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Intro: State-space models (SSMs) and Bayesian filtering



Motivation

» A large class of problems in statistics, machine learning, and signal
processing requires sequential processing of observed data.
» Examples of applications:
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Geophysical systems (atmosphere, oceans)
Robotics

Target tracking, positioning, navigation
Communications

Biomedical signal processing

Financial engineering

Ecology



Inference in State-Space Models (SSM)

» Let us consider:
> a set of hidden states x; € R%, ¢t =1,...,T.
> a set of observations y; € R, t =1,...,T.

» A SSM is an underlying hidden process of x; that evolves and that,
partially and noisily, expresses itself through y:.

o @

» Two ways or describing the system:
1. Deterministic notation:
» Hidden state — x; = g(x¢—1,q¢)
» Observations — y; = h(x;, 1)
where q; and r; are random noise vector (with known distributions of q;
and r¢) and g(-) and h(-) are also known.
2. Probabilistic notation:
» Hidden state — p(x¢|x¢—1)
» Observations — p(y:|x¢)



The estimation problem

» We sequentially observe observations y: related to the hidden state x;.

» At time ¢, we have accumulated ¢ observations, y1.: = {y1,...,y:}.
» Interesting problems:
Filtering: estimate current state X; given all observations y.¢
State prediction: predict the future state X1, given y1.+ (7 > 0)
Obs. prediction: predict the future observation y+i, given y1.¢
Better estimate a past state (aka smoothing): Estimate X;—, given yi:¢
(r>0)
»> We want to do it sequentially and efficiently.
> At time ¢, we want to process only y¢, but not reprocess all y1.+—1 (that
were already processed!)

vvyyvyy



Example

» There are two interrelated random processes, one is observed and one is

hidden.

» e.g.,stochastic volatility model, very common in financial engineering

e = 0.999z¢ 1 4 q:
Tt
Yt = €271y,

> with ¢+ ~ AN(0,1) and r¢: ~ N(0,1)
» Goal: estimate the hidden z; given the observed .,
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Example
» Consider the following stochastic volatility model, very common in
financial engineering

Tt = 0.999It_1 + qt

-

@
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Y =

> with ¢; ~ N(0,1) and r; ~ N(0,1)
» Goal: estimate the hidden z; given the observed 1.,
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The Probabilistic/Bayesian Approach

» Estimations are good, distributions are better
> Instead of a single value X;, we give a probability for any single possible

value of x;.

7

Xt = p(xe|y1:e)

» Measure of certainty.

» The basic problems again (probabilistic version!)
> Filtering: p(x/|yi.+)
> State prediction: p(X¢+r|y1:¢), T>1
» Observation prediction: p(yi++|y1:t),
» Smoothing: p(xt—+|y1:t), T>1

» We will focus on the filtering problem

T>1



Bayesian Filtering

> Bayesian rule: if we want to infer all states x1.7 = {x1, ..., x7},

p(yrr|xur)p(x1:7)
p(yv.r)

p(X1:T\y1;T) =
> If we want to infer just a particular state x; (smoothing): marginalization
p(x¢|yrr) = /p(xLTIyl:T)dxldXQ...dxt,ldxtﬂ...de
» Problems...

» Dimension: x1.p € RT 4=
» When we receive y;, we do not want to reprocess y1:t—1

efficient Bayesian sequential inference ]




Sequential Optimal Filtering

» Filtering Problem:

» Distribution of x; given all the obs. up to time ¢, p(x¢|y1.¢)
» Recursively from p(x;—1|y1.c—1) updating with the new y;

> Optimal filtering (at time ¢):
1. Prediction step:

p(x¢t|y1:t—1) = /p(XtIth)p(thl [y1:6—1)dxs—1

2. Update step:
p(yelxe)p(xelyi:e—1)

p(ye|ly1:e—1)
> Interest in integrals of the form: I(f) = [ f(x¢)p(x:|y1.e)dx:

> e.g., the mean, I(f) = [x¢p(sci|yie)dxe
» Usually the posterior cannot be analytically computed!

p(Xtly1:¢) =
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Part I: Linear-Gaussian model and Kalman filter



The linear-Gaussian Model

» The linear-Gaussian model is arguably the most relevant SSM:
» Deterministic notation:
» Unobserved state & x; = Ayx¢—1 + Q¢
» Observations — yt = Hix¢ +r¢
where q; ~ N(0,Q¢) and ry ~ N (0, Ry).
» Probabilistic notation:
> Hidden state — p(x¢|xi—1) = N (x¢; Arxi—1, Qt)
» Observations — p(y¢|xt) = N(ye; Hixe, Re)
» Kalman filter: obtains the filtering pdfs p(x;|y1..), at each ¢
» Gaussian pdfs, with means and covariances matrices are calculated at each ¢
> Efficient processing of y¢, obtaining p(x|y1.:) from p(x:—1|y1:4—1)
(intermediate result)
» Rauch-Tung-Striebel (RTS) smoother: obtains the smoothing distribution

p(x1:7|y1:7), i.e., posterior of the whole trajectory
» requires a backwards reprocessing, refining the Kalman estimates



Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):
p(xe|y1:4-1) = /p(xt|xt71)77<xt—l‘y1:t—1>dxt—1

» Suppose that filtered distribution at ¢ — 1 is Gaussian
p(xi—1]y1:e-1) = N(my—1,Pi_1).
» Predictive distribution is also Gaussian p(x;|y1., 1) = N(m, , P, )
» Mean: m, = Aim;
» Variance: P, = AtPl,,lA? + Q:+

» Interpretation:
» The mean is projected through matrix A

» The uncertainty is propagated too through A, plus the variance
of the process noise




Kalman Filter: update step

2. Update step (product of Gaussians):

p(ye|xe)p(xe|y1e—1)
P(yelyr:e-1)

p(xe|y1e) =

» The filtered distribution at time ¢ is also Gaussian p(x¢|y1.+) = N (my, Py)

> Mean: m; =m, + K; <yt — H;m, )
» Variance: Py = (I — K:Hy) P,
where K; = P, H} (HtP, H + Rt)f1 is the optimal Kalman gain.

7

» Interpretation:

» The mean is corrected w.r.t. the predictive in the direction of the
residual /error.

> The variance is propagated by H; and divided by the covariance of
the residual/error.




Kalman summary and RTS smoother

Kalman filter RTS smoother

» |nitialize: mg, Py > Fort="T,...,1
» Fort=1,...,T Smoothing stage:
xt_+1 = Amy

X, =Am; Pt_+1 :AtP’A:_"Qt

P = AP, AT +Q Gi=PiA] (P )"
Update stage: m; =my + Ge(my ;| — %)

zt = yr — Hixy P} =P:+Gi(Pg;, — Pt_jq)c';r

S: =HP; H] + R,
K, =P, HS; '
m; = Xt_ +Ktzt
P, =P, —K{S:K,

v Filtering distribution: p(x¢|y1.+) = N (x:; my, Py)
v/ Smoothing distribution: p(x¢|y1.7) = N (x¢; m7, P$)
X How to proceed if some model parameters are unknown ?
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Part I: GraphEM: Graph discovery in linear-Gaussian SSMs



» Recall the linear-Gaussian system:

» Unobserved state — x¢ = Atx¢—1 + Q¢
» Observations — yir=Hixt + 1y

where q; ~ N(0,Q¢) and ry ~ N(0,Ry).
» In practice, most of these parameters are unknown: A;, H;, Q:, R:.
» A common assumption is that they are static, i.e.,, A, H, Q, R.

» The most challenging parameter to

estimate (but also interesting) is A: N .
> Graph discovery perspective: x; € RN=
contains N, unidimensional time-series, A\
each of them acquired in a node of a °12 o4
graph (with N, total nodes) LAY K
» The elements a; ; of A represents, the ol
linear effect of node j at time ¢t — 1 in the "4 A
update of the signal of node i at time ¢: i
N, A R
T = Z @i, jTt—1,5 + qt,i v N V4
j=1

» GraphEM: An expectation-maximization (EM) method within Kalman
filters for the estimation of A (along with the hidden states).!

LE. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: ICASSP 2020-2020 |EEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). |IEEE. 2020, pp. 5840-5844.



GraphEM in a nutshell

e Goal: Find A that maximizes p(Aly1.r) x p(A)p(y1.7|A), i.e., the MAP
estimate of A

» Equivalent to minimizing o7 (A) = —logp(A) — log p(y1.7|A).
» Challenge: evaluating p(y1.7|A) (or o7 (A)) requires to run Kalman filter:

pr(A) = Z log [27S¢( )I+%Zt(A)TSt(A)71Zt(A) (1)

» Non tractable minimization.

e EM strategy: Minimize a sequence of tractable approximations of o1
satisfying a majorizing property.

e Lasso regularization (prior): In order to limit the degrees of freedom in the
parametric model, we choose the prior to promote a sparse matrix A.

(VA e RY*Me)  —logp(A) = po(A) =7[|All;, 7 >0.



Expression of EM steps

e Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by
setting the state matrix to A’ and define

T
1 s s s
3 = T;Pf —l—mt(mt)—r,

T
1 S S S
P = T ;Pt—l + mt—l(mt—l)T
s
C= T ;PfGLl +mi(m;_,)".
Then, as a consequence of, we can build
an T -1 T T T
Q(A;A') = Etr Q (X-CA —AC +APA ) +eo(A)+C,
such that, for every A € RN=*Ne.
Q(A;A') > pr(A), and  Q(A;A') = pr(A').

e Upper bound optimization (M-step): The M-step consists in searching for a
minimizer of Q(A; A’) with respect to A (A’ being fixed).



Computation of the M-step

e Minimization problem:

T
argminy O(A; A’) = argminy —tr (Q—l(z —~CAT—ACT + A@AT)) +  AlAlL
——— 2

——
f2(A)=—logp(A)
(prior)

f(A) f1(A)=upper bound of —log (p(y1.7|A))

» Convex non-smooth minimization problem

o Proximal splitting approach: The proximity operator of f : RNzXNe 5 R is defined?

proxy (&) = argmina ((A) + 314~ Al )

Douglas-Rachford algorithm

> Set Zo € RN+*Nz and 0 € (0,2).
> Forn=1,2,...

A, = proxgy, (Zn)
Vi = proxgy, (2A, — Zy)
Zn+1 = Zn aF e(vn - An)

v {A, }nen guaranteed to converge to a minimizer of Q(A; A’) = f1 + fo
/ Both involved proximity operators have closed form solution.

2P.L. Combettes and JC. Pesquet. “Proximal Splitting Methods in Signal Processing.”. In:
Fixed-Point Algorithms for Inverse Problems in Science and Engineering 49 (2011),
pp. 185-212.




GraphEM algorithm

GraphEM algorithm

> Initialization of A(®).

> Fori=1,2,...

E-step Run the Kalman filter and RTS smoother by setting A’ := A1) and
construct Q(A; A1),

M-step Update A() = argmin, (Q(A; A(i=1)) using Douglas-Rachford
algorithm.

v/ Flexible approach, valid as long as the proximity operator of f> is available.

v/ sound convergence properties of the EM algorithm
> monotonical decrease and convergence of {p7(A())};cy can be shown.



Data description and numerical settings

e Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1<;<s, so that Ny = N, = Z?:I bj. We set T = 107,

Q =o3ld, R =0gld, Py = opld.

|

l Dataset “ Nz ‘ (bj)lgjgb ‘ (O’Q,O’R,Jp)
A 9 (3,3,3) [ (107110711079
B 9 (3,3,3) (1,1,107%)
C 16 | (3,5,5,3) | (10°1,1071,107%)
D 16 | (3,5,5,3) (1,1,107%)

e GraphEM is compared with:
> Maximum likelihood EM (MLEM)?
> Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)*

3S. Sarkka. Bayesian Filtering and Smoothing. Ed. by Cambridge University Press. 3rd ed.

2013.
4D. Luengo et al. “Hierarchical algorithms for causality retrieval in atrial fibrillation

intracavitary electrograms”. In: |EEE journal of biomedical and health informatics 23.1 (2018)

pp. 143-155.



Experimental results

True graph (left) and GraphEM estimate (right) for dataset C.



Experimental results

method RMSE | accur. prec. recall spec. F1
GraphEM 0.081 | 0.9104 | 0.9880 | 0.7407 | 0.9952 | 0.8463

A MLEM 0.149 | 0.3333 | 0.3333 1 0 0.5
PGC - 0.8765 | 0.9474 | 0.6667 | 0.9815 | 0.7826
CGC - 0.8765 1 0.6293 1 0.7727
GraphEM 0.082 | 0.9113 | 0.9914 | 0.7407 | 0.9967 | 0.8477

B MLEM 0.148 | 0.3333 | 0.3333 1 0 0.5

PGC - 0.8889 1 0.6667 1 0.8

CGC - 0.8889 1 0.6667 1 0.8
GraphEM 0.120 | 0.9231 | 0.9401 0.77 0.9785 | 0.8427
C MLEM 0.238 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.9023 | 0.9778 | 0.6471 | 0.9949 | 0.7788
CGC - 0.8555 | 0.9697 | 0.4706 | 0.9949 | 0.6337
GraphEM 0.121 0.9247 | 0.9601 | 0.7547 | 0.9862 | 0.8421
D MLEM 0.239 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 | 0.9734 | 0.7627
CGC - 0.8477 | 0.9394 | 0.4559 | 0.9894 | 0.6139




Conclusions and ongoing work

» GraphEM algorithm:

v Interpretation of hidden states as a (causal) directed graph

v Lasso penalization to promote sparsity

» common in complex systems
» reduces the implicit dimension

v EM-based method with proximal splitting M-step

» sound convergence guarantees

v Good numerical performance compared to several techniques

» Ongoing work:
> Extension to enforce multiple properties on A
> stability, block sparsity, positivity/negativity/etc (physically driving),...
> requires a novel proximal-based method

> application to Earth observation
> Totally different approach for the same perspective on A:

» hierarchical algorithm with reversible jump MCMC on the sparsitiy levels of A
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Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)



Beyond linear-Gaussian SSMs

» The world is not linear-Gaussian: Lorenz model (chaotic model)

» Continuous-time Lorenz model = discrete-time approximation
> Euler-Maruyama integration with integration step A = 1073

X1, = X1 —As(X1,1—Xoe 1)+ \/E(fu,
Xoy = Xou i +AX1,1 —Xoyo1 — Xa,01X35,01) —|—\/Z[,f2_/,
Xst = X311 +AXi 1 Xor 1 —bXs: 1)+ \/Zlf:z.r,

» {U; +}t=0,1,...., © = 1,2,3, are independent sequences of i.i.d. Gaussian
random variables with zero mean and unit variance.
» Markov model and also Gaussian, but still non-linear



Particle Filtering
» Recall the generic SSM:
» Hidden state model:
»> Observations model:  —  p(y:|x:)
> Same goal: Obtain the (now intractable) filtering distribution p(x¢|y1..)

through particle filtering (PF) which is based on importance sampling (1S):

—  p(x¢|xi—1)

N

» IS in a nutshell:
1. Sampling. xgm) ~(xt), m=1,...,. M
» 44 (x¢) is the proposal and is key for the performance
. . — _ /'[X“'” Yi:t) _
2. Weighting. @(™) = ENCR m=1,.., M,

3. Normalize weights. w," = %
» The distribution of interest (filtering) is approximated as:
m
p(xe|y1:e) = p™ (xe|y1:e) = Z w7 (xs — Xgm))
m=1

N
Xeoa & =1




The bootstrap PF (BPF)

> Bootstrap PF = Sequential Importance Resampling (SIR) based on
importance sampling [Gordon, 1993]

(i) Initialization. At time ¢ = 0, x(m) ~p(xo), m=1,..., M.

(ii) Recursive step. At time ¢,

1 Prediction (particles propagation): xg WS p(x¢ |x<m)

2 Update (weights calculation): compute the normalized weights as
o p(ye|x{™)
3 Multinomial resampling at every time step:
> Set {x(m)}m ; is formed by sampling M times with replacement

from the set {x(m)}M,1 with associated probabilities { M_
» equivalent to: simulate M i.i.d. samples from the approx. filtering

distribution
M

;}im) ~ 1;‘” (xt|y1:¢) = Z u:i'ﬂé(x — x;"]))

j=1

» OQutput. The filtering distribution is now approximated as
M

p(xilyre) = pM (xilyre) = > wi?5(x —xi)

Jj=1

(instead of having a Gaussian filtering distribution as in Kalman)



Bootstrap PF (BPF)

3. Resampling

1. Propagate
(predict)

(m
e

2™ ~ p(a|3

2. Weights calc.
(update)

wf’"') = p(yelz{™) l L
L R B B | XS

3. Resampling
2 x1 x1

_(m) M
Xy ~ i1

N o lx
41'5”0()(—)(7/1‘
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Part II: PFs from the MIS perspective



Multiple importance sampling (MIS)

» Multiple importance sampling (MIS) is an extension of IS when several
proposals are available
» Very active topic, and recent works show that there exist many sampling
and weighting possibilities.?
» PFs are usually derived under the perspective of sampling trajectories, but
rarely under the perspective of one time-step ahead, analyzing what the
true proposal 1(x;) and the consequences.

> We propose an alternative way of deriving existing PFs® that
> offers new insights about the implicit assumptions
» helps to understand when you should use one or other PF
» allows to propose new high-performance PFs

5V. Elvira et al. “Generalized Multiple Importance Sampling”. In: Statistical Science 34.1

(2019), pp. 129-155.
V. Elvira et al. “Elucidating the Auxiliary Particle Filter via Multiple Importance

Sampling”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 145-152.



A generic particle filtering from the MIS perspective

(i) Initialization. At time t =0, x{™ ~ p(xo), w{™ =1/M, m=1,..., M.
(i) Recursive step. At time ¢t > 0,
1 Proposal adaptation/selection. Select the MIS proposal of the form

wt xt Z)\(/) (jf)l)’
2 Sampling. Draw samples accofdihg to

™)~ ai(xe), m=1,.., M.
3 Weighting. Compute the normalized IS weights by

ey Py eyl x™)px™ [y 1)
’LUt X X

G (x{™) Ge(x™)
by M w?pee™ ) plyel ™) S w® p™ k)
Pe(x(™) M AT p™ )

()
» Two questions:®
1. Selection/adaptation of {)\U)}M 1 to build v (x¢)?

P Recall: IS is efficient when 1);(x:) is close to p(x;|y1./)

2. Approximate w<m) (2) to derive BPF and APF?

SVictor Elvira et al. “Elucidating the Auxiliary Particle Filter via Multiple Importance
Sampling”. In: IEEE Signal Processing Magazine 36.6 (2019), pp. 145-152.



BPF from the MIS perspective

(i) Initialization. At time ¢ = 0, x\™ ~ p(x¢), and w{™ =1/M,
m=1,...,M.
(i) Recursive step. At time ¢t > 0,
1 Proposal adaptation/selection. Select the MIS proposal of the form

vt = 32 ol ), O = w
j=1
2 Sampling. Draw samples according to
xgm) ~ Py (xt), m=1,.., M. (equiv. resampling+propagation)
3 Weighting. Compute the normalized IS weights by

W™ o (™ Iy i) o POt " )™ y1e-1)

G (x{™) Pe(x{™)
y ‘X('”) lelwgi) p(x<m)\x(J> ) B p(y ‘x('”)) Jf wEJJ p(x(m)lx(ﬂ) )
Pe(x™) SM ) p™x)

= p(yex™)

» Remark: the BPF matches just the prior of the numerator.



Toy example: BPF with M = 4 particles

0.6 T
- - likelihood, p(y:|z:)
- - predictive, p(z;|y14-1) "
0.4 |—kernel 1, wt(l)1 p(mﬁtwl) !
—kernel 2, w,”; 2 p(ztkﬂﬁ)l) /’
0.2H kernel 3, wt( )1 P(-Etl'LEJ—)l) 1/
—kernel 4, wr( ) p(z,|1£4,)1) /,

0 ‘
-10 5 0
Tt
BPF proposal, q(z:)
0.5F
0 L ! 4\A—
-10 5 0 5
x; )
> predictive, p(z¢|y1:c—1) = 3174 w? p(ai|zl?))) with
wy—1 = [0.03, 0.16, 0.16, 0. 65}
» BPF proposal, dzBPF(xt) = Ni )\(.i) ($t|x§j7)1), with

ABPF — (™) — [0.03, 0.16, 0.16, 0.65]




BPF from the MIS perspective

t-1

Resampling

Propagation

Update

Sampling from a mixture

Resampling

Weighting

t+1

Propagation

Sampling from a mixture t+1

36/47



Auxiliary PF (APF)

> Proposed in [Pitt and Shephard, 1999] as an alternative to BPF of

[Gordon, 1993]
» APF improves sometimes the performance of BPF, but not always.

(i) Initialization. At time ¢t =0, x\™ ~ p(x¢), and w{™ =1/M,
m=1,..., M.
(i) Recursive step. At time ¢ > 0,
1 Modify weights before resampling. Compute

(m) [Xt] m = 17'--7M-

=E
Pt
and the normalized weights (2%21 )\gm) =1)
A o plyels ™, m=1,..,M,

2 Delayed resampling. Select the indexes i(™) = j, with probability
proportional to )\(J) m=1,..M
(m)

(m)
3 Prediction. x; wp(xt|x(l )), m=1,.., M.
4 Update. Compute the normallzed weights as
(m)
wi™ o pye™) 1M

)

p(ytl )



APF from the MIS perspective

(i) Initialization At time t = 0, x{™ ~ p(x0), and w(™ = 1/M,
=1,..., M.
(i) Recurswe step At time t > 0,
1 Proposal adaptation/selection. The weight of each kernel in the mixture
is amplified by the value of the likelihood at its center

= B e el e

M
) = Z Ai/)p(xt|x§91)7 with Ai/) & 1)(yl,‘ )wijjlz .] = 17 "'7M7

2 Sampling. Draw M i.i.d. samples from the mixture ¥ (x¢), i.e.,
a) Select the indexes im = _] with probability o< )\(’), m=1,..M

b) simulate x{™) ~ p(xt|xt_1 ))) m=1,..M.

3 Weighting. Compute the normalized IS weights by

RGOS /'1x‘f”m\.vw./" o If(yr\x<m')>p(x<m)\y1 t—1) l’(y”x“m)z;'w (J) p(x(m)‘x(ﬂ )
t . F
v (e$™)) M) pee™ 1)) oM, Afgp<x§"‘>\x§’31>
m i(m) m),_(i(m) m i(m) m),_(i(m)
™ wf D™ ) pe e e 1)) plyell™
~ <m>~ ) )y ) GOy
AL el (D p(yi] Yl D pad™ )y

» Remark:
> implicit assumption: kernels are far apart
» the APF re-weights the kernels of the prior amplifying them with the
likelihood (each of them, independently from the rest).



Toy example: APF with M = 4 particles

0.6 T
- - likelihood, p(y:|z:)
- - predictive, p(z;|y14-1) "
0.4 |—kernel 1, wt(l)1 p(mﬁtwl) !
—kernel 2, w,”; @ p(zt|TE3)1) /’
0.2H kernel 3, wt( )1 P(Iz“gl) :/
—kernel 4, wr( ) p(z,|1£4,)1) /,
0 ; -
210 -5 0
Tt
0.06

— target, p z:\yu
APF proposal, q(z)

0.04 -
0.02 \

0
-10 -5

l’/
> predictive, p(zt|y1:t—1) = M —1 wi”lp(xﬂx?_)l) with

wy—1 = [0.03, 0.16, 0.16, 0. 65}
> APF proposal, Y/PF(z,) = jl\/il )xfj)p(a:tkcgi)l), with

AAPE — p(y ) )w!™) = [0.6713, 0.3221, 0.0065, 0.0001]




Auxiliary PF (APF) from the MIS perspective

—
Traditional particle
filtering perspective

of APF

A
Multiple importance
sampling (MIS)

perspective of APF

Pre-weights computation

Proposal selection

Delayed resampling

Propagation

Update

Sampling from a mixture

t+1

Pre-weights computation

Weighting

Delayed resampling

Proposal selection

Propagation

Sampling from a mixture
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Improved APF (IAPF)

> |IAPF: Based on this MIS interpretation, we improve the APF’
» |t is in the proposed generic MIS framework:
» The proposal is a mixture of the same predictive kernels as in BPF and

APF
M
= Z /\i'np(xt\xgjjl)
j=1
/\f‘j) ~ p(yil )Zk 1 w1 p( Ix; )7 G=1,.. M.

M e )

» Interpration:
> reconstruction of the target distribution p(x;|y1.;) (numerator) with a
mixture of kernels (denominator)®
» the “amplification” /\5” of j-th kernel, takes into account where all other

kernels are placed (unlike APF)
» APF fails when the kernels have important overlap

P if kernels have few overlap, )\51) =~ p(ye| )wijjl (IAPF reduces to APF)
» IS with no extra approximation:
(m) _ P(yy‘x(mn Z]Ni (J) p(x(m)‘ngjl -1 M
Wy~ = TM D pix (CDImEp m= :
i=1 Xt t—1

7V. Elvira et al. “In Search for Improved Auxiliary Particle Filters”. In: Signal Processing
Conference (EUSIPCO), 2018 Proceedings of the 26th European. |IEEE. 2018, pp. 1-5.
8Elvira et al., “Generalized Multiple Importance Sampling”.



Toy example: IAPF with M = 4 particles

0.6 y
- - likelihood, p(y:|z:)
- - predictive, p(z:|y1:t—1)
0.4 " —Kkernel 1, u/t(l)l P(ztkﬂgl—)l)
—kernel 2, w:( Jl p(Tt|T52J )
0.2H kernel 3, u/f )1 p(mIZEJ)l)
—kernel 4, w:()l p(Tt|Tt4J1)
o L
210 -5
0.8

—target, p(z|y1.)
06H IAPF proposal, g(z)

041
0.2+
0 ‘ ‘ o
-10 -5 0 5
Tt
> predictive, p(z¢|y1:t—1) = M - w(i)lp(az:ﬂzu> ) with

wy_1 = [0.03, 0.16, 0.16, 0. 65}

> IAPF proposal, $!APF(z;) = ZM /\<]>p(act|x(3) ), with
MAPF = [0.7657, 0.2276, 0.0066, 0.0001]




Summary: PF framework from MIS perspective
(i) Initialization. At time ¢ = 0, xJ™ ~ p(x¢), and w{™ =1/M,
m=1,...,M.
(ii) Recursive step. At time t > 0,
1 Proposal adaptation/selection. Select the MIS proposal of the form

M
Gelxe) = > M pealx),  with A =7 (3)
j=1
2 Sampling. Draw samples according to
(™~ 1y (x2), m=1,.., M. 4)
3 Weighting. Compute the normalized IS weights by
w™ =7 (5)

BPF APF IAPF
m) | pelx DS WD p D)
Jw 27 | YOI E)
S e D)
(m)> x p(y/\x(m)) . p(ytlx; ””)Zj\f (]) p(x(m)\xii)l)
p(yt| ) =M E’"iniﬁ)

N e Jep(ye

wi™ o< p(ye|x

» In all PFs:

(Xt |y1:e Z w(n)(5 ( xﬁ”))



Toy example: summary

06 -
- = likelihood, p(y|z;)
- - predictive, p(zi[yr1)
04— kernel 1, w’), - p(ar|z”))
—kernel 2, u,"’, plaia?y
02— Kernel 3 w3 - leyfal?)
—kernel 4, 0", - p(a|a’);
0
0 - 10
1 H—target, p(a:|yre) 1
BPF proposal, q(z)
05f 1
o .
0 5 10
0.06
—target, p(z:[yis)
APF proposal, ()
0.04 1
0.02 1

o .

05 . 10
0.4 1
02 1

o .

05 s 10




Numerical result 1: channel estimation in wireless system

» We suppose a linear-Gaussian system described by

Xt = Axy_1 + 1y,

Yt = htTXt + re,

h: = [ht,hz_l,...,ht_dz_,_l}—r, last d transmitted pilots, d; € {—1,+1},
A =0.71

qt NN(OvQ)7Q:5I

r: ~N(,R),R=0.5

» we set T = 200 time steps and M = 100 particles

vvyyy

|dx (dimension) | 1 | 2 | 3 [ 5 [ 10 |
MSE (BPF) 0.0272 |0.3762 |0.9657 |1.4705 |2.9592
MSE (APF) 0.0709 |0.8041 [1.6041 (2.2132 |3.7187
MSE (IAPF) |0.0062 (0.1764 [0.5176 |0.8041 |2.6931




Numerical result 2: stochastic growth model

» We suppose a stochastic growth model

Ti—1 25211

me= g+ T, + 8cos(¢t) + u, (6)
7

Ye =350 + v, (7)

where ¢ = 0.4 is a frequency parameter (in rad/s), and u; and v; denote
independent zero-mean univariate Gaussian r.v.’s with variance o2 = 1 and
02 =0.1. M = 100 particles.

Hidden state
—

—True state]
BFP

<-APF
EHIAPF

amplitude

0 10 20 30 40 50 = 60 70 80 90 100



Conclusions and ongoing work

» APF has been used for a long time as an alternative to BPF
» in many scenarios it works better but unclear when it fails
> Novel advances in MIS allow for reinterpreting PFs

> adapting-sampling-weighting steps, instead of traditional
prediction-update-resampling
» APF is derived and the approximations/assumptions are explicit

» We also propose an IAPF that yields for a better proposal than APF, and
hence, better performance

» computationally expensive, but AIS techniques can be used to alleviate it
» Ongoing work for optimized (high-performance) yet efficient variants of
APF: OAPF?

» This new interpretation paves the way for novel PFs but also for better
understanding of the existing ones:

> it is now easier to interpret which filter is more appropriate in each scenario

®N. Branchini and V. Elvira. “Optimized auxiliary particle filters: adapting mixture
proposals via convex optimization”. In: Uncertainty in Artificial Intelligence. PMLR. 2021,
pp. 1289-1209.



Thank you for your attention!
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