

Modeling, filtering, and graph discovery in state-space models

Víctor Elvira School of Mathematics University of Edinburgh

Joint work with: M. F. Bugallo, N. Branchini, E. Chouzenoux, P. M. Djuric, L. Martino

Bellairs Research Institute of McGill University, Barbados December 14, 2021

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

Motivation

- ► A large class of problems in statistics, machine learning, and signal processing requires sequential processing of observed data.
- Examples of **applications**:
 - Geophysical systems (atmosphere, oceans)
 - Robotics
 - Target tracking, positioning, navigation
 - Communications
 - Biomedical signal processing
 - Financial engineering
 - Ecology

Inference in State-Space Models (SSM)

Let us consider:

- a set of hidden states $\mathbf{x}_t \in \mathbb{R}^{d_x}$, t = 1, ..., T.
- a set of observations $\mathbf{y}_t \in \mathbb{R}^{d_y}$, t = 1, ..., T.
- A SSM is an underlying hidden process of x_t that evolves and that, partially and noisily, expresses itself through y_t.

Two ways or describing the system:

- 1. Deterministic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow \mathbf{x}_t = g(\mathbf{x}_{t-1}, \mathbf{q}_t)$
 - Observations \rightarrow $\mathbf{y}_t = h(\mathbf{x}_t, \mathbf{r}_t)$

where \mathbf{q}_t and \mathbf{r}_t are **random** noise vector (with known distributions of \mathbf{q}_t and \mathbf{r}_t) and $g(\cdot)$ and $h(\cdot)$ are also known.

- 2. Probabilistic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1})$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t)$

The estimation problem

- We sequentially observe observations y_t related to the hidden state x_t .
- At time t, we have accumulated t observations, $\mathbf{y}_{1:t} \equiv {\mathbf{y}_1, ..., \mathbf{y}_t}$.
- Interesting problems:
 - Filtering: estimate current state $\hat{\mathbf{x}}_t$ given all observations $\mathbf{y}_{1:t}$
 - State prediction: predict the future state $\hat{\mathbf{x}}_{t+\tau}$ given $\mathbf{y}_{1:t}$ ($\tau > 0$)
 - Obs. prediction: predict the future observation $\hat{\mathbf{y}}_{t+\tau}$ given $\mathbf{y}_{1:t}$
 - Better estimate a past state (aka smoothing): Estimate $\hat{\mathbf{x}}_{t-\tau}$ given $\mathbf{y}_{1:t}$ $(\tau > 0)$
- We want to do it sequentially and efficiently.
 - At time t, we want to process only y_t, but not reprocess all y_{1:t-1} (that were already processed!)

Example

There are two interrelated random processes, one is observed and one is hidden.

e.g.,stochastic volatility model, very common in financial engineering

$$\begin{aligned} x_t &= 0.999 x_{t-1} + q_t \\ y_t &= e^{\frac{x_t}{2}} r_t, \end{aligned}$$

▶ with q_t ~ N(0,1) and r_t ~ N(0,1)
 ▶ Goal: estimate the hidden x_t given the observed y_{1:t}

Example

 Consider the following stochastic volatility model, very common in financial engineering

$$\begin{aligned} x_t &= 0.999 x_{t-1} + q_t \\ y_t &= e^{\frac{x_t}{2}} r_t, \end{aligned}$$

• with
$$q_t \sim \mathcal{N}(0,1)$$
 and $r_t \sim \mathcal{N}(0,1)$

Goal: estimate the hidden x_t given the observed $y_{1:t}$

The Probabilistic/Bayesian Approach

Estimations are good, distributions are better

Instead of a single value x
_t, we give a probability for any single possible value of x_t.

 $\widehat{\mathbf{x}}_t \Rightarrow p(\mathbf{x}_t | y_{1:t})$

- Measure of certainty.
- The basic problems again (probabilistic version!)
 - Filtering: $p(\mathbf{x}_t | \mathbf{y}_{1:t})$
 - State prediction: $p(\mathbf{x}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
 - Observation prediction: $p(\mathbf{y}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
 - Smoothing: $p(\mathbf{x}_{t-\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
- We will focus on the filtering problem

Bayesian Filtering

• Bayesian rule: if we want to infer all states $\mathbf{x}_{1:T} \equiv {\mathbf{x}_1, ..., \mathbf{x}_T}$,

$$p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) = \frac{p(\mathbf{y}_{1:T}|\mathbf{x}_{1:T})p(\mathbf{x}_{1:T})}{p(\mathbf{y}_{1:T})}$$

• If we want to infer just a particular state \mathbf{x}_t (smoothing): marginalization

$$p(\mathbf{x}_t|\mathbf{y}_{1:T}) = \int p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) d\mathbf{x}_1 d\mathbf{x}_2 \dots d\mathbf{x}_{t-1} d\mathbf{x}_{t+1} \dots d\mathbf{x}_T$$

Problems...

- **Dimension**: $\mathbf{x}_{1:T} \in \mathbb{R}^{T \cdot d_x}$
- When we receive \mathbf{y}_t , we do not want to reprocess $\mathbf{y}_{1:t-1}$

efficient Bayesian sequential inference

Sequential Optimal Filtering

Filtering Problem:

- **b** Distribution of \mathbf{x}_t given all the obs. up to time t, $p(\mathbf{x}_t | \mathbf{y}_{1:t})$
- Recursively from $p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1})$ updating with the new \mathbf{y}_t
- Optimal filtering (at time t):
 - 1. Prediction step:

$$p(\mathbf{x}_t|\mathbf{y}_{1:t-1}) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1}$$

2. Update step:

$$p(\mathbf{x}_t|\mathbf{y}_{1:t}) = \frac{p(\mathbf{y}_t|\mathbf{x}_t)p(\mathbf{x}_t|\mathbf{y}_{1:t-1})}{p(\mathbf{y}_t|\mathbf{y}_{1:t-1})}$$

- ▶ Interest in integrals of the form: $I(f) = \int f(\mathbf{x}_t) p(\mathbf{x}_t | y_{1:t}) d\mathbf{x}_t$
 - e.g., the mean, $I(f) = \int \mathbf{x}_t p(\mathbf{x}_t | y_{1:t}) d\mathbf{x}_t$
 - Usually the posterior cannot be analytically computed!

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

The linear-Gaussian Model

The linear-Gaussian model is arguably the most relevant SSM:

- Deterministic notation:
 - Unobserved state $\rightarrow \mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
 - Observations \rightarrow $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$
 - where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.
- Probabilistic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \boldsymbol{H}_t \mathbf{x}_t, \mathbf{R}_t)$
- **Kalman filter**: obtains the filtering pdfs $p(\mathbf{x}_t | \mathbf{y}_{1:t})$, at each t
 - Gaussian pdfs, with means and covariances matrices are calculated at each t
 - Efficient processing of y_t , obtaining $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ from $p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1})$ (intermediate $p(\mathbf{x}_t | \mathbf{y}_{1:t-1})$ result)
- **Rauch-Tung-Striebel (RTS) smoother**: obtains the smoothing distribution $p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T})$, i.e., posterior of the whole trajectory
 - requires a backwards reprocessing, refining the Kalman estimates

Kalman Filter: prediction step

1. Prediction step (marginalization of Gaussian):

$$p(\mathbf{x}_t|\mathbf{y}_{1:t-1}) = \int p(\mathbf{x}_t|\mathbf{x}_{t-1}) p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}) d\mathbf{x}_{t-1}$$

- Suppose that filtered distribution at t 1 is Gaussian $p(\mathbf{x}_{t-1}|\mathbf{y}_{1:t-1}) \equiv \mathcal{N}(\mathbf{m}_{t-1}, \mathbf{P}_{t-1}).$
- ▶ Predictive distribution is also Gaussian $p(\mathbf{x}_t | \mathbf{y}_{1:t-1}) \equiv \mathcal{N}(\mathbf{m}_t^-, \mathbf{P}_t^-)$
 - $\blacktriangleright \text{ Mean: } \mathbf{m}_t^- = \mathbf{A}_t \mathbf{m}_{t-1}$
 - $\blacktriangleright \text{ Variance: } \mathbf{P}_t^- = \mathbf{A}_t \mathbf{P}_{t-1} \mathbf{A}_t^T + \mathbf{Q}_t$

Interpretation:

- The mean is projected through matrix \mathbf{A}_t
- The uncertainty is propagated too through A_t, plus the variance of the process noise

Kalman Filter: update step

2. Update step (product of Gaussians):

$$p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \frac{p(\mathbf{y}_t | \mathbf{x}_t) p(\mathbf{x}_t | \mathbf{y}_{1:t-1})}{p(\mathbf{y}_t | \mathbf{y}_{1:t-1})}$$

• The filtered distribution at time t is also Gaussian $p(\mathbf{x}_t | \mathbf{y}_{1:t}) \equiv \mathcal{N}(\mathbf{m}_t, \mathbf{P}_t)$

• Mean:
$$\mathbf{m}_t = \mathbf{m}_t^- + \mathbf{K}_t \left(\mathbf{y}_t - \mathbf{H}_t \mathbf{m}_t^- \right)$$

• Variance:
$$\mathbf{P}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}_t) \mathbf{P}_t^-$$

where $K_t = \mathbf{P}_t^{-} \mathbf{H}_t^T \left(\mathbf{H}_t \mathbf{P}_t^{-} \mathbf{H}_t^T + \mathbf{R}_t \right)^{-1}$ is the optimal Kalman gain.

Interpretation:

- The mean is corrected w.r.t. the predictive in the direction of the residual/error.
- The variance is propagated by H_t and divided by the covariance of the residual/error.

Kalman summary and RTS smoother

Kalman filter

- Initialize: m₀, P₀
- For t = 1,...,T Predict stage:

$$\mathbf{x}_t^- = \mathbf{A}_t \mathbf{m}_{t-1} \\ \mathbf{P}_t^- = \mathbf{A}_t \mathbf{P}_{t-1} \mathbf{A}_t^\top + \mathbf{Q}_t$$

Update stage:

$$\begin{aligned} \mathbf{z}_t &= \mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^\top \\ \mathbf{S}_t &= \mathbf{H} \mathbf{P}_t^\top \mathbf{H}_t^\top + \mathbf{R}_t \\ \mathbf{K}_t &= \mathbf{P}_t^\top \mathbf{H}_t^\top \mathbf{S}_t^{-1} \\ \mathbf{m}_t &= \mathbf{x}_t^\top + \mathbf{K}_t \mathbf{z}_t \\ \mathbf{P}_t &= \mathbf{P}_t^\top - \mathbf{K}_t \mathbf{S}_t \mathbf{K}_t^\top \end{aligned}$$

RTS smoother

For t = T,...,1 Smoothing stage:

$$\begin{aligned} \mathbf{x}_{t+1}^- &= \mathbf{A}_t \mathbf{m}_t \\ \mathbf{P}_{t+1}^- &= \mathbf{A}_t \mathbf{P}_t \mathbf{A}_t^\top + \mathbf{Q}_t \\ \mathbf{G}_t &= \mathbf{P}_t \mathbf{A}_t^\top (\mathbf{P}_{t+1}^-)^{-1} \\ \mathbf{m}_t^s &= \mathbf{m}_t + \mathbf{G}_t (\mathbf{m}_{t+1}^s - \mathbf{x}_{t+1}^-) \\ \mathbf{P}_t^s &= \mathbf{P}_t + \mathbf{G}_t (\mathbf{P}_{t+1}^s - \mathbf{P}_{t+1}^-) \mathbf{G}_t^\top \end{aligned}$$

- ✓ Filtering distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t, \mathbf{P}_t)$
- ✓ Smoothing distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:T}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t^s, \mathbf{P}_t^s)$
- X How to proceed if some model parameters are unknown ?

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

Recall the linear-Gaussian system:

- Unobserved state $\rightarrow \mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
- Observations \rightarrow $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$

where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.

- ln practice, most of these parameters are unknown: A_t , H_t , Q_t , R_t .
 - A common assumption is that they are static, i.e., A, H, Q, R.
- The most challenging parameter to estimate (but also interesting) is A:
 - Graph discovery perspective: $\mathbf{x}_t \in \mathbb{R}^{N_x}$ contains N_x unidimensional time-series, each of them acquired in a node of a graph (with N_x total nodes)
 - ▶ The elements $a_{i,j}$ of **A** represents, the linear effect of node *j* at time *t* − 1 in the update of the signal of node *i* at time *t*:

$$x_{t,i} = \sum_{j=1}^{N_x} a_{i,j} x_{t-1,j} + q_{t,i}$$

► GraphEM: An expectation-maximization (EM) method within Kalman filters for the estimation of A (along with the hidden states).¹

¹E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE. 2020, pp. 5840–5844.

GraphEM in a nutshell

• Goal: Find A* that maximizes $p(\mathbf{A}|\mathbf{y}_{1:T}) \propto p(\mathbf{A})p(\mathbf{y}_{1:T}|\mathbf{A})$, i.e., the MAP estimate of \mathbf{A}

- Equivalent to minimizing $\varphi_T(\mathbf{A}) = -\log p(\mathbf{A}) \log p(\mathbf{y}_{1:T}|\mathbf{A}).$
- **Challenge**: evaluating $p(\mathbf{y}_{1:T}|\mathbf{A})$ (or $\varphi_T(\mathbf{A})$) requires to run Kalman filter:

$$\varphi_T(\mathbf{A}) = -\log p(\mathbf{A}) + \sum_{t=1}^T \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A})^\top \mathbf{S}_t(\mathbf{A})^{-1} \mathbf{z}_t(\mathbf{A})$$
(1)

Non tractable minimization.

• EM strategy: Minimize a sequence of tractable approximations of φ_T satisfying a majorizing property.

• Lasso regularization (prior): In order to limit the degrees of freedom in the parametric model, we choose the prior to promote a sparse matrix A.

$$(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad -\log p(\mathbf{A}) \equiv \varphi_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0.$$

Expression of EM steps

 \bullet Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to ${\bf A}'$ and define

$$\begin{split} \boldsymbol{\Sigma} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t}^{s})^{\top}, \\ \boldsymbol{\Phi} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s} + \mathbf{m}_{t-1}^{s} (\mathbf{m}_{t-1}^{s})^{\top} \\ \mathbf{C} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t-1}^{s})^{\top}. \end{split}$$

Then, as a consequence of, we can build

$$\mathcal{Q}(\mathbf{A};\mathbf{A}') = rac{T}{2} \mathsf{tr} \left(\mathbf{Q}^{-1} (\mathbf{\Sigma} - \mathbf{C}\mathbf{A}^{ op} - \mathbf{A}\mathbf{C}^{ op} + \mathbf{A}\mathbf{\Phi}\mathbf{A}^{ op})
ight) + arphi_0(\mathbf{A}) + \mathcal{C},$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_x imes N_x}$:

$$\mathcal{Q}(\mathbf{A};\mathbf{A}') \geq \varphi_T(\mathbf{A}), \quad \text{and} \quad \mathcal{Q}(\mathbf{A}';\mathbf{A}') = \varphi_T(\mathbf{A}').$$

• Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $Q(\mathbf{A}; \mathbf{A}')$ with respect to \mathbf{A} (\mathbf{A}' being fixed).

Computation of the M-step

• Minimization problem:

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}(\mathbf{A}; \mathbf{A}')}_{f(\mathbf{A})} = \operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\boldsymbol{\Sigma} - \mathbf{C}\mathbf{A}^{\top} - \mathbf{A}\mathbf{C}^{\top} + \mathbf{A}\boldsymbol{\Phi}\mathbf{A}^{\top}) \right)}_{f_{1}(\mathbf{A}) = \operatorname{upper bound of} - \log \left(p(\mathbf{y}_{1:T} | \mathbf{A}) \right)} + \underbrace{\gamma \| \mathbf{A} \|_{1}}_{\substack{f_{2}(\mathbf{A}) = -\log p(\mathbf{A}) \\ (\operatorname{prior})}}$$

Convex non-smooth minimization problem

• Proximal splitting approach: The proximity operator of $f: \mathbb{R}^{N_x \times N_x} \to \mathbb{R}$ is defined²

$$\mathsf{prox}_f(\widetilde{\mathbf{A}}) = \mathsf{argmin}_{\mathbf{A}} \left(f(\mathbf{A}) + \frac{1}{2} \| \mathbf{A} - \widetilde{\mathbf{A}} \|_F^2 \right).$$

Douglas-Rachford algorithm

► Set
$$\mathbf{Z}_0 \in \mathbb{R}^{N_x \times N_x}$$
 and $\theta \in (0, 2)$.
► For $n = 1, 2, ...$
 $\mathbf{A}_n = \operatorname{prox}_{\theta f_2}(\mathbf{Z}_n)$
 $\mathbf{V}_n = \operatorname{prox}_{\theta f_1}(2\mathbf{A}_n - \mathbf{Z}_n)$
 $\mathbf{Z}_{n+1} = \mathbf{Z}_n + \theta(\mathbf{V}_n - \mathbf{A}_n)$

✓ $\{A_n\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $Q(A; A') = f_1 + f_2$

✓ Both involved proximity operators have closed form solution.

²P.L. Combettes and JC. Pesquet. "Proximal Splitting Methods in Signal Processing.". In: *Fixed-Point Algorithms for Inverse Problems in Science and Engineering* 49 (2011), pp. 185–212.

GraphEM algorithm

GraphEM algorithm

Initialization of A⁽⁰⁾.

• For
$$i = 1, 2, ...$$

E-step Run the Kalman filter and RTS smoother by setting $\mathbf{A}' := \mathbf{A}^{(i-1)}$ and construct $\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)})$.

M-step Update $\mathbf{A}^{(i)} = \operatorname{argmin}_{\mathbf{A}} \left(\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)}) \right)$ using Douglas-Rachford algorithm.

✓ Flexible approach, valid as long as the proximity operator of f_2 is available.

- $\checkmark\,$ sound convergence properties of the EM algorithm
 - monotonical decrease and convergence of $\{\varphi_T(\mathbf{A}^{(i)})\}_{i\in\mathbb{N}}$ can be shown.

Data description and numerical settings

• Four synthetic datasets with $\mathbf{H} = \mathbf{Id}$ and block-diagonal matrix \mathbf{A} , composed with b blocks of size $(b_j)_{1 \le j \le b}$, so that $N_y = N_x = \sum_{j=1}^{b} b_j$. We set $T = 10^3$, $\mathbf{Q} = \sigma_{\mathbf{Q}}^2 \mathbf{Id}$, $\mathbf{R} = \sigma_{\mathbf{R}}^2 \mathbf{Id}$, $\mathbf{P}_0 = \sigma_{\mathbf{P}}^2 \mathbf{Id}$.

Dataset	N_x	$(b_j)_{1 \le j \le b}$	$(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}})$
A	9	(3, 3, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$
В	9	(3, 3, 3)	$(1, 1, 10^{-4})$
С	16	(3, 5, 5, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$
D	16	(3, 5, 5, 3)	$(1, 1, 10^{-4})$

- GraphEM is compared with:
 - Maximum likelihood EM (MLEM)³
 - Granger-causality approaches: pairwise Granger Causality (PGC) and conditional Granger Causality (CGC)⁴

³S. Sarkka. *Bayesian Filtering and Smoothing*. Ed. by Cambridge University Press. 3rd ed. 2013.

⁴D. Luengo et al. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: *IEEE journal of biomedical and health informatics* 23.1 (2018), pp. 143–155.

Experimental results

True graph (left) and GraphEM estimate (right) for dataset C.

Experimental results

	method	RMSE	accur.	prec.	recall	spec.	F1
А	GraphEM	0.081	0.9104	0.9880	0.7407	0.9952	0.8463
	MLEM	0.149	0.3333	0.3333	1	0	0.5
	PGC	-	0.8765	0.9474	0.6667	0.9815	0.7826
	CGC	-	0.8765	1	0.6293	1	0.7727
В	GraphEM	0.082	0.9113	0.9914	0.7407	0.9967	0.8477
	MLEM	0.148	0.3333	0.3333	1	0	0.5
	PGC	-	0.8889	1	0.6667	1	0.8
	CGC	-	0.8889	1	0.6667	1	0.8
С	GraphEM	0.120	0.9231	0.9401	0.77	0.9785	0.8427
	MLEM	0.238	0.2656	0.2656	1	0	0.4198
	PGC	-	0.9023	0.9778	0.6471	0.9949	0.7788
	CGC	-	0.8555	0.9697	0.4706	0.9949	0.6337
D	GraphEM	0.121	0.9247	0.9601	0.7547	0.9862	0.8421
	MLEM	0.239	0.2656	0.2656	1	0	0.4198
	PGC	-	0.8906	0.9	0.6618	0.9734	0.7627
	CGC	-	0.8477	0.9394	0.4559	0.9894	0.6139

Conclusions and ongoing work

GraphEM algorithm:

- \checkmark Interpretation of hidden states as a (causal) directed graph
- \checkmark Lasso penalization to promote sparsity
 - common in complex systems
 - reduces the implicit dimension
- $\checkmark\,$ EM-based method with proximal splitting M-step
 - sound convergence guarantees

 \checkmark Good numerical performance compared to several techniques

Ongoing work:

- Extension to enforce multiple properties on A
 - stability, block sparsity, positivity/negativity/etc (physically driving),...
 - requires a novel proximal-based method
- application to Earth observation
- Totally different approach for the same perspective on A:

hierarchical algorithm with reversible jump MCMC on the sparsitiy levels of A

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

Beyond linear-Gaussian SSMs

The world is not linear-Gaussian: Lorenz model (chaotic model)

Continuous-time Lorenz model ⇒ discrete-time approximation

• Euler-Maruyama integration with integration step $\Delta = 10^{-3}$

$$\begin{aligned} X_{1,t} &= X_{1,t-1} - \Delta \mathbf{s} (X_{1,t-1} - X_{2,t-1}) + \sqrt{\Delta U_{1,t}}, \\ X_{2,t} &= X_{2,t-1} + \Delta (\mathbf{r} X_{1,t-1} - X_{2,t-1} - \mathbf{X}_{1,t-1} \mathbf{X}_{3,t-1}) + \sqrt{\Delta} U_{2,t}, \\ X_{3,t} &= X_{3,t-1} + \Delta (\mathbf{X}_{1,t-1} \mathbf{X}_{2,t-1} - \mathbf{b} X_{3,t-1}) + \sqrt{\Delta} U_{3,t}, \end{aligned}$$

- ▶ ${U_{i,t}}_{t=0,1,...,i}$ i = 1, 2, 3, are independent sequences of i.i.d. Gaussian random variables with zero mean and unit variance.
- Markov model and also Gaussian, but still non-linear

Particle Filtering

- Recall the generic SSM:
 - $\blacktriangleright \text{ Hidden state model:} \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1})$
 - Observations model: $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t)$
- Same goal: Obtain the (now intractable) filtering distribution p(x_t|y_{1:t}) through particle filtering (PF) which is based on importance sampling (IS):

The bootstrap PF (BPF)

Bootstrap PF ≡ Sequential Importance Resampling (SIR) based on importance sampling [Gordon, 1993]

(i) Initialization. At time
$$t = 0$$
, $\tilde{\mathbf{x}}_0^{(m)} \sim p(\mathbf{x}_0)$, $m = 1, \dots, M$.

- (ii) Recursive step. At time t,
 - 1 Prediction (particles propagation): $\mathbf{x}_t^{(m)} \sim p(\mathbf{x}_t | \tilde{\mathbf{x}}_{t-1}^{(m)})$
 - 2 **Update** (weights calculation): compute the normalized weights as $w_t^{(m)} \propto p(\mathbf{y}_t | \mathbf{x}_t^{(m)})$
 - 3 Multinomial resampling at every time step:
 - Set {\$\vec{x}_t^{(m)}\$} \mathcal{M}_{m=1}\$ is formed by sampling M times with replacement from the set {\$\vec{x}_t^{(m)}\$} \mathcal{M}_{m=1}\$ with associated probabilities {\$\vec{w}_t^{(m)}\$} \mathcal{M}_{m=1}\$
 - equivalent to: simulate M i.i.d. samples from the approx. filtering distribution

$$\tilde{\mathbf{x}}_{t}^{(m)} \sim p^{M}(\mathbf{x}_{t} | \mathbf{y}_{1:t}) \equiv \sum_{j=1}^{M} w_{t}^{(j)} \delta(\mathbf{x} - \mathbf{x}_{t}^{(j)})$$

Output. The filtering distribution is now approximated as

$$p(\mathbf{x}_t | \mathbf{y}_{1:t}) \approx p^M(\mathbf{x}_t | \mathbf{y}_{1:t}) \equiv \sum_{j=1}^M w_t^{(j)} \delta(\mathbf{x} - \mathbf{x}_t^{(j)})$$

(instead of having a Gaussian filtering distribution as in Kalman)

Bootstrap PF (BPF)

Outline

Intro: State-space models (SSMs) and Bayesian filtering

Part I: Linear-Gaussian model and Kalman filter

Part I: GraphEM: Graph discovery in linear-Gaussian SSMs

Part II: Beyond linear-Gaussian SSMs and particle filters (PFs)

Part II: PFs from the MIS perspective

Multiple importance sampling (MIS)

- Multiple importance sampling (MIS) is an extension of IS when several proposals are available
 - Very active topic, and recent works show that there exist many sampling and weighting possibilities.⁵
- PFs are usually derived under the perspective of sampling trajectories, but rarely under the perspective of one time-step ahead, analyzing what the true proposal \u03c6(x_t) and the consequences.
- We propose an alternative way of deriving existing PFs⁶ that
 - offers new insights about the implicit assumptions
 - helps to understand when you should use one or other PF
 - allows to propose new high-performance PFs

⁵V. Elvira et al. "Generalized Multiple Importance Sampling". In: *Statistical Science* 34.1 (2019), pp. 129–155.

⁶V. Elvira et al. "Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling". In: *IEEE Signal Processing Magazine* 36.6 (2019), pp. 145–152.

A generic particle filtering from the MIS perspective

- (i) Initialization. At time t = 0, $\mathbf{x}_0^{(m)} \sim p(\mathbf{x}_0)$, $w_0^{(m)} = 1/M$, m = 1, ..., M.
- (ii) Recursive step. At time t > 0,
 - 1~ Proposal adaptation/selection. Select the MIS proposal of the form

$$\psi_t(\mathbf{x}_t) = \sum_{i=1}^M \lambda_t^{(j)} p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(j)}),$$

2 Sampling. Draw samples accolding to

$$\mathbf{x}_t^{(m)} \sim \psi_t(\mathbf{x}_t), \qquad m = 1, ..., M.$$

3 Weighting. Compute the normalized IS weights by

$$\begin{split} w_t^{(m)} &\propto \frac{p(\mathbf{x}_t^{(m)}|\mathbf{y}_{1:t})}{\psi_t(\mathbf{x}_t^{(m)})} \propto \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})p(\mathbf{x}_t^{(m)}|\mathbf{y}_{1:t-1})}{\psi_t(\mathbf{x}_t^{(m)})} \\ &\approx \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})\sum_{j=1}^M w_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})}{\psi_t(\mathbf{x}_t^{(m)})} = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})\sum_{j=1}^M w_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^M \lambda_t^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})} \end{split}$$
(2)

► Two questions:⁶

1. Selection/adaptation of $\{\lambda_t^{(j)}\}_{j=1}^M$ to build $\psi_t(\mathbf{x}_t)$?

Recall: IS is efficient when $\psi_t(\mathbf{x}_t)$ is *close* to $p(\mathbf{x}_t|\mathbf{y}_{1:t})$

2. Approximate $w_t^{(m)}$ in (2) to derive BPF and APF?

⁶Victor Elvira et al. "Elucidating the Auxiliary Particle Filter via Multiple Importance Sampling". In: *IEEE Signal Processing Magazine* 36.6 (2019), pp. 145–152.

BPF from the MIS perspective

- (i) Initialization. At time t = 0, $\mathbf{x}_0^{(m)} \sim p(\mathbf{x}_0)$, and $w_0^{(m)} = 1/M$, $m = 1, \dots, M$.
- (ii) Recursive step. At time t > 0,
 - 1 Proposal adaptation/selection. Select the MIS proposal of the form

$$\psi_t(\mathbf{x}_t) = \sum_{j=1}^M w_{t-1}^{(j)} p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(j)}), \qquad (\lambda_t^{(j)} = w_{t-1}^{(j)})$$

- 2 Sampling. Draw samples according to
 - $\mathbf{x}_t^{(m)} \sim \psi_t(\mathbf{x}_t), \qquad m = 1, ..., M.$ (equiv. resampling+propagation)
- 3 Weighting. Compute the normalized IS weights by

$$\begin{split} & w_t^{(m)} \propto \frac{p(\mathbf{x}_t^{(m)}|\mathbf{y}_{1:t})}{\psi_t(\mathbf{x}_t^{(m)})} \propto \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})p(\mathbf{x}_t^{(m)}|\mathbf{y}_{1:t-1})}{\psi_t(\mathbf{x}_t^{(m)})} \\ & \approx \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})\sum_{j=1}^M w_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})}{\psi_t(\mathbf{x}_t^{(m)})} = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})\sum_{j=1}^M w_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^M w_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})} \\ & = p(\mathbf{y}_t|\mathbf{x}_t^{(m)}) \end{split}$$

Remark: the BPF matches just the prior of the numerator.

Toy example: BPF with M = 4 particles

BPF from the MIS perspective

Auxiliary PF (APF)

 Proposed in [Pitt and Shephard, 1999] as an alternative to BPF of [Gordon, 1993]

APF improves sometimes the performance of BPF, but not always.

- (i) Initialization. At time t = 0, $\mathbf{x}_0^{(m)} \sim p(\mathbf{x}_0)$, and $w_0^{(m)} = 1/M$, $m = 1, \dots, M$.
- (ii) Recursive step. At time t > 0,
 - 1 Modify weights before resampling. Compute

$$\bar{\mathbf{x}}_t^{(m)} = \mathbb{E}_{p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(m)})}[\mathbf{x}_t], \qquad m = 1, \dots, M.$$

and the normalized weights ($\sum_{m=1}^M \lambda_t^{(m)} = 1$)

$$\lambda_t^{(m)} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{(m)}) w_{t-1}^{(m)}, \qquad m = 1, ..., M,$$

- 2 Delayed resampling. Select the indexes $i^{(m)} = j$, with probability proportional to $\lambda_t^{(j)}$, m = 1, ...M
- 3 Prediction. $\mathbf{x}_{t}^{(m)} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{(i^{(m)})}), \quad m = 1, ..., M.$
- 4 Update. Compute the normalized weights as

$$w_t^{(m)} \propto \frac{p(\mathbf{y}_t | \mathbf{x}_t^{(m)})}{p(\mathbf{y}_t | \mathbf{x}_t^{(i(m))})}, \qquad m = 1, ..., M.$$

APF from the MIS perspective

- (i) Initialization. At time t = 0, $\mathbf{x}_0^{(m)} \sim p(\mathbf{x}_0)$, and $w_0^{(m)} = 1/M$, $m = 1, \dots, M$.
- (ii) Recursive step. At time t > 0,
 - 1 **Proposal adaptation/selection.** The weight of each kernel in the mixture is amplified by the value of the likelihood at its center

$$ar{\mathbf{x}}_{t}^{(m)} = \mathbb{E}_{p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{(m)})}[\mathbf{x}_{t}]$$
, i.e.,

$$\psi_t(\mathbf{x}_t) = \sum_{j=1}^M \lambda_t^{(j)} p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(j)}), \quad \text{with} \quad \lambda_t^{(j)} \propto p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{(j)}) w_{t-1}^{(j)}, \quad j = 1, ..., M,$$

2 **Sampling.** Draw M i.i.d. samples from the mixture $\psi_t(\mathbf{x}_t)$, i.e.,

- a) Select the indexes $i^{(m)}=j,$ with probability $\propto\lambda_t^{(j)},~m=1,...M$
- b) simulate $\mathbf{x}_{t}^{(m)} \sim p(\mathbf{x}_{t} | \mathbf{x}_{t-1}^{(i^{(m)})}), \qquad m = 1, ...M.$
- 3 Weighting. Compute the normalized IS weights by

$$\begin{split} & w_t^{(m)} \propto \frac{p(\mathbf{x}_t^{(m)}|\mathbf{y}_{1:t})}{\psi_t(\mathbf{x}_t^{(m)})} \propto \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})p(\mathbf{x}_t^{(m)}|\mathbf{y}_{1:t-1})}{\sum_{j=1}^M \lambda_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})} \approx \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})\sum_{j=1}^M w_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^M \lambda_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})} \approx \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})\sum_{j=1}^M \lambda_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^M \lambda_{t-1}^{(j)}p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(j)})} \approx \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})w_{t-1}^{(i(m)})p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(i(m)})}}{p(\mathbf{y}_t|\mathbf{x}_t^{(i(m)}))w_{t-1}^{(i(m)})p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(i(m)}))}} = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(i(m)})})} \\ & = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})} \approx \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})w_{t-1}^{(i(m)})p(\mathbf{x}_t^{(m)}|\mathbf{x}_{t-1}^{(i(m)}))}}{p(\mathbf{y}_t|\mathbf{x}_t^{(i(m)})})} = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(i(m)})})} \\ & = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})} = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}} \\ & = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})} = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})} \\ & = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{x}_t|\mathbf{x}_t^{(m)})} \\ & = \frac{p(\mathbf{y}_t|\mathbf{x}_t^{(m)})}{p(\mathbf{x}_$$

- Remark:
 - implicit assumption: kernels are far apart
 - the APF re-weights the kernels of the prior amplifying them with the likelihood (each of them, independently from the rest).

Toy example: APF with M = 4 particles

Auxiliary PF (APF) from the MIS perspective

Improved APF (IAPF)

- ▶ IAPF: Based on this MIS interpretation, we improve the APF⁷
- It is in the proposed generic MIS framework:
 - The proposal is a mixture of the same predictive kernels as in BPF and APF

$$\psi_t(\mathbf{x}_t) = \sum_{j=1}^M \lambda_t^{(j)} p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(j)})$$

with

$$\lambda_t^{(j)} \propto \frac{p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{(j)}) \sum_{k=1}^M w_{t-1}^{(k)} p(\bar{\mathbf{x}}_t^{(j)} | \mathbf{x}_{t-1}^{(k)})}{\sum_{k=1}^M p(\bar{\mathbf{x}}_t^{(j)} | \mathbf{x}_{t-1}^{(k)})}, \qquad j = 1, ..., M.$$

Interpration:

- ▶ reconstruction of the target distribution $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ (numerator) with a mixture of kernels (denominator)⁸
- the "amplification" $\lambda_t^{(j)}$ of *j*-th kernel, takes into account where all other kernels are placed (unlike APF)
- APF fails when the kernels have important overlap

▶ if kernels have few overlap, $\lambda_t^{(j)} \approx p(\mathbf{y}_t | \bar{\mathbf{x}}_t^{(j)}) w_{t-1}^{(j)}$ (IAPF reduces to APF)

IS with no extra approximation:

$$w_t^{(m)} = \frac{p(\mathbf{y}_t | \mathbf{x}_t^{(m)}) \sum_{j=1}^{M} w_{t-1}^{(j)} p(\mathbf{x}_t^{(m)} | \mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^{M} \lambda_{t-1}^{(j)} p(\mathbf{x}_t^{(m)} | \mathbf{x}_{t-1}^{(j)})} \qquad m = 1, ..., M.$$

⁷V. Elvira et al. "In Search for Improved Auxiliary Particle Filters". In: Signal Processing Conference (EUSIPCO), 2018 Proceedings of the 26th European. IEEE. 2018, pp. 1–5. ⁸Elvira et al., "Generalized Multiple Importance Sampling".

Toy example: IAPF with M = 4 particles

Summary: PF framework from MIS perspective

- (i) Initialization. At time t = 0, $\mathbf{x}_0^{(m)} \sim p(\mathbf{x}_0)$, and $w_0^{(m)} = 1/M$, $m = 1, \dots, M$.
- (ii) Recursive step. At time t > 0,
 - 1~ Proposal adaptation/selection. Select the MIS proposal of the form

$$\psi_t(\mathbf{x}_t) = \sum_{j=1}^M \lambda_t^{(j)} p(\mathbf{x}_t | \mathbf{x}_{t-1}^{(j)}), \quad \text{with} \quad \lambda_t^{(j)} = ?$$
(3)

2 Sampling. Draw samples according to

$$\mathbf{x}_t^{(m)} \sim \psi_t(\mathbf{x}_t), \qquad m = 1, \dots, M.$$
(4)

3 Weighting. Compute the normalized IS weights by

$$w_t^{(m)} = ? \tag{5}$$

	BPF	APF	IAPF
$\lambda_t^{(m)}$	$w_{t-1}^{(m)}$	$\propto p(\mathbf{y}_t \mathbf{\bar{x}}_t^{(m)})w_{t-1}^{(m)}$	$\propto \frac{p(\mathbf{y}_t \bar{\mathbf{x}}_t^{(m)}) \sum_{j=1}^{M} w_{t-1}^{(j)} p(\bar{\mathbf{x}}_t^{(m)} \mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^{M} p(\bar{\mathbf{x}}_t^{(m)} \mathbf{x}_{t-1}^{(j)})}$
$w_t^{(m)}$	$\propto p(\mathbf{y}_t \mathbf{x}_t^{(m)})$	$\propto \frac{p(\mathbf{y}_t \mathbf{x}_t^{(m)})}{p(\mathbf{y}_t \bar{\mathbf{x}}_t^{(i^m)})}$	$\propto \frac{p(\mathbf{y}_{t} \mathbf{x}_{t}^{(m)})\sum_{j=1}^{M} w_{t-1}^{(j)} p(\mathbf{x}_{t}^{(m)} \mathbf{x}_{t-1}^{(j)})}{\sum_{j=1}^{M} \lambda_{t}^{(j)} p(\mathbf{x}_{t}^{(m)} \mathbf{x}_{t-1}^{(j)})}$

In all PFs:

$$p(\mathbf{x}_t | \mathbf{y}_{1:t}) \approx \sum_{m=1}^{M} w_t^{(n)} \delta\left(\mathbf{x}_t - \mathbf{x}_t^{(n)}\right)$$

Toy example: summary

Numerical result 1: channel estimation in wireless system

We suppose a linear-Gaussian system described by

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{r}_t,$$
$$y_t = \mathbf{h}_t^\top \mathbf{x}_t + \mathbf{r}_t,$$

▶
$$\mathbf{h}_t = [h_t, h_{t-1}, ..., h_{t-d_x+1}]^\top$$
, last d_x transmitted pilots, $d_t \in \{-1, +1\}$,
▶ $\mathbf{A} = 0.7\mathbf{I}$
▶ $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}), \mathbf{Q} = 5\mathbf{I}$
▶ $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}), \mathbf{R} = 0.5$

• we set T = 200 time steps and M = 100 particles

d_x (dimension)	1	2	3	5	10
MSE (BPF)	0.0272	0.3762	0.9657	1.4705	2.9592
MSE (APF)	0.0709	0.8041	1.6041	2.2132	3.7187
MSE (IAPF)	0.0062	0.1764	0.5176	0.8041	2.6931

Numerical result 2: stochastic growth model

We suppose a stochastic growth model

$$x_t = \frac{x_{t-1}}{2} + \frac{25x_{t-1}}{1+x_{t-1}^2} + 8\cos(\phi t) + u_t,$$
(6)

$$y_t = \frac{x_t^2}{20} + v_t,$$
 (7)

where $\phi = 0.4$ is a frequency parameter (in rad/s), and u_t and v_t denote independent zero-mean univariate Gaussian r.v.'s with variance $\sigma_u^2 = 1$ and $\sigma_v^2 = 0.1$. M = 100 particles.

Conclusions and ongoing work

APF has been used for a long time as an alternative to BPF

- in many scenarios it works better but unclear when it fails
- Novel advances in MIS allow for reinterpreting PFs
 - adapting-sampling-weighting steps, instead of traditional prediction-update-resampling
 - APF is derived and the approximations/assumptions are explicit
- We also propose an IAPF that yields for a better proposal than APF, and hence, better performance

computationally expensive, but AIS techniques can be used to alleviate it

- Ongoing work for optimized (high-performance) yet efficient variants of APF: OAPF⁹
- This new interpretation paves the way for novel PFs but also for better understanding of the existing ones:
 - it is now easier to interpret which filter is more appropriate in each scenario

⁹N. Branchini and V. Elvira. "Optimized auxiliary particle filters: adapting mixture proposals via convex optimization". In: *Uncertainty in Artificial Intelligence*. PMLR. 2021, pp. 1289–1299.

Thank you for your attention!