
1/47

Modeling, filtering, and graph discovery in
state-space models

Víctor Elvira
School of Mathematics
University of Edinburgh

Joint work with: M. F. Bugallo, N. Branchini,
E. Chouzenoux, P. M. Djuric, L. Martino

Bellairs Research Institute of McGill University, Barbados
December 14, 2021

2/47

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

3/47

Motivation

I A large class of problems in statistics, machine learning, and signal
processing requires sequential processing of observed data.

I Examples of applications:
I Geophysical systems (atmosphere, oceans)
I Robotics
I Target tracking, positioning, navigation
I Communications
I Biomedical signal processing
I Financial engineering
I Ecology

4/47

Inference in State-Space Models (SSM)

I Let us consider:
I a set of hidden states xt ∈ Rdx , t = 1, ..., T .
I a set of observations yt ∈ Rdy , t = 1, ..., T .

I A SSM is an underlying hidden process of xt that evolves and that,
partially and noisily, expresses itself through yt.

xt−1 xt xt+1

yt−1 yt yt+1

... ...

I Two ways or describing the system:
1. Deterministic notation:

I Hidden state → xt = g(xt−1,qt)
I Observations → yt = h(xt, rt)

where qt and rt are random noise vector (with known distributions of qt
and rt) and g(·) and h(·) are also known.

2. Probabilistic notation:
I Hidden state → p(xt|xt−1)
I Observations → p(yt|xt)

5/47

The estimation problem

I We sequentially observe observations yt related to the hidden state xt.
I At time t, we have accumulated t observations, y1:t ≡ {y1, ...,yt}.
I Interesting problems:

I Filtering: estimate current state x̂t given all observations y1:t
I State prediction: predict the future state x̂t+τ given y1:t (τ > 0)
I Obs. prediction: predict the future observation ŷt+τ given y1:t
I Better estimate a past state (aka smoothing): Estimate x̂t−τ given y1:t

(τ > 0)
I We want to do it sequentially and efficiently.

I At time t, we want to process only yt, but not reprocess all y1:t−1 (that
were already processed!)

6/47

Example
I There are two interrelated random processes, one is observed and one is

hidden.
I e.g.,stochastic volatility model, very common in financial engineering

xt = 0.999xt−1 + qt

yt = e
xt
2 rt,

I with qt ∼ N (0, 1) and rt ∼ N (0, 1)
I Goal: estimate the hidden xt given the observed y1:t

0 20 40 60 80 100 120 140 160 180 200

t

-20

0

20

40

x
t

hidden process (variance)

hidden state

0 20 40 60 80 100 120 140 160 180 200

t

-2

0

2

4

y
t

10
6 observable process (with variance related the hidden process)

observation

7/47

Example

I Consider the following stochastic volatility model, very common in
financial engineering

xt = 0.999xt−1 + qt

yt = e
xt
2 rt,

I with qt ∼ N (0, 1) and rt ∼ N (0, 1)
I Goal: estimate the hidden xt given the observed y1:t

0 20 40 60 80 100 120 140 160 180 200

t

-20

0

20

40

x
t

hidden process (variance)

hidden state

hidden state (estimator)

0 20 40 60 80 100 120 140 160 180 200

t

-2

0

2

4

y
t

10
6 observable process (with variance related the hidden process)

observation

8/47

The Probabilistic/Bayesian Approach

I Estimations are good, distributions are better
I Instead of a single value x̂t, we give a probability for any single possible

value of xt.

x̂t ⇒ p(xt|y1:t)

I Measure of certainty.
I The basic problems again (probabilistic version!)

I Filtering: p(xt|y1:t)
I State prediction: p(xt+τ |y1:t), τ ≥ 1
I Observation prediction: p(yt+τ |y1:t), τ ≥ 1
I Smoothing: p(xt−τ |y1:t), τ ≥ 1

I We will focus on the filtering problem

9/47

Bayesian Filtering

I Bayesian rule: if we want to infer all states x1:T ≡ {x1, ...,xT },

p(x1:T |y1:T) =
p(y1:T |x1:T)p(x1:T)

p(y1:T)

I If we want to infer just a particular state xt (smoothing): marginalization

p(xt|y1:T) =

∫
p(x1:T |y1:T)dx1dx2...dxt−1dxt+1...dxT

I Problems...
I Dimension: x1:T ∈ RT ·dx
I When we receive yt, we do not want to reprocess y1:t−1

efficient Bayesian sequential inference

10/47

Sequential Optimal Filtering

I Filtering Problem:
I Distribution of xt given all the obs. up to time t, p(xt|y1:t)
I Recursively from p(xt−1|y1:t−1) updating with the new yt

I Optimal filtering (at time t):
1. Prediction step:

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

2. Update step:

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

I Interest in integrals of the form: I(f) =
∫
f(xt)p(xt|y1:t)dxt

I e.g., the mean, I(f) =
∫

xtp(xt|y1:t)dxt
I Usually the posterior cannot be analytically computed!

11/47

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

12/47

The linear-Gaussian Model

I The linear-Gaussian model is arguably the most relevant SSM:
I Deterministic notation:

I Unobserved state → xt = Atxt−1 + qt
I Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
I Probabilistic notation:

I Hidden state → p(xt|xt−1) ≡ N (xt; Atxt−1,Qt)
I Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

I Kalman filter: obtains the filtering pdfs p(xt|y1:t), at each t
I Gaussian pdfs, with means and covariances matrices are calculated at each t
I Efficient processing of yt, obtaining p(xt|y1:t) from p(xt−1|y1:t−1)

(intermediate p(xt|y1:t−1) result)
I Rauch-Tung-Striebel (RTS) smoother: obtains the smoothing distribution
p(x1:T |y1:T), i.e., posterior of the whole trajectory
I requires a backwards reprocessing, refining the Kalman estimates

13/47

Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

I Suppose that filtered distribution at t− 1 is Gaussian
p(xt−1|y1:t−1) ≡ N (mt−1,Pt−1).

I Predictive distribution is also Gaussian p(xt|y1:t−1) ≡ N (m−t ,P
−
t)

I Mean: m−t = Atmt−1

I Variance: P−t = AtPt−1AT
t + Qt

I Interpretation:
I The mean is projected through matrix At

I The uncertainty is propagated too through At, plus the variance
of the process noise

14/47

Kalman Filter: update step

2. Update step (product of Gaussians):

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

I The filtered distribution at time t is also Gaussian p(xt|y1:t) ≡ N (mt,Pt)

I Mean: mt = m−t + Kt

(
yt −Htm

−
t

)
I Variance: Pt = (I −KtHt) P−t

where Kt = P−t H
T
t

(
HtP

−
t H

T
t + Rt

)−1 is the optimal Kalman gain.

I Interpretation:
I The mean is corrected w.r.t. the predictive in the direction of the

residual/error.
I The variance is propagated by Ht and divided by the covariance of

the residual/error.

15/47

Kalman summary and RTS smoother

Kalman filter
I Initialize: m0, P0

I For t = 1, . . . , T

Predict stage:
x−t = Atmt−1

P−t = AtPt−1A>t +Qt

Update stage:
zt = yt −Htx

−
t

St = HP−t H>t + Rt

Kt = P−t H>t S−1
t

mt = x−t + Ktzt
Pt = P−t −KtStK>t

RTS smoother
I For t = T, . . . , 1

Smoothing stage:
x−t+1 = Atmt

P−t+1 = AtPtA>t + Qt

Gt = PtA>t (P−t+1)−1

ms
t = mt + Gt(ms

t+1 − x−t+1)

Pst = Pt + Gt(Pst+1 −P−t+1)G>t

3 Filtering distribution: p(xt|y1:t) = N (xt; mt,Pt)

3 Smoothing distribution: p(xt|y1:T) = N (xt; m
s
t ,P

s
t)

7 How to proceed if some model parameters are unknown ?

16/47

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

17/47

I Recall the linear-Gaussian system:
I Unobserved state → xt = Atxt−1 + qt
I Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
I In practice, most of these parameters are unknown: At, Ht, Qt, Rt.

I A common assumption is that they are static, i.e., A, H, Q, R.

I The most challenging parameter to
estimate (but also interesting) is A:
I Graph discovery perspective: xt ∈ RNx

contains Nx unidimensional time-series,
each of them acquired in a node of a
graph (with Nx total nodes)

I The elements ai,j of A represents, the
linear effect of node j at time t− 1 in the
update of the signal of node i at time t:

xt,i =

Nx∑
j=1

ai,jxt−1,j + qt,i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

I GraphEM: An expectation-maximization (EM) method within Kalman
filters for the estimation of A (along with the hidden states).1

1E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 5840–5844.

18/47

GraphEM in a nutshell

• Goal: Find A∗ that maximizes p(A|y1:T) ∝ p(A)p(y1:T |A), i.e., the MAP
estimate of A

I Equivalent to minimizing ϕT (A) = − log p(A)− log p(y1:T |A).
I Challenge: evaluating p(y1:T |A) (or ϕT (A)) requires to run Kalman filter:

ϕT (A) = − log p(A)+

T∑
t=1

1

2
log |2πSt(A)|+ 1

2
zt(A)>St(A)−1zt(A) (1)

I Non tractable minimization.

• EM strategy: Minimize a sequence of tractable approximations of ϕT
satisfying a majorizing property.

• Lasso regularization (prior): In order to limit the degrees of freedom in the
parametric model, we choose the prior to promote a sparse matrix A.

(∀A ∈ RNx×Nx) − log p(A) ≡ ϕ0(A) = γ‖A‖1, γ > 0.

19/47

Expression of EM steps

• Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by
setting the state matrix to A′ and define

Σ =
1

T

T∑
t=1

Ps
t + ms

t (m
s
t)
>,

Φ =
1

T

T∑
t=1

Ps
t−1 + ms

t−1(ms
t−1)>

C =
1

T

T∑
t=1

Ps
tG
>
t−1 + ms

t (m
s
t−1)>.

Then, as a consequence of, we can build

Q(A; A′) =
T

2
tr
(
Q−1(Σ−CA> −AC> + AΦA>)

)
+ ϕ0(A) + C,

such that, for every A ∈ RNx×Nx :

Q(A; A′) ≥ ϕT (A), and Q(A′; A′) = ϕT (A′).

• Upper bound optimization (M-step): The M-step consists in searching for a
minimizer of Q(A; A′) with respect to A (A′ being fixed).

20/47

Computation of the M-step
• Minimization problem:

argminAQ(A; A′)︸ ︷︷ ︸
f(A)

= argminA
T

2
tr
(
Q−1(Σ−CA> −AC> + AΦA>)

)
︸ ︷︷ ︸

f1(A)=upper bound of −log (p(y1:T |A))

+ γ‖A‖1︸ ︷︷ ︸
f2(A)=− log p(A)

(prior)

I Convex non-smooth minimization problem

• Proximal splitting approach: The proximity operator of f : RNx×Nx → R is defined2

proxf (Ã) = argminA

(
f(A) +

1

2
‖A− Ã‖2F

)
.

Douglas-Rachford algorithm

I Set Z0 ∈ RNx×Nx and θ ∈ (0, 2).
I For n = 1, 2, . . .

An = proxθf2 (Zn)

Vn = proxθf1 (2An − Zn)

Zn+1 = Zn + θ(Vn −An)

3 {An}n∈N guaranteed to converge to a minimizer of Q(A; A′) = f1 + f2

3 Both involved proximity operators have closed form solution.
2P.L. Combettes and JC. Pesquet. “Proximal Splitting Methods in Signal Processing.”. In:

Fixed-Point Algorithms for Inverse Problems in Science and Engineering 49 (2011),
pp. 185–212.

21/47

GraphEM algorithm

GraphEM algorithm

I Initialization of A(0).
I For i = 1, 2, . . .

E-step Run the Kalman filter and RTS smoother by setting A′ := A(i−1) and
construct Q(A; A(i−1)).

M-step Update A(i) = argminA
(
Q(A; A(i−1))

)
using Douglas-Rachford

algorithm.

3 Flexible approach, valid as long as the proximity operator of f2 is available.

3 sound convergence properties of the EM algorithm
I monotonical decrease and convergence of {ϕT (A(i))}i∈N can be shown.

22/47

Data description and numerical settings

• Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1≤j≤b, so that Ny = Nx =

∑b
j=1 bj . We set T = 103,

Q = σ2
QId, R = σ2

RId, P0 = σ2
PId.

Dataset Nx (bj)1≤j≤b (σQ, σR, σP)

A 9 (3, 3, 3) (10−1, 10−1, 10−4)

B 9 (3, 3, 3) (1, 1, 10−4)

C 16 (3, 5, 5, 3) (10−1, 10−1, 10−4)

D 16 (3, 5, 5, 3) (1, 1, 10−4)

• GraphEM is compared with:
I Maximum likelihood EM (MLEM)3

I Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)4

3S. Sarkka. Bayesian Filtering and Smoothing. Ed. by Cambridge University Press. 3rd ed.
2013.

4D. Luengo et al. “Hierarchical algorithms for causality retrieval in atrial fibrillation
intracavitary electrograms”. In: IEEE journal of biomedical and health informatics 23.1 (2018),
pp. 143–155.

23/47

Experimental results

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

True graph (left) and GraphEM estimate (right) for dataset C.

24/47

Experimental results

method RMSE accur. prec. recall spec. F1

A

GraphEM 0.081 0.9104 0.9880 0.7407 0.9952 0.8463
MLEM 0.149 0.3333 0.3333 1 0 0.5
PGC - 0.8765 0.9474 0.6667 0.9815 0.7826
CGC - 0.8765 1 0.6293 1 0.7727

B

GraphEM 0.082 0.9113 0.9914 0.7407 0.9967 0.8477
MLEM 0.148 0.3333 0.3333 1 0 0.5
PGC - 0.8889 1 0.6667 1 0.8
CGC - 0.8889 1 0.6667 1 0.8

C

GraphEM 0.120 0.9231 0.9401 0.77 0.9785 0.8427
MLEM 0.238 0.2656 0.2656 1 0 0.4198
PGC - 0.9023 0.9778 0.6471 0.9949 0.7788
CGC - 0.8555 0.9697 0.4706 0.9949 0.6337

D

GraphEM 0.121 0.9247 0.9601 0.7547 0.9862 0.8421
MLEM 0.239 0.2656 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 0.9734 0.7627
CGC - 0.8477 0.9394 0.4559 0.9894 0.6139

25/47

Conclusions and ongoing work

I GraphEM algorithm:

X Interpretation of hidden states as a (causal) directed graph

X Lasso penalization to promote sparsity
I common in complex systems
I reduces the implicit dimension

X EM-based method with proximal splitting M-step
I sound convergence guarantees

X Good numerical performance compared to several techniques

I Ongoing work:
I Extension to enforce multiple properties on A

I stability, block sparsity, positivity/negativity/etc (physically driving),...
I requires a novel proximal-based method

I application to Earth observation
I Totally different approach for the same perspective on A:

I hierarchical algorithm with reversible jump MCMC on the sparsitiy levels of A

26/47

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

27/47

Beyond linear-Gaussian SSMs
I The world is not linear-Gaussian: Lorenz model (chaotic model)

I Continuous-time Lorenz model ⇒ discrete-time approximation
I Euler-Maruyama integration with integration step ∆ = 10−3

X1,t = X1,t−1 −∆s(X1,t−1 −X2,t−1) +
√

∆U1,t,

X2,t = X2,t−1 + ∆(rX1,t−1 −X2,t−1 −X1,t−1X3,t−1) +
√

∆U2,t,

X3,t = X3,t−1 + ∆(X1,t−1X2,t−1 − bX3,t−1) +
√

∆U3,t,

I {Ui,t}t=0,1,..., i = 1, 2, 3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.

I Markov model and also Gaussian, but still non-linear

28/47

Particle Filtering
I Recall the generic SSM:

I Hidden state model: → p(xt|xt−1)
I Observations model: → p(yt|xt)

I Same goal: Obtain the (now intractable) filtering distribution p(xt|y1:t)
through particle filtering (PF) which is based on importance sampling (IS):

I IS in a nutshell:
1. Sampling. x

(m)
t ∼ ψt(xt), m = 1, ...,M

I ψt(xt) is the proposal and is key for the performance

2. Weighting. w̃(m) =
p(x(m)|y1:t)

ψt(x(m))
, m = 1, ...,M ,

3. Normalize weights. w(n)
t = w̃(m)∑M

j=1 w̃
(j)

I The distribution of interest (filtering) is approximated as:

p(xt|y1:t) ≈ pM (xt|y1:t) =
m∑
m=1

w
(m)
t δ(xt − x

(m)
t)

∑N
n=1 w

(n)
t = 1

xt

29/47

The bootstrap PF (BPF)
I Bootstrap PF ≡ Sequential Importance Resampling (SIR) based on

importance sampling [Gordon, 1993]

(i) Initialization. At time t = 0, x̃
(m)
0 ∼ p(x0), m = 1, . . . ,M .

(ii) Recursive step. At time t,

1 Prediction (particles propagation): x
(m)
t ∼ p(xt|x̃(m)

t−1)

2 Update (weights calculation): compute the normalized weights as
w

(m)
t ∝ p(yt|x(m)

t)
3 Multinomial resampling at every time step:

I Set {x̃(m)
t }Mm=1 is formed by sampling M times with replacement

from the set {x(m)
t }Mm=1 with associated probabilities {w(m)

t }Mm=1
I equivalent to: simulate M i.i.d. samples from the approx. filtering

distribution

x̃
(m)
t ∼ pM (xt|y1:t) ≡

M∑
j=1

w
(j)
t δ(x− x

(j)
t)

I Output. The filtering distribution is now approximated as

p(xt|y1:t) ≈ pM (xt|y1:t) ≡
M∑
j=1

w
(j)
t δ(x− x

(j)
t)

(instead of having a Gaussian filtering distribution as in Kalman)

30/47

Bootstrap PF (BPF)

t− 1

t

3. Resampling
x5 x1 x2 x1 x3

1. Propagate
(predict)

x
(m)
t ∼ p(xt|x̃

(m)
t−1)

2. Weights calc.
(update)

w
(m)
t ∝ p(yt|x

(m)
t)

3. Resampling
x2 x1x1 x4 x4

x̃
(m)
t ∼

∑M
j=1 w

(j)
t δ(x− x

(j)
t)

31/47

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

32/47

Multiple importance sampling (MIS)

I Multiple importance sampling (MIS) is an extension of IS when several
proposals are available
I Very active topic, and recent works show that there exist many sampling

and weighting possibilities.5

I PFs are usually derived under the perspective of sampling trajectories, but
rarely under the perspective of one time-step ahead, analyzing what the
true proposal ψ(xt) and the consequences.

I We propose an alternative way of deriving existing PFs6 that
I offers new insights about the implicit assumptions
I helps to understand when you should use one or other PF
I allows to propose new high-performance PFs

5V. Elvira et al. “Generalized Multiple Importance Sampling”. In: Statistical Science 34.1
(2019), pp. 129–155.

6V. Elvira et al. “Elucidating the Auxiliary Particle Filter via Multiple Importance
Sampling”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 145–152.

33/47

A generic particle filtering from the MIS perspective

(i) Initialization. At time t = 0, x
(m)
0 ∼ p(x0), w(m)

0 = 1/M , m = 1, . . . ,M .
(ii) Recursive step. At time t > 0,

1 Proposal adaptation/selection. Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1),

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M.

3 Weighting. Compute the normalized IS weights by

w
(m)
t ∝

p(x
(m)
t |y1:t)

ψt(x
(m)
t)

∝
p(yt|x(m)

t)p(x
(m)
t |y1:t−1)

ψt(x
(m)
t)

≈
p(yt|x(m)

t)
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)

ψt(x
(m)
t)

=
p(yt|x(m)

t)
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

(j)
t p(x

(m)
t |x(j)

t−1)

(2)
I Two questions:6

1. Selection/adaptation of {λ(j)
t }Mj=1 to build ψt(xt)?

I Recall: IS is efficient when ψt(xt) is close to p(xt|y1:t)

2. Approximate w(m)
t in (2) to derive BPF and APF?

6Victor Elvira et al. “Elucidating the Auxiliary Particle Filter via Multiple Importance
Sampling”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 145–152.

34/47

BPF from the MIS perspective

(i) Initialization. At time t = 0, x
(m)
0 ∼ p(x0), and w(m)

0 = 1/M ,
m = 1, . . . ,M .

(ii) Recursive step. At time t > 0,
1 Proposal adaptation/selection. Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

w
(j)
t−1p(xt|x

(j)
t−1), (λ

(j)
t = w

(j)
t−1)

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M. (equiv. resampling+propagation)

3 Weighting. Compute the normalized IS weights by

w
(m)
t ∝

p(x
(m)
t |y1:t)

ψt(x
(m)
t)

∝
p(yt|x(m)

t)p(x
(m)
t |y1:t−1)

ψt(x
(m)
t)

≈
p(yt|x(m)

t)
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)

ψt(x
(m)
t)

=
p(yt|x(m)

t)
∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)

= p(yt|x(m)
t)

I Remark: the BPF matches just the prior of the numerator.

35/47

Toy example: BPF with M = 4 particles

-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.5

1

I predictive, p(xt|y1:t−1) =
∑M
j=1 w

(j)
t−1p(xt|x

(j)
t−1) with

wt−1 = [0.03, 0.16, 0.16, 0.65]

I BPF proposal, ψBPF
t (xt) =

∑M
j=1 λ

(j)
t p(xt|x(j)

t−1), with

λBPF
t = w

(m)
t−1 = [0.03, 0.16, 0.16, 0.65]

36/47

BPF from the MIS perspective

Propagation

Update

Resampling

t

Propagation

Resampling
t-1

t+1

Sampling	from	a	mixture

Weighting

Sampling	from	a	mixture

t

t+1

Traditional	particle	
filtering	perspective	

of	BPF

Multiple	importance	
sampling	(MIS)	

perspective	of	BPF

37/47

Auxiliary PF (APF)

I Proposed in [Pitt and Shephard, 1999] as an alternative to BPF of
[Gordon, 1993]
I APF improves sometimes the performance of BPF, but not always.

(i) Initialization. At time t = 0, x
(m)
0 ∼ p(x0), and w(m)

0 = 1/M ,
m = 1, . . . ,M .

(ii) Recursive step. At time t > 0,
1 Modify weights before resampling. Compute

x̄
(m)
t = E

p(xt|x
(m)
t−1)

[xt], m = 1, ...,M.

and the normalized weights (
∑M
m=1 λ

(m)
t = 1)

λ
(m)
t ∝ p(yt|x̄(m)

t)w
(m)
t−1 , m = 1, ...,M,

2 Delayed resampling. Select the indexes i(m) = j, with probability
proportional to λ(j)

t , m = 1, ...M

3 Prediction. x
(m)
t ∼ p(xt|x(i(m))

t−1), m = 1, ...,M .
4 Update. Compute the normalized weights as

w
(m)
t ∝

p(yt|x(m)
t)

p(yt|x̄(i(m))
t)

, m = 1, ...,M.

38/47

APF from the MIS perspective
(i) Initialization. At time t = 0, x

(m)
0 ∼ p(x0), and w(m)

0 = 1/M ,
m = 1, . . . ,M .

(ii) Recursive step. At time t > 0,
1 Proposal adaptation/selection. The weight of each kernel in the mixture

is amplified by the value of the likelihood at its center
x̄

(m)
t = E

p(xt|x
(m)
t−1)

[xt], i.e.,

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1), with λ
(j)
t ∝ p(yt|x̄(j)

t)w
(j)
t−1, j = 1, ...,M,

2 Sampling. Draw M i.i.d. samples from the mixture ψt(xt), i.e.,
a) Select the indexes i(m) = j, with probability ∝ λ(j)

t , m = 1, ...M

b) simulate x
(m)
t ∼ p(xt|x(i(m))

t−1), m = 1, ...M .
3 Weighting. Compute the normalized IS weights by

w
(m)
t ∝

p(x
(m)
t |y1:t)

ψt(x
(m)
t)

∝
p(yt|x

(m)
t)p(x

(m)
t |y1:t−1)∑M

j=1
λ

(j)
t−1

p(x
(m)
t |x(j)

t−1
)

≈
p(yt|x

(m)
t)

∑M
j=1 w

(j)
t−1

p(x
(m)
t |x(j)

t−1
)∑M

j=1
λ

(j)
t−1

p(x
(m)
t |x(j)

t−1
)

≈
p(yt|x

(m)
t)w

(i(m))
t−1

p(x
(m)
t |x(i(m))

t−1
)

λ
(i(m))
t p(x

(m)
t |x(i(m))

t−1
)

∝
p(yt|x

(m)
t)w

(i(m))
t−1

p(x
(m)
t |x(i(m))

t−1
)

p(yt|x̄
(i(m))
t)w

(i(m))
t−1

p(x
(m)
t |x(i(m))

t−1
)

=
p(yt|x

(m)
t)

p(yt|x̄
(i(m))
t)

I Remark:
I implicit assumption: kernels are far apart
I the APF re-weights the kernels of the prior amplifying them with the

likelihood (each of them, independently from the rest).

39/47

Toy example: APF with M = 4 particles

-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.02

0.04

0.06

I predictive, p(xt|y1:t−1) =
∑M
j=1 w

(j)
t−1p(xt|x

(j)
t−1) with

wt−1 = [0.03, 0.16, 0.16, 0.65]

I APF proposal, ψAPF
t (xt) =

∑M
j=1 λ

(j)
t p(xt|x(j)

t−1), with

λAPF
t = p(yt|x̄(m)

t)w
(m)
t−1 = [0.6713, 0.3221, 0.0065, 0.0001]

40/47

Auxiliary PF (APF) from the MIS perspective

Propagation

Update

t

Delayed	resampling

t+1

Sampling	from	a	mixture

Weighting

Proposal	selection

Sampling	from	a	mixture

Proposal	selection

t

t+1

Traditional	particle	
filtering	perspective	

of	APF

Multiple	importance	
sampling	(MIS)	

perspective	of	APF

Pre-weights	computation

Propagation

Delayed	resampling

Pre-weights	computation

41/47

Improved APF (IAPF)
I IAPF: Based on this MIS interpretation, we improve the APF7

I It is in the proposed generic MIS framework:
I The proposal is a mixture of the same predictive kernels as in BPF and

APF

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1)

with

λ
(j)
t ∝

p(yt|x̄(j)
t)

∑M
k=1 w

(k)
t−1p(x̄

(j)
t |x

(k)
t−1)∑M

k=1 p(x̄
(j)
t |x

(k)
t−1)

, j = 1, ...,M.

I Interpration:
I reconstruction of the target distribution p(xt|y1:t) (numerator) with a

mixture of kernels (denominator)8

I the “amplification” λ(j)
t of j-th kernel, takes into account where all other

kernels are placed (unlike APF)
I APF fails when the kernels have important overlap

I if kernels have few overlap, λ(j)
t ≈ p(yt|x̄(j)

t)w
(j)
t−1 (IAPF reduces to APF)

I IS with no extra approximation:

w
(m)
t =

p(yt|x
(m)
t)

∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

(j)
t−1p(x

(m)
t |x(j)

t−1)
m = 1, ...,M.

7V. Elvira et al. “In Search for Improved Auxiliary Particle Filters”. In: Signal Processing
Conference (EUSIPCO), 2018 Proceedings of the 26th European. IEEE. 2018, pp. 1–5.

8Elvira et al., “Generalized Multiple Importance Sampling”.

42/47

Toy example: IAPF with M = 4 particles

-10 -5 0 5 10

0

0.2

0.4

0.6

-10 -5 0 5 10

0

0.2

0.4

0.6

0.8

I predictive, p(xt|y1:t−1) =
∑M
j=1 w

(j)
t−1p(xt|x

(j)
t−1) with

wt−1 = [0.03, 0.16, 0.16, 0.65]

I IAPF proposal, ψIAPF
t (xt) =

∑M
j=1 λ

(j)
t p(xt|x(j)

t−1), with
λIAPF
t = [0.7657, 0.2276, 0.0066, 0.0001]

43/47

Summary: PF framework from MIS perspective
(i) Initialization. At time t = 0, x

(m)
0 ∼ p(x0), and w(m)

0 = 1/M ,
m = 1, . . . ,M .

(ii) Recursive step. At time t > 0,
1 Proposal adaptation/selection. Select the MIS proposal of the form

ψt(xt) =
M∑
j=1

λ
(j)
t p(xt|x(j)

t−1), with λ
(j)
t = ? (3)

2 Sampling. Draw samples according to

x
(m)
t ∼ ψt(xt), m = 1, ...,M. (4)

3 Weighting. Compute the normalized IS weights by

w
(m)
t = ? (5)

BPF APF IAPF

λ
(m)
t w

(m)
t−1 ∝ p(yt|x̄(m)

t)w
(m)
t−1 ∝

p(yt|x̄
(m)
t)

∑M
j=1 w

(j)
t−1p(x̄

(m)
t |x(j)

t−1)∑M
j=1 p(x̄

(m)
t |x(j)

t−1)

w
(m)
t ∝ p(yt|x(m)

t) ∝ p(yt|x
(m)
t)

p(yt|x̄
(im)
t)

∝ p(yt|x
(m)
t)

∑M
j=1 w

(j)
t−1p(x

(m)
t |x(j)

t−1)∑M
j=1 λ

(j)
t p(x

(m)
t |x(j)

t−1)

I In all PFs:

p(xt|y1:t) ≈
M∑
m=1

w
(n)
t δ

(
xt − x

(n)
t

)

44/47

Toy example: summary

-10 -5 0 5 10
0

0.2

0.4

0.6

-10 -5 0 5 10
0

0.02

0.04

0.06

-10 -5 0 5 10
0

0.2

0.4

0.6

-10 -5 0 5 10
0

0.5

1

-10 -5 0 5 10
0

0.2

0.4

0.6

-10 -5 0 5 10
0

0.02

0.04

0.06

-10 -5 0 5 10
0

0.2

0.4

0.6

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

45/47

Numerical result 1: channel estimation in wireless system

I We suppose a linear-Gaussian system described by

xt = Axt−1 + rt,

yt = h>t xt + rt,

I ht = [ht, ht−1, ..., ht−dx+1]>, last dx transmitted pilots, dt ∈ {−1,+1},
I A = 0.7I
I qt ∼ N (0,Q),Q = 5I
I rt ∼ N (0,R),R = 0.5

I we set T = 200 time steps and M = 100 particles

dx (dimension) 1 2 3 5 10
MSE (BPF) 0.0272 0.3762 0.9657 1.4705 2.9592
MSE (APF) 0.0709 0.8041 1.6041 2.2132 3.7187
MSE (IAPF) 0.0062 0.1764 0.5176 0.8041 2.6931

46/47

Numerical result 2: stochastic growth model

I We suppose a stochastic growth model

xt =
xt−1

2
+

25xt−1

1 + x2
t−1

+ 8 cos(φt) + ut, (6)

yt =
x2
t

20
+ vt, (7)

where φ = 0.4 is a frequency parameter (in rad/s), and ut and vt denote
independent zero-mean univariate Gaussian r.v.’s with variance σ2

u = 1 and
σ2
v = 0.1. M = 100 particles.

0 10 20 30 40 50 60 70 80 90 100

t

-20

-15

-10

-5

0

5

10

15

20

a
m

p
lit

u
d

e

Hidden state

True state
BFP
APF
IAPF

47/47

Conclusions and ongoing work

I APF has been used for a long time as an alternative to BPF
I in many scenarios it works better but unclear when it fails

I Novel advances in MIS allow for reinterpreting PFs
I adapting-sampling-weighting steps, instead of traditional

prediction-update-resampling
I APF is derived and the approximations/assumptions are explicit

I We also propose an IAPF that yields for a better proposal than APF, and
hence, better performance
I computationally expensive, but AIS techniques can be used to alleviate it

I Ongoing work for optimized (high-performance) yet efficient variants of
APF: OAPF9

I This new interpretation paves the way for novel PFs but also for better
understanding of the existing ones:
I it is now easier to interpret which filter is more appropriate in each scenario

9N. Branchini and V. Elvira. “Optimized auxiliary particle filters: adapting mixture
proposals via convex optimization”. In: Uncertainty in Artificial Intelligence. PMLR. 2021,
pp. 1289–1299.

47/47

Thank you for your attention!

	Plan
	Intro: State-space models (SSMs) and Bayesian filtering
	Part I: Linear-Gaussian model and Kalman filter
	Part I: GraphEM: Graph discovery in linear-Gaussian SSMs
	Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)
	Part II: PFs from the MIS perspective

