\mathbf{y}_{1: t-1}$ (that were already processed!)

Example

- There are two interrelated random processes, one is observed and one is hidden.
- e.g.,stochastic volatility model, very common in financial engineering

$$
\begin{aligned}
x_{t} & =0.999 x_{t-1}+q_{t} \\
y_{t} & =e^{\frac{x_{t}}{2}} r_{t},
\end{aligned}
$$

- with $q_{t} \sim \mathcal{N}(0,1)$ and $r_{t} \sim \mathcal{N}(0,1)$
- Goal: estimate the hidden x_{t} given the observed $y_{1: t}$

Example

- Consider the following stochastic volatility model, very common in financial engineering

$$
\begin{aligned}
x_{t} & =0.999 x_{t-1}+q_{t} \\
y_{t} & =e^{\frac{x_{t}}{2}} r_{t},
\end{aligned}
$$

- with $q_{t} \sim \mathcal{N}(0,1)$ and $r_{t} \sim \mathcal{N}(0,1)$
- Goal: estimate the hidden x_{t} given the observed $y_{1: t}$

The Probabilistic/Bayesian Approach

- Estimations are good, distributions are better
- Instead of a single value $\widehat{\mathbf{x}}_{t}$, we give a probability for any single possible value of \mathbf{x}_{t}.

$$
\widehat{\mathbf{x}}_{t} \Rightarrow p\left(\mathbf{x}_{t} \mid y_{1: t}\right)
$$

- Measure of certainty.
- The basic problems again (probabilistic version!)
- Filtering: $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$
- State prediction: $p\left(\mathbf{x}_{t+\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- Observation prediction: $p\left(\mathbf{y}_{t+\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- Smoothing: $p\left(\mathbf{x}_{t-\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- We will focus on the filtering problem

Bayesian Filtering

- Bayesian rule: if we want to infer all states $\mathbf{x}_{1: T} \equiv\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{T}\right\}$,

$$
p\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right)=\frac{p\left(\mathbf{y}_{1: T} \mid \mathbf{x}_{1: T}\right) p\left(\mathbf{x}_{1: T}\right)}{p\left(\mathbf{y}_{1: T}\right)}
$$

- If we want to infer just a particular state \mathbf{x}_{t} (smoothing): marginalization

$$
p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: T}\right)=\int p\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right) d \mathbf{x}_{1} d \mathbf{x}_{2} \ldots d \mathbf{x}_{t-1} d \mathbf{x}_{t+1} \ldots d \mathbf{x}_{T}
$$

- Problems...
- Dimension: $\mathbf{x}_{1: T} \in \mathbb{R}^{T \cdot d_{x}}$
- When we receive \mathbf{y}_{t}, we do not want to reprocess $\mathbf{y}_{1: t-1}$

Sequential Optimal Filtering

- Filtering Problem:
- Distribution of \mathbf{x}_{t} given all the obs. up to time $t, p\left(\mathrm{x}_{t} \mid \mathrm{y}_{1: t}\right)$
- Recursively from $p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right)$ updating with the new \mathbf{y}_{t}
- Optimal filtering (at time t):

1. Prediction step:

$$
p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t-1}\right)=\int p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right) d \mathbf{x}_{t-1}
$$

2. Update step:

$$
p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)=\frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t-1}\right)}{p\left(\mathbf{y}_{t} \mid \mathbf{y}_{1: t-1}\right)}
$$

- Interest in integrals of the form: $I(f)=\int f\left(\mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid y_{1: t}\right) d \mathbf{x}_{t}$
- e.g., the mean, $I(f)=\int \mathbf{x}_{t} p\left(\mathbf{x}_{t} \mid y_{1: t}\right) d \mathbf{x}_{t}$
- Usually the posterior cannot be analytically computed!

Outline

```
Intro: State-space models (SSMs) and Bayesian filtering
Part I: Linear-Gaussian model and Kalman filter
Part I: GraphEM: Graph discovery in linear-Gaussian SSMs
Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)
Part II: PFs from the MIS perspective
```


The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Deterministic notation:
- Unobserved state $\rightarrow \mathbf{x}_{t}=\mathbf{A}_{t} \mathbf{x}_{t-1}+\mathbf{q}_{t}$
- Observations $\quad \rightarrow \mathrm{y}_{t}=\boldsymbol{H}_{t} \mathrm{x}_{t}+\mathbf{r}_{t}$ where $\mathbf{q}_{t} \sim \mathcal{N}\left(0, \mathbf{Q}_{t}\right)$ and $\mathbf{r}_{t} \sim \mathcal{N}\left(0, \mathbf{R}_{t}\right)$.
- Probabilistic notation:
- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \equiv \mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{A}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) \equiv \mathcal{N}\left(\mathbf{y}_{t} ; \boldsymbol{H}_{t} \mathbf{x}_{t}, \mathbf{R}_{t}\right)$
- Kalman filter: obtains the filtering pdfs $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$, at each t
- Gaussian pdfs, with means and covariances matrices are calculated at each t
- Efficient processing of \mathbf{y}_{t}, obtaining $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$ from $p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right)$ (intermediate $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t-1}\right)$ result)
- Rauch-Tung-Striebel (RTS) smoother: obtains the smoothing distribution $p\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right)$, i.e., posterior of the whole trajectory
- requires a backwards reprocessing, refining the Kalman estimates

Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):

$$
p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t-1}\right)=\int p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right) d \mathbf{x}_{t-1}
$$

- Suppose that filtered distribution at $t-1$ is Gaussian $p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right) \equiv \mathcal{N}\left(\mathbf{m}_{t-1}, \mathbf{P}_{t-1}\right)$.
- Predictive distribution is also Gaussian $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t-1}\right) \equiv \mathcal{N}\left(\mathbf{m}_{t}^{-}, \mathbf{P}_{t}^{-}\right)$
- Mean: $\mathrm{m}_{t}^{-}=\mathbf{A}_{t} \mathrm{~m}_{t-1}$
- Variance: $\mathbf{P}_{t}^{-}=\mathbf{A}_{t} \mathbf{P}_{t-1} \mathbf{A}_{t}^{T}+\mathbf{Q}_{t}$
- Interpretation:
- The mean is projected through matrix \mathbf{A}_{t}
- The uncertainty is propagated too through \mathbf{A}_{t}, plus the variance of the process noise

Kalman Filter: update step

2. Update step (product of Gaussians):

$$
p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)=\frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t-1}\right)}{p\left(\mathbf{y}_{t} \mid \mathbf{y}_{1: t-1}\right)}
$$

- The filtered distribution at time t is also Gaussian $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right) \equiv \mathcal{N}\left(\mathbf{m}_{t}, \mathbf{P}_{t}\right)$
- Mean: $\mathrm{m}_{t}=\mathrm{m}_{t}^{-}+\boldsymbol{K}_{t}\left(\mathrm{y}_{t}-\boldsymbol{H}_{t} \mathrm{~m}_{t}^{-}\right)$
- Variance: $\mathrm{P}_{t}=\left(\boldsymbol{I}-\boldsymbol{K}_{t} \boldsymbol{H}_{t}\right) \mathrm{P}_{t}^{-}$ where $\boldsymbol{K}_{t}=\mathbb{P}_{t}^{-} \boldsymbol{H}_{t}^{T}\left(\boldsymbol{H}_{t} \mathbb{P}_{t}^{-} \boldsymbol{H}_{t}^{T}+\mathbf{R}_{t}\right)^{-1}$ is the optimal Kalman gain.
- Interpretation:
- The mean is corrected w.r.t. the predictive in the direction of the residual/error.
- The variance is propagated by \boldsymbol{H}_{t} and divided by the covariance of the residual/error.

Kalman summary and RTS smoother

Kalman filter

- Initialize: $\mathbf{m}_{0}, \mathbf{P}_{0}$
- For $t=1, \ldots, T$

Predict stage:

$$
\begin{aligned}
& \mathbf{x}_{t}^{-}=\mathbf{A}_{t} \mathrm{~m}_{t-1} \\
& \mathbf{P}_{t}^{-}=\mathbf{A}_{t} \mathbf{P}_{t-1} \mathbf{A}_{t}^{\top}+\mathbf{Q}_{t}
\end{aligned}
$$

Update stage:

$$
\begin{aligned}
& \mathbf{z}_{t}=\mathbf{y}_{t}-\mathbf{H}_{t} \mathbf{x}_{t}^{-} \\
& \mathbf{S}_{t}=\mathbf{H} \mathbf{P}_{t}^{-} \mathbf{H}_{t}^{\top}+\mathbf{R}_{t} \\
& \mathbf{K}_{t}=\mathbf{P}_{t}^{-} \mathbf{H}_{t}^{\top} \mathbf{S}_{t}^{-1} \\
& \mathrm{~m}_{t}=\mathbf{x}_{t}^{-}+\mathbf{K}_{t} \mathbf{z}_{t} \\
& \mathbf{P}_{t}=\mathbf{P}_{t}^{-}-\mathbf{K}_{t} \mathbf{S}_{t} \mathbf{K}_{t}^{\top}
\end{aligned}
$$

RTS smoother

- For $t=T, \ldots, 1$

Smoothing stage:

$$
\begin{aligned}
& \mathbf{x}_{t+1}^{-}=\mathbf{A}_{t} \mathrm{~m}_{t} \\
& \mathbf{P}_{t+1}^{-}=\mathbf{A}_{t} \mathbf{P}_{t} \mathbf{A}_{t}^{\top}+\mathbf{Q}_{t} \\
& \mathbf{G}_{t}=\mathbf{P}_{t} \mathbf{A}_{t}^{\top}\left(\mathbf{P}_{t+1}^{-}\right)^{-1} \\
& \mathbf{m}_{t}^{s}=\mathbf{m}_{t}+\mathbf{G}_{t}\left(\mathbf{m}_{t+1}^{s}-\mathbf{x}_{t+1}^{-}\right) \\
& \mathbf{P}_{t}^{s}=\mathbf{P}_{t}+\mathbf{G}_{t}\left(\mathbf{P}_{t+1}^{s}-\mathbf{P}_{t+1}^{-}\right) \mathbf{G}_{t}^{\top}
\end{aligned}
$$

\checkmark Filtering distribution: $p\left(\mathbf{x}_{t} \mid \mathrm{y}_{1: t}\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \mathrm{m}_{t}, \mathbf{P}_{t}\right)$
\checkmark Smoothing distribution: $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: T}\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{m}_{t}^{s}, \mathbf{P}_{t}^{s}\right)$
\boldsymbol{x} How to proceed if some model parameters are unknown?

Outline

Intro: State-space models (SSMs) and Bayesian filtering
 Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

```
Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)
Part II: PFs from the MIS perspective
```

- Recall the linear-Gaussian system:
- Unobserved state $\rightarrow \mathbf{x}_{t}=\mathbf{A}_{t} \mathbf{x}_{t-1}+\mathbf{q}_{t}$
- Observations $\rightarrow \mathbf{y}_{t}=\boldsymbol{H}_{t} \mathrm{x}_{t}+\mathbf{r}_{t}$
where $\mathbf{q}_{t} \sim \mathcal{N}\left(0, \mathbf{Q}_{t}\right)$ and $\mathbf{r}_{t} \sim \mathcal{N}\left(0, \mathbf{R}_{t}\right)$.
- In practice, most of these parameters are unknown: $\mathbf{A}_{t}, \mathbf{H}_{t}, \mathbf{Q}_{t}, \mathbf{R}_{t}$.
- A common assumption is that they are static, i.e., $\mathbf{A}, \mathbf{H}, \mathbf{Q}, \mathbf{R}$.
- The most challenging parameter to estimate (but also interesting) is \mathbf{A} :
- Graph discovery perspective: $\mathbf{x}_{t} \in \mathbb{R}^{N_{x}}$ contains N_{x} unidimensional time-series, each of them acquired in a node of a graph (with N_{x} total nodes)
- The elements $a_{i, j}$ of \mathbf{A} represents, the linear effect of node j at time $t-1$ in the update of the signal of node i at time t :

$$
x_{t, i}=\sum_{j=1}^{N_{x}} a_{i, j} x_{t-1, j}+q_{t, i}
$$

- GraphEM: An expectation-maximization (EM) method within Kalman filters for the estimation of \mathbf{A} (along with the hidden states). ${ }^{1}$

[^0]
GraphEM in a nutshell

- Goal: Find \mathbf{A}^{*} that maximizes $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right) \propto p(\mathbf{A}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$, i.e., the MAP estimate of A
- Equivalent to minimizing $\varphi_{T}(\mathbf{A})=-\log p(\mathbf{A})-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$.
- Challenge: evaluating $p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$ (or $\varphi_{T}(\mathbf{A})$) requires to run Kalman filter:

$$
\begin{equation*}
\varphi_{T}(\mathbf{A})=-\log p(\mathbf{A})+\sum_{t=1}^{T} \frac{1}{2} \log \left|2 \pi \mathbf{S}_{t}(\mathbf{A})\right|+\frac{1}{2} \mathbf{z}_{t}(\mathbf{A})^{\top} \mathbf{S}_{t}(\mathbf{A})^{-1} \mathbf{z}_{t}(\mathbf{A}) \tag{1}
\end{equation*}
$$

- Non tractable minimization.
- EM strategy: Minimize a sequence of tractable approximations of φ_{T} satisfying a majorizing property.
- Lasso regularization (prior): In order to limit the degrees of freedom in the parametric model, we choose the prior to promote a sparse matrix \mathbf{A}.

$$
\left(\forall \mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}\right) \quad-\log p(\mathbf{A}) \equiv \varphi_{0}(\mathbf{A})=\gamma\|\mathbf{A}\|_{1}, \quad \gamma>0
$$

Expression of EM steps

- Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to \mathbf{A}^{\prime} and define

$$
\begin{aligned}
& \boldsymbol{\Sigma}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s}+\mathbf{m}_{t}^{s}\left(\mathbf{m}_{t}^{s}\right)^{\top} \\
& \boldsymbol{\Phi}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s}+\mathbf{m}_{t-1}^{s}\left(\mathbf{m}_{t-1}^{s}\right)^{\top} \\
& \mathbf{C}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top}+\mathbf{m}_{t}^{s}\left(\mathbf{m}_{t-1}^{s}\right)^{\top}
\end{aligned}
$$

Then, as a consequence of, we can build

$$
\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\boldsymbol{\Sigma}-\mathbf{C} \mathbf{A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}\right)\right)+\varphi_{0}(\mathbf{A})+\mathcal{C},
$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}$:

$$
\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right) \geq \varphi_{T}(\mathbf{A}), \quad \text { and } \quad \mathcal{Q}\left(\mathbf{A}^{\prime} ; \mathbf{A}^{\prime}\right)=\varphi_{T}\left(\mathbf{A}^{\prime}\right) .
$$

- Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)$ with respect to \mathbf{A} (\mathbf{A}^{\prime} being fixed).

Computation of the M-step

- Minimization problem:

$$
\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)}_{f(\mathbf{A})}=\operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\boldsymbol{\Sigma}-\mathbf{C A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \mathbf{\Phi} \mathbf{A}^{\top}\right)\right)}_{f_{1}(\mathbf{A})=\text { upper bound of }-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)}+\underbrace{\gamma\|\mathbf{A}\|_{1}}_{\substack{f_{2}(\mathbf{A})=-\log p(\mathbf{A}) \\ \text { (prior) }}}
$$

- Convex non-smooth minimization problem
- Proximal splitting approach: The proximity operator of $f: \mathbb{R}^{N_{x} \times N_{x}} \rightarrow \mathbb{R}$ is defined ${ }^{2}$

$$
\operatorname{prox}_{f}(\widetilde{\mathbf{A}})=\operatorname{argmin}_{\mathbf{A}}\left(f(\mathbf{A})+\frac{1}{2}\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{F}^{2}\right) .
$$

Douglas-Rachford algorithm

- Set $\mathbf{Z}_{0} \in \mathbb{R}^{N_{x} \times N_{x}}$ and $\theta \in(0,2)$.
- For $n=1,2, \ldots$.

$$
\begin{aligned}
& \mathbf{A}_{n}=\operatorname{prox}_{\theta f_{2}}\left(\mathbf{Z}_{n}\right) \\
& \mathbf{V}_{n}=\operatorname{prox}_{\theta f_{1}}\left(2 \mathbf{A}_{n}-\mathbf{Z}_{n}\right) \\
& \mathbf{Z}_{n+1}=\mathbf{Z}_{n}+\theta\left(\mathbf{V}_{n}-\mathbf{A}_{n}\right)
\end{aligned}
$$

$\checkmark\left\{\mathbf{A}_{n}\right\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=f_{1}+f_{2}$
\checkmark Both involved proximity operators have closed form solution.
${ }^{2}$ P.L. Combettes and JC. Pesquet. "Proximal Splitting Methods in Signal Processing.". In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering 49 (2011), pp. 185-212.

GraphEM algorithm

GraphEM algorithm

- Initialization of $\mathbf{A}^{(0)}$.
- For $i=1,2, \ldots$

E-step Run the Kalman filter and RTS smoother by setting $\mathbf{A}^{\prime}:=\mathbf{A}^{(i-1)}$ and construct $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{(i-1)}\right)$.
M-step Update $\mathbf{A}^{(i)}=\operatorname{argmin}_{\mathbf{A}}\left(\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{(i-1)}\right)\right)$ using Douglas-Rachford algorithm.
\checkmark Flexible approach, valid as long as the proximity operator of f_{2} is available.
\checkmark sound convergence properties of the EM algorithm

- monotonical decrease and convergence of $\left\{\varphi_{T}\left(\mathbf{A}^{(i)}\right)\right\}_{i \in \mathbb{N}}$ can be shown.

Data description and numerical settings

- Four synthetic datasets with $\mathbf{H}=\mathbf{I d}$ and block-diagonal matrix \mathbf{A}, composed with b blocks of size $\left(b_{j}\right)_{1 \leq j \leq b}$, so that $N_{y}=N_{x}=\sum_{j=1}^{b} b_{j}$. We set $T=10^{3}$, $\mathbf{Q}=\sigma_{\mathbf{Q}}^{2} \mathbf{l d}, \mathbf{R}=\sigma_{\mathbf{R}}^{2} \mathbf{l d}, \mathbf{P}_{0}=\sigma_{\mathbf{P}}^{2} \mathbf{l d}$.

Dataset	N_{x}	$\left(b_{j}\right)_{1 \leq j \leq b}$	$\left(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}}\right)$
A	9	$(3,3,3)$	$\left(10^{-1}, 10^{-1}, 10^{-4}\right)$
B	9	$(3,3,3)$	$\left(1,1,10^{-4}\right)$
C	16	$(3,5,5,3)$	$\left(10^{-1}, 10^{-1}, 10^{-4}\right)$
D	16	$(3,5,5,3)$	$\left(1,1,10^{-4}\right)$

- GraphEM is compared with:
- Maximum likelihood EM (MLEM) ${ }^{3}$
- Granger-causality approaches: pairwise Granger Causality (PGC) and conditional Granger Causality (CGC) ${ }^{4}$

[^1]Experimental results

True graph (left) and GraphEM estimate (right) for dataset C.

Experimental results

	method	RMSE	accur.	prec.	recall	spec.	F1
A	GraphEM	0.081	0.9104	0.9880	0.7407	0.9952	0.8463
	MLEM	0.149	0.3333	0.3333	1	0	0.5
	PGC	-	0.8765	0.9474	0.6667	0.9815	0.7826
	CGC	-	0.8765	1	0.6293	1	0.7727
B	GraphEM	0.082	0.9113	0.9914	0.7407	0.9967	0.8477
	MLEM	0.148	0.3333	0.3333	1	0	0.5
	PGC	-	0.8889	1	0.6667	1	0.8
	CGC	-	0.8889	1	0.6667	1	0.8
C	GraphEM	0.120	0.9231	0.9401	0.77	0.9785	0.8427
	MLEM	0.238	0.2656	0.2656	1	0	0.4198
	PGC	-	0.9023	0.9778	0.6471	0.9949	0.7788
	CGC	-	0.8555	0.9697	0.4706	0.9949	0.6337
D	GraphEM	0.121	0.9247	0.9601	0.7547	0.9862	0.8421
	MLEM	0.239	0.2656	0.2656	1	0	0.4198
	PGC	-	0.8906	0.9	0.6618	0.9734	0.7627
	CGC	-	0.8477	0.9394	0.4559	0.9894	0.6139

Conclusions and ongoing work

- GraphEM algorithm:
\checkmark Interpretation of hidden states as a (causal) directed graph
\checkmark Lasso penalization to promote sparsity
- common in complex systems
- reduces the implicit dimension
\checkmark EM-based method with proximal splitting M-step
- sound convergence guarantees
\checkmark Good numerical performance compared to several techniques
- Ongoing work:
- Extension to enforce multiple properties on A
- stability, block sparsity, positivity/negativity/etc (physically driving), ...
- requires a novel proximal-based method
- application to Earth observation
- Totally different approach for the same perspective on A:
- hierarchical algorithm with reversible jump MCMC on the sparsitiy levels of \mathbf{A}

Outline

```
Intro: State-space models (SSMs) and Bayesian filtering
Part I: Linear-Gaussian model and Kalman filter
Part I: GraphEM: Graph discovery in linear-Gaussian SSMs
Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)
Part II: PFs from the MIS perspective
```


Beyond linear-Gaussian SSMs

- The world is not linear-Gaussian: Lorenz model (chaotic model)

- Continuous-time Lorenz model \Rightarrow discrete-time approximation
- Euler-Maruyama integration with integration step $\Delta=10^{-3}$

$$
\begin{aligned}
X_{1, t} & =X_{1, t-1}-\Delta \mathbf{s}\left(X_{1, t-1}-X_{2, t-1}\right)+\sqrt{\Delta} U_{1, t}, \\
X_{2, t} & =X_{2, t-1}+\Delta\left(\mathbf{r} X_{1, t-1}-X_{2, t-1}-X_{1, t-1} X_{3, t-1}\right)+\sqrt{\Delta} U_{2, t}, \\
X_{3, t} & =X_{3, t-1}+\Delta\left(X_{1, t-1} X_{2, t-1}-\mathbf{b} X_{3, t-1}\right)+\sqrt{\Delta} U_{3, t},
\end{aligned}
$$

- $\left\{U_{i, t}\right\}_{t=0,1, \ldots}, i=1,2,3$, are independent sequences of i.i.d. Gaussian random variables with zero mean and unit variance.
- Markov model and also Gaussian, but still non-linear

Particle Filtering

- Recall the generic SSM:
- Hidden state model: $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)$
- Observations model: $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)$
- Same goal: Obtain the (now intractable) filtering distribution $p\left(\mathbf{x}_{t} \mid \mathrm{y}_{1: t}\right)$ through particle filtering (PF) which is based on importance sampling (IS):
- IS in a nutshell:

1. Sampling. $\mathbf{x}_{t}^{(m)} \sim \psi_{t}\left(\mathbf{x}_{t}\right), m=1, \ldots, M$

- $\psi_{t}\left(\mathbf{x}_{t}\right)$ is the proposal and is key for the performance

2. Weighting. $\widetilde{w}^{(m)}=\frac{p\left(\mathbf{x}^{(m)} \mid \mathbf{y}_{1: t}\right)}{\psi_{t}\left(\mathbf{x}^{(m)}\right)}, m=1, \ldots, M$,
3. Normalize weights. $w_{t}^{(n)}=\frac{\widetilde{w}^{(m)}}{\sum_{j=1}^{M} \widetilde{w}^{(j)}}$

- The distribution of interest (filtering) is approximated as:

The bootstrap PF (BPF)

- Bootstrap PF \equiv Sequential Importance Resampling (SIR) based on importance sampling [Gordon, 1993]
(i) Initialization. At time $t=0, \tilde{\mathbf{x}}_{0}^{(m)} \sim p\left(\mathbf{x}_{0}\right), m=1, \ldots, M$.
(ii) Recursive step. At time t,

1 Prediction (particles propagation): $\mathbf{x}_{t}^{(m)} \sim p\left(\mathbf{x}_{t} \mid \tilde{\mathbf{x}}_{t-1}^{(m)}\right)$
2 Update (weights calculation): compute the normalized weights as $w_{t}^{(m)} \propto p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right)$
3 Multinomial resampling at every time step:

- Set $\left\{\tilde{\mathbf{x}}_{t}^{(m)}\right\}_{m=1}^{M}$ is formed by sampling M times with replacement from the set $\left\{\mathbf{x}_{t}^{(m)}\right\}_{m=1}^{M}$ with associated probabilities $\left\{w_{t}^{(m)}\right\}_{m=1}^{M}$
- equivalent to: simulate M i.i.d. samples from the approx. filtering distribution

$$
\tilde{\mathbf{x}}_{t}^{(m)} \sim p^{M}\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right) \equiv \sum_{j=1}^{M} w_{t}^{(j)} \delta\left(\mathbf{x}-\mathbf{x}_{t}^{(j)}\right)
$$

- Output. The filtering distribution is now approximated as

$$
p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right) \approx p^{M}\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right) \equiv \sum_{j=1}^{M} w_{t}^{(j)} \delta\left(\mathbf{x}-\mathbf{x}_{t}^{(j)}\right)
$$

(instead of having a Gaussian filtering distribution as in Kalman)

Bootstrap PF (BPF)

Outline

```
Intro: State-space models (SSMs) and Bayesian filtering
Part I: Linear-Gaussian model and Kalman filter
Part I: GraphEM: Graph discovery in linear-Gaussian SSMs
Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)
```

Part II: PFs from the MIS perspective

Multiple importance sampling (MIS)

- Multiple importance sampling (MIS) is an extension of IS when several proposals are available
- Very active topic, and recent works show that there exist many sampling and weighting possibilities. ${ }^{5}$
- PFs are usually derived under the perspective of sampling trajectories, but rarely under the perspective of one time-step ahead, analyzing what the true proposal $\psi\left(\mathbf{x}_{t}\right)$ and the consequences.
- We propose an alternative way of deriving existing PFs ${ }^{6}$ that
- offers new insights about the implicit assumptions
- helps to understand when you should use one or other PF
- allows to propose new high-performance PFs

[^2]
A generic particle filtering from the MIS perspective

(i) Initialization. At time $t=0, \mathbf{x}_{0}^{(m)} \sim p\left(\mathbf{x}_{0}\right), w_{0}^{(m)}=1 / M, m=1, \ldots, M$.
(ii) Recursive step. At time $t>0$,

1 Proposal adaptation/selection. Select the MIS proposal of the form

$$
\psi_{t}\left(\mathbf{x}_{t}\right)=\sum_{i=1}^{M} \lambda_{t}^{(j)} p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(j)}\right)
$$

2 Sampling. Draw samples accoł⿱ỉing to

$$
\mathbf{x}_{t}^{(m)} \sim \psi_{t}\left(\mathbf{x}_{t}\right), \quad m=1, \ldots, M
$$

3 Weighting. Compute the normalized IS weights by

$$
\begin{align*}
& w_{t}^{(m)} \propto \frac{p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{y}_{1: t}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)} \propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{y}_{1: t-1}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)} \\
& \approx \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)}=\frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)} \tag{2}
\end{align*}
$$

- Two questions: ${ }^{6}$

1. Selection/adaptation of $\left\{\lambda_{t}^{(j)}\right\}_{j=1}^{M}$ to build $\psi_{t}\left(\mathbf{x}_{t}\right)$?

- Recall: IS is efficient when $\psi_{t}\left(\mathbf{x}_{t}\right)$ is close to $p\left(\mathrm{x}_{t} \mid \mathrm{y}_{1: t}\right)$

2. Approximate $w_{t}^{(m)}$ in (2) to derive BPF and APF?
[^3]
BPF from the MIS perspective

(i) Initialization. At time $t=0, \mathbf{x}_{0}^{(m)} \sim p\left(\mathbf{x}_{0}\right)$, and $w_{0}^{(m)}=1 / M$, $m=1, \ldots, M$.
(ii) Recursive step. At time $t>0$,

1 Proposal adaptation/selection. Select the MIS proposal of the form

$$
\psi_{t}\left(\mathbf{x}_{t}\right)=\sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(j)}\right), \quad \quad\left(\lambda_{t}^{(j)}=w_{t-1}^{(j)}\right)
$$

2 Sampling. Draw samples according to

$$
\mathbf{x}_{t}^{(m)} \sim \psi_{t}\left(\mathbf{x}_{t}\right), \quad m=1, \ldots, M . \quad \text { (equiv. resampling+propagation) }
$$

3 Weighting. Compute the normalized IS weights by

$$
\begin{aligned}
& w_{t}^{(m)} \propto \frac{p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{y}_{1: t}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)} \propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{y}_{1: t-1}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)} \\
& \approx \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)}=\frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)} \\
& =p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right)
\end{aligned}
$$

- Remark: the BPF matches just the prior of the numerator.

Toy example: BPF with $M=4$ particles

- predictive, $p\left(x_{t} \mid y_{1: t-1}\right)=\sum_{j=1}^{M} w_{t-1}^{(j)} p\left(x_{t} \mid x_{t-1}^{(j)}\right)$ with
$w_{t-1}=[0.03,0.16,0.16,0.65]$
- BPF proposal, $\psi_{t}^{\operatorname{BPF}}\left(x_{t}\right)=\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(x_{t} \mid x_{t-1}^{(j)}\right)$, with
$\lambda_{t}^{\mathrm{BPF}}=w_{t-1}^{(m)}=[0.03,0.16,0.16,0.65]$

BPF from the MIS perspective

Auxiliary PF (APF)

- Proposed in [Pitt and Shephard, 1999] as an alternative to BPF of [Gordon, 1993]
- APF improves sometimes the performance of BPF, but not always.
(i) Initialization. At time $t=0, \mathbf{x}_{0}^{(m)} \sim p\left(\mathbf{x}_{0}\right)$, and $w_{0}^{(m)}=1 / M$, $m=1, \ldots, M$.
(ii) Recursive step. At time $t>0$,

1 Modify weights before resampling. Compute

$$
\overline{\mathbf{x}}_{t}^{(m)}=\mathbb{E}_{p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(m)}\right)}\left[\mathbf{x}_{t}\right], \quad m=1, \ldots, M .
$$

and the normalized weights $\left(\sum_{m=1}^{M} \lambda_{t}^{(m)}=1\right)$

$$
\lambda_{t}^{(m)} \propto p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(m)}\right) w_{t-1}^{(m)}, \quad m=1, \ldots, M
$$

2 Delayed resampling. Select the indexes $i^{(m)}=j$, with probability proportional to $\lambda_{t}^{(j)}, m=1, \ldots M$
3 Prediction. $\mathbf{x}_{t}^{(m)} \sim p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{\left(i^{(m)}\right)}\right), \quad m=1, \ldots, M$.
4 Update. Compute the normalized weights as

$$
w_{t}^{(m)} \propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right)}{p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(i(m)}\right)}, \quad m=1, \ldots, M
$$

APF from the MIS perspective

(i) Initialization. At time $t=0, \mathbf{x}_{0}^{(m)} \sim p\left(\mathbf{x}_{0}\right)$, and $w_{0}^{(m)}=1 / M$, $m=1, \ldots, M$.
(ii) Recursive step. At time $t>0$,

1 Proposal adaptation/selection. The weight of each kernel in the mixture is amplified by the value of the likelihood at its center

$$
\begin{aligned}
\overline{\mathbf{x}}_{t}^{(m)} & =\mathbb{E}_{p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(m)}\right)}\left[\mathbf{x}_{t}\right], \text { i.e., } \\
\psi_{t}\left(\mathbf{x}_{t}\right) & =\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(j)}\right), \quad \text { with } \quad \lambda_{t}^{(j)} \propto p\left(\mathbf{y}_{t} \mid \bar{x}_{t}^{(j)}\right) w_{t-1}^{(j)}, \quad j=1, \ldots, M,
\end{aligned}
$$

2 Sampling. Draw M i.i.d. samples from the mixture $\psi_{t}\left(\mathbf{x}_{t}\right)$, i.e.,
a) Select the indexes $i^{(m)}=j$, with probability $\propto \lambda_{t}^{(j)}, m=1, \ldots M$
b) simulate $\mathbf{x}_{t}^{(m)} \sim p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{\left(i^{(m)}\right)}\right), \quad m=1, \ldots M$.

3 Weighting. Compute the normalized IS weights by

$$
\begin{aligned}
& w_{t}^{(m)} \propto \frac{p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{y}_{1: t}\right)}{\psi_{t}\left(\mathbf{x}_{t}^{(m)}\right)} \propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{y}_{1: t-1}\right)}{\sum_{j=1}^{M} \lambda_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)} \approx \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\sum_{j=1}^{M} \lambda_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)} \\
& \approx \frac{\left.p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) w_{t-1}^{(i(m)}\right) p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(i(m)}\right)}{\left.\lambda_{t}^{(i(m)}\right) p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(i(m)}\right),} \propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \mathbf{w}_{t-1}^{(i(m))} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(i(m)}\right)}{\left.p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(i(m)}\right) w_{t-1}^{(i(m)}\right) p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(i(m)}\right)}=\frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right.}{p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(m)}\right.}
\end{aligned}
$$

- Remark:
- implicit assumption: kernels are far apart
- the APF re-weights the kernels of the prior amplifying them with the likelihood (each of them, independently from the rest).

Toy example: APF with $M=4$ particles

predictive, $p\left(x_{t} \mid y_{1: t-1}\right)=\sum_{j=1}^{M} w_{t-1}^{(j)} p\left(x_{t} \mid x_{t-1}^{(j)}\right)$ with $w_{t-1}=[0.03,0.16,0.16,0.65]$

- APF proposal, $\psi_{t}^{\operatorname{APF}}\left(x_{t}\right)=\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(x_{t} \mid x_{t-1}^{(j)}\right)$, with $\lambda_{t}^{\mathrm{APF}}=p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(m)}\right) w_{t-1}^{(m)}=[0.6713,0.3221,0.0065,0.0001]$

Auxiliary PF (APF) from the MIS perspective


```
Multiple importance
    sampling (MIS)
    perspective of APF
```


Improved APF (IAPF)

- IAPF: Based on this MIS interpretation, we improve the APF^{7}
- It is in the proposed generic MIS framework:
- The proposal is a mixture of the same predictive kernels as in BPF and APF

$$
\psi_{t}\left(\mathbf{x}_{t}\right)=\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(j)}\right)
$$

with

$$
\lambda_{t}^{(j)} \propto \frac{p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(j)}\right) \sum_{k=1}^{M} w_{t-1}^{(k)} p\left(\overline{\mathrm{x}}_{t}^{(j)} \mid \mathbf{x}_{t-1}^{(k)}\right)}{\sum_{k=1}^{M} p\left(\overline{\mathrm{x}}_{t}^{(j)} \mid \mathbf{x}_{t-1}^{(k)}\right)}, \quad j=1, \ldots, M .
$$

- Interpration:
- reconstruction of the target distribution $p\left(\mathrm{x}_{t} \mid \mathrm{y}_{1: t}\right)$ (numerator) with a mixture of kernels (denominator) ${ }^{8}$
- the "amplification" $\lambda_{t}^{(j)}$ of j-th kernel, takes into account where all other kernels are placed (unlike APF)
- APF fails when the kernels have important overlap
- if kernels have few overlap, $\lambda_{t}^{(j)} \approx p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(j)}\right) w_{t-1}^{(j)}$ (IAPF reduces to APF)
- IS with no extra approximation:

$$
w_{t}^{(m)}=\frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\sum_{j=1}^{M} \lambda_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)} \quad m=1, \ldots, M
$$

[^4]
Toy example: IAPF with $M=4$ particles

- predictive, $p\left(x_{t} \mid y_{1: t-1}\right)=\sum_{j=1}^{M} w_{t-1}^{(j)} p\left(x_{t} \mid x_{t-1}^{(j)}\right)$ with $w_{t-1}=[0.03,0.16,0.16,0.65]$
- IAPF proposal, $\psi_{t}^{\text {IAPF }}\left(x_{t}\right)=\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(x_{t} \mid x_{t-1}^{(j)}\right)$, with $\lambda_{t}^{\text {IAPF }}=[0.7657,0.2276,0.0066,0.0001]$

Summary: PF framework from MIS perspective

(i) Initialization. At time $t=0, \mathbf{x}_{0}^{(m)} \sim p\left(\mathbf{x}_{0}\right)$, and $w_{0}^{(m)}=1 / M$,

$$
m=1, \ldots, M
$$

(ii) Recursive step. At time $t>0$,

1 Proposal adaptation/selection. Select the MIS proposal of the form

$$
\begin{equation*}
\psi_{t}\left(\mathbf{x}_{t}\right)=\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}^{(j)}\right), \quad \text { with } \quad \lambda_{t}^{(j)}=? \tag{3}
\end{equation*}
$$

2 Sampling. Draw samples according to

$$
\begin{equation*}
\mathbf{x}_{t}^{(m)} \sim \psi_{t}\left(\mathbf{x}_{t}\right), \quad m=1, \ldots, M \tag{4}
\end{equation*}
$$

3 Weighting. Compute the normalized IS weights by

$$
\begin{equation*}
w_{t}^{(m)}=? \tag{5}
\end{equation*}
$$

	BPF	APF	IAPF
$\lambda_{t}^{(m)}$	$w_{t-1}^{(m)}$	$\propto p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(m)}\right) w_{t-1}^{(m)}$	$\propto \frac{p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\overline{\mathbf{x}}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\sum_{j=1}^{M} p\left(\overline{\mathbf{x}}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}$
$w_{t}^{(m)}$	$\propto p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right)$	$\propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right)}{p\left(\mathbf{y}_{t} \mid \overline{\mathbf{x}}_{t}^{\left.()^{(m)}\right)}\right)}$	$\propto \frac{p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}^{(m)}\right) \sum_{j=1}^{M} w_{t-1}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}{\sum_{j=1}^{M} \lambda_{t}^{(j)} p\left(\mathbf{x}_{t}^{(m)} \mid \mathbf{x}_{t-1}^{(j)}\right)}$

- In all PFs:

$$
p\left(\mathrm{x}_{t} \mid \mathrm{y}_{1: t}\right) \approx \sum_{m=1}^{M} w_{t}^{(n)} \delta\left(\mathbf{x}_{t}-\mathbf{x}_{t}^{(n)}\right)
$$

Toy example: summary

Numerical result 1: channel estimation in wireless system

- We suppose a linear-Gaussian system described by

$$
\begin{aligned}
\mathbf{x}_{t} & =\mathbf{A} \mathbf{x}_{t-1}+\mathbf{r}_{t} \\
y_{t} & =\mathbf{h}_{t}^{\top} \mathbf{x}_{t}+\mathbf{r}_{t}
\end{aligned}
$$

- $\mathbf{h}_{t}=\left[h_{t}, h_{t-1}, \ldots, h_{t-d_{x}+1}\right]^{\top}$, last d_{x} transmitted pilots, $d_{t} \in\{-1,+1\}$,
- $\mathbf{A}=0.7 \mathbf{I}$
- $\mathbf{q}_{t} \sim \mathcal{N}(0, \mathbf{Q}), \mathbf{Q}=5 \mathbf{I}$
- $\mathbf{r}_{t} \sim \mathcal{N}(0, \mathbf{R}), \mathbf{R}=0.5$
- we set $T=200$ time steps and $M=100$ particles

d_{x} (dimension)	1	2	3	5	10
MSE (BPF)	0.0272	0.3762	0.9657	1.4705	2.9592
MSE (APF)	0.0709	0.8041	1.6041	2.2132	3.7187
MSE (IAPF)	$\mathbf{0 . 0 0 6 2}$	$\mathbf{0 . 1 7 6 4}$	$\mathbf{0 . 5 1 7 6}$	$\mathbf{0 . 8 0 4 1}$	$\mathbf{2 . 6 9 3 1}$

Numerical result 2: stochastic growth model

- We suppose a stochastic growth model

$$
\begin{align*}
& x_{t}=\frac{x_{t-1}}{2}+\frac{25 x_{t-1}}{1+x_{t-1}^{2}}+8 \cos (\phi t)+u_{t} \tag{6}\\
& y_{t}=\frac{x_{t}^{2}}{20}+v_{t} \tag{7}
\end{align*}
$$

where $\phi=0.4$ is a frequency parameter (in rad/s), and u_{t} and v_{t} denote independent zero-mean univariate Gaussian r.v.'s with variance $\sigma_{u}^{2}=1$ and $\sigma_{v}^{2}=0.1 . M=100$ particles.

Conclusions and ongoing work

- APF has been used for a long time as an alternative to BPF
- in many scenarios it works better but unclear when it fails
- Novel advances in MIS allow for reinterpreting PFs
- adapting-sampling-weighting steps, instead of traditional prediction-update-resampling
- APF is derived and the approximations/assumptions are explicit
- We also propose an IAPF that yields for a better proposal than APF, and hence, better performance
- computationally expensive, but AIS techniques can be used to alleviate it
- Ongoing work for optimized (high-performance) yet efficient variants of APF: OAPF ${ }^{9}$
- This new interpretation paves the way for novel PFs but also for better understanding of the existing ones:
- it is now easier to interpret which filter is more appropriate in each scenario

[^5]Thank you for your attention!

[^0]: ${ }^{\mathbf{1}}$ E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 5840-5844.

[^1]: ${ }^{3}$ S. Sarkka. Bayesian Filtering and Smoothing. Ed. by Cambridge University Press. 3rd ed. 2013.
 ${ }^{4}$ D. Luengo et al. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: IEEE journal of biomedical and health informatics 23.1 (2018), pp. 143-155.

[^2]: ${ }^{\mathbf{5}} \mathrm{V}$. Elvira et al. "Generalized Multiple Importance Sampling". In: Statistical Science 34.1 (2019), pp. 129-155.
 ${ }^{6}$ V. Elvira et al. "Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling'. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 145-152.

[^3]: ${ }^{\mathbf{6}}$ Victor Elvira et al. "Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling'. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 145-152.

[^4]: ${ }^{7}$ V. Elvira et al. "In Search for Improved Auxiliary Particle Filters". In: Signal Processing Conference (EUSIPCO), 2018 Proceedings of the 26th European. IEEE. 2018, pp. 1-5.
 ${ }^{8}$ Elvira et al., "Generalized Multiple Importance Sampling".

[^5]: ${ }^{9}$ N. Branchini and V. Elvira. "Optimized auxiliary particle filters: adapting mixture proposals via convex optimization". In: Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 1289-1299.

