
Machine Intelligence on Graphs

Danilo Mandic

Imperial College London, UK

Ackn: Ljubisa Stankovic, Milos Dakovic, Bruno Scalso Dees,
Shengxi Li, Yao Lei Xu

December 16, 2021



Lecture Outline

1 Introduction and relevance
2 Problem statement: An ollustrative example
3 Building a graph from signal measurements
4 System on a graph and graph filtering
5 Graph clustering
6 Dimensionality reduction through graphs
7 Graphs and tensors
8 Graphs for finance
9 Multi-graph tensor network (MGTN)

10 Graph cuts for portfolio managament
11 Graphs for public transportation planning and analysis

Danilo Mandic Imperial College London, UK Ackn: Ljubisa Stankovic, Milos Dakovic, Bruno Scalso Dees, Shengxi Li, Yao Lei XuData Analytics on Graphs: A New Paradigm in Machine Intelligence December 16, 2021 2 / 49



Graph Data Analytics at Imperial College

• Beginnings of Graph Theory 
at EEE Department, Imperial 
College London. 

• Graphs were taught 
within 
Communication 
Networks and in 
Business School.

• In the early days, the main 
goal was to optimize the 
graphs themselves, rather 
than signals on graphs! Fast
forward 40 years, we are in a 
position to optimize  both the 
graphs and the graph signals!
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Graph basics

Danilo Mandic Imperial College London, UK Ackn: Ljubisa Stankovic, Milos Dakovic, Bruno Scalso Dees, Shengxi Li, Yao Lei XuData Analytics on Graphs: A New Paradigm in Machine Intelligence December 16, 2021 4 / 49



Modern Applications: Graphs for recommender
systems
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The adjacency matrix from the previous slide describes our search for a
holiday destination!
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Graph operators
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An Illustrative Example

Consider a multi-sensor setup for measuring a temperature field in a
known geographical region. The temperature sensing locations are
chosen according to the significance of a particular geographic area to
local users, with N = 64 sensing points in total.
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An Illustrative Example

Classical Data Analytics requires an arrangement of the
quintessentially spatial temperature samples into a linear structure

“Lexicographic" ordering is not amenable to exploiting the spatial
information related to the actual sensor arrangement, dictated by
the terrain.

This exemplifies that even a most routine temperature
measurement setup requires a more complex estimation structure
than the simple linear one corresponding to the classical signal
processing framework

To introduce a “situation-aware" noise reduction scheme for the
temperature field, we proceed to explore a graph-theoretic
framework to this problem, starting from a local signal average
operator. An effective estimation strategy should include domain
knowledge.
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Graph Topology (Edges and Weights) I

There are three possible classes of problems which dictate the
definition of graph edges:

Geometry of the vertex positions: The distances between
vertex positions play a crucial role in establishing relations
between the sensed data. In many physical processes, the
presence of edges and their associated connecting weights is
defined based on the vertex distances. An exponential function of
the Euclidean distance between vertices, rmn, may be used,
where for a given distance threshold, τ,

Wmn = e−r2
mn/α or Wmn = e−rmn/α

if rmn < τ and Wmn = 0 for rmn ≥ τ. This form has been used in
the graph in Fig. 2, whereby the altitude difference, hmn, was
accounted for as Wmn = e−rmn/αe−hmn/β.
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Graph Topology (Edges and Weights) II

Physically well defined relations among the sensing
positions: Examples include electric circuits, linear heat transfer
systems, spring-mass systems, and various forms of networks like
social, computer or power networks. In these cases, the edge
weights are defined as a part of problem definition.

Data similarity dictates the underlying graph topology: This
scenario is the most common in image and biomedical signal
processing. Various approaches can be used to define data
similarity, including the correlation matrix between the signals at
various sensors or the corresponding inverse covariance
(precision) matrix. Learning a graph (its edges) based on the set of
the available data is an interesting and currently extensively
studied research area.
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Graph Signal
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From a multi-sensor measurement to a graph signal
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Local Signal Average

For example, for the sensing points n = 20 and n = 37, the
“domain knowledge aware" local estimation takes the form

y(20)= x(20)+ x(19)+ x(22)+ x(23) (1)

y(37)= x(37)+ x(32)+ x(33)+ x(35)+ x(61). (2)
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Local Signal Average

In classical Signal Processing this can be achieved through a
moving average operator, through averaging across the
neighboring neighboring nodes, in the linear graph.
Since the sensor network measures a set of related temperatures
from irregularly spaced sensors, an effective estimation strategy
should include domain knowledge.
For example, for the sensing points n = 20 and n = 37, the
“domain knowledge aware" local estimation takes the form

y(20)= x(20)+ x(19)+ x(22)+ x(23) (3)

y(37)= x(37)+ x(32)+ x(33)+ x(35)+ x(61). (4)

The full set of relations among the sensing points can be arranged
into the matrix form

y= x+Ax, (5)
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Adjacency Matrix

The full set of relations among the sensing points can be arranged
into the matrix form

y= x+Ax, (6)

The matrix A is the connectivity or adjacency matrix of a graph.
It indicates the neighboring sensing locations for each n. The

elements of A are either 1 (vertices are related) or 0 (not related).
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Weighted Graph

To emphasize our trust in a particular sensor (i.e., to model sensor
relevance), a weighting scheme may be imposed on the edges
(connectivity) between the sensing points,

y(n)= x(n)+ ∑
m 6=n

Wnmx(m). (7)

We have now arrived at a weighted graph, whereby each edge has
an associated weight, Wnm,
A matrix form of a weighted cumulative graph signal

y= x+Wx. (8)

The weighting coefficients within the estimate for each y(n) should
sum up to unity.
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International financial network: A weighted graph
International financial
networks

• The graph represents 
relations (edges) among 
major financial institutions 
(nodes) across the world

• The network shows a high 
connectivity among the 
financial institutions that 
have mutual share-holdings 
and closed loops involving 
several nodes

• This indicates that the
financial sector is strongly 
interdependent, which may 
affect market competition 
and systemic risk and 
make the network 
vulnerable to instability

European Blue: North American Green: Asian

Image from Schweizer et al., Science, vol. 325, pp. 422-425, 2009
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Degree Matrix and Laplacian

A normalized form of (8)

y= 1
2

(x+D−1Wx), (9)

The diagonal normalization matrix, D, is called the degree matrix,
are Dnn =∑

m Wnm.

An important operator for graph signal processing is the graph
Laplacian, L, which is defined as

L=D−W

is a combination of the degree matrix and weighting matrix.
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An illustrative example
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System on a Graph I

A system on a graph – graph shifted input

y= h0W0 x+h1W1 x+·· ·+hM−1WM−1 x=
M−1∑
m=0

hmWm x, (10)

where, W0 = I, while h0, h1, . . . , hM−1 are system coefficients.

The corresponding classic system is a standard FIR filter,
y(n)= h0x(n)+h1x(n−1)+·· ·+hM−1x(n−M+1). (11)

A system defined using the Laplacian

y=L0 x+h1L1 x+·· ·+hM−1LM−1 x (12)

gives an unbiased estimate of a constant, i.e. if x= c then y= c.
A simple first order system based on the graph Laplacian can be
written as

y= x+h1Lx (13)
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The Problem with the Graph Shift Operator

The signal shift on a graph can be viewed as the movement of a
signal sample from the considered vertex along all edges
connected to this vertex. The signal shift operator can then be
compactly defined using the graph adjacency matrix as

xshi f ted =Ax.

The energy of the shifted signal is not the same as the energy of
the original signal (graph shift is not isometric).
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Standard Shift vs Graph Shift Operator
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A solution: A Class of Doubly Stochastic Shift Operators for Random Graph
Signals and their Boundedness, B. Scalzo, D. P. Mandic, et al.
arXiv:1908.01596

Danilo Mandic Imperial College London, UK Ackn: Ljubisa Stankovic, Milos Dakovic, Bruno Scalso Dees, Shengxi Li, Yao Lei XuData Analytics on Graphs: A New Paradigm in Machine IntelligenceDecember 16, 2021 21 / 49



Vertex Domain Filtering

Physically, the minimum of xLxT implies the smoothest possible signal
and to arrive at this solution we may employ steepest descent.

The signal value at an iteration p is adjusted in the opposite
direction of the gradient, ∂Ex/∂xT = 2Lx
This yields the iterative procedure

xp+1 = xp −αLxp = (I−αL)xp.

The signal xp+1 is as an output of the first order system.
The minimum of the quadratic form xLxT corresponds to a
constant signal. To avoid obtaining only constant steady state, the
above iteration process can be used in alternation with

xp+2 = (I+βL)xp+1

This two-step iterative processes is known as Taubin’s α−β
algorithm.
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Vertex Domain Filtering Results

5

10

15

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

For appropriate values of α and β, this system can give a good and
very simple approximation of a graph low-pass filter.
The original noisy signal was filtered using Taubin’s algorithm, with
α= 0.2 and β= 0.1. After 50 iterations, the signal-to-noise ratio
improved from the original SNR0 = 14.2 dB to 26.8 dB.
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Eigen-properties of Graph Laplacian: An Analogy
with Fourier Transform

The
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Let us remind ourselves of spectral vectors
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With spectral vectors we can choose the number of features to represent data and perform dimensionality reduction

Two- dimensional spectral vectors: 
𝒒𝟐 = [𝑢" 2 ,𝑢#(2)] and 𝒒𝟔 = [𝑢" 6 , 𝑢#(6)]

Three-dimensional spectral vectors:
𝒒𝟐 = 𝑢" 2 ,𝑢# 2 ,𝑢%(2) and 𝒒𝟔 = 𝑢" 6 , 𝑢# 6 ,𝑢%(6)

Dimensionality reduction through spectral vectors is particularly useful
in large-dimensional graphs which exhibit lower-dimensional clusters,
as illustrated in the next example
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Vertex Clustering Based on the Eigenvectors

The Laplacian quadratic form of an eigenvector (its smoothness
index) is equal to the corresponding eigenvalue,

uT
k (Luk)=uT

k (λkuk)=λk.

The eigenvector corresponding to λ1 = 0 is a constant (maximally
smooth for any vertex ordering).

Spectral similarity of vertices is defined using eigenvectors, if the
eigenvector elements uk(n), k = 1,2, . . . ,P are assigned to the
vertex n. If u1 is omitted, then a (P −1)-dimensional spectral
vector becomes qn = [u2(n), . . . ,uP (n)]T .

The spectral similarity between vertices n and m is defined as the
two-norm ‖qn −qm‖2.
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Vertex clustering: The temperature graph

Keep the original vertex positions and color them according to the
spectral vectors qn.

Coloring is performed using the eigenvector elements u2(n),
u3(n), and u4(n) as color coordinates for the vertex n.

Graph segmentation, by grouping
vertices with similar colors.

The graph segmentation is a
signal-independent operation. It
roughly indicates the data
connectivity between sensor data
values on this graph, and suggests
that the data processing will
predominantly be localized within
these regions.
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Image clustering: Very straightforward via graphs

Fig.1. Original image

Fig. 3. Spectral clustering based on (a) the Fiedler (smoothest) 
Eigenvector, and (b) the two smoothest Eigenvectors.

Fig. 2. Graph based on structural similarity
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Image Classification: Optical Character
Recognition
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Figure 3.2: Graph representation of a set of hand-written images of the let-
ter “b”. The images serve as vertices, while the weight matrix for the edges is
defined through the structural similarity index metric (SSIM) between the images,
with Wmn = SSIM(m,n). The vertices are colored in (c) using first the smoothest
(Fiedler) eigenvector, u1, and then the two smoothest eigenvectors, u1 and u2, of the
generalized eigenvectors of the Laplacian (with the corresponding spectral vectors
qn = [u1(n)] and qn = [u1(n), u2(n)]) respectively shown in Figure 3.2(c) (left) and
(right).
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Graph representation of a set of hand-written
images of the letter “b”. The images serve as
vertices, while the weight matrix for the
edges is defined through the structural
similarity index metric (SSIM) between the
images. The vertices are colored in (c) using
first the smoothest (Fiedler) eigenvector, u1
(left), and then the two smoothest
eigenvectors, u1 and u2, of the generalized
eigenvectors of the Laplacian (right).
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Graphs for Dimensionality Reduction
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Graph Topology Learning from Data
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Figure 4.3: Data-based learning of graph topology in the temperature sensing
example from Part II, Section 2. (a) Sensing locations in a geographic region along
the Adriatic sea. (b) Temperatures measured at N = 16 sensing locations over
P = 150 days. (c) Ground truth weight matrix, W, obtained through geographic
properties of the sensing locations as in Part II, Section 2. (d) The weight matrix,
W, estimated solely based on the analysis of data from (b) and using the LASSO
approach.
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Fig. 1. Sensing locations in a geographic region near the 
Adriatic sea.

Fig. 2. Temperatures measured at N = 16 sensing 
locations over P = 150 days 

Fig. 3. Ground truth weight matrix, W, obtained through 
geographic properties of the sensing locations (left), and the 
learned weight matrix, W, estimated using the LASSO 
approach from data.
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Some data that are naturally both tensor and
graph

Also, a social network can be seen as a tensor, or even Netflix movie
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Some tensor data: Financial system

Financial system represented as a tensor of
context×asset× entity× country×·· ·

Each physical mode of this tensor also has a graph structure, which can
be a graph on a regular or irregular domain

Danilo Mandic Imperial College London, UK Ackn: Ljubisa Stankovic, Milos Dakovic, Bruno Scalso Dees, Shengxi Li, Yao Lei XuData Analytics on Graphs: A New Paradigm in Machine IntelligenceDecember 16, 2021 33 / 49



Graphs and tensors in finance
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Why tensors?
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Canonical Polyadic Decomposition (CPD)
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Tensor Rank: An intuitive example
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Putting everting together: From a Forex tensor to
a Forex graph tensor network
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The Multi-Graph Tensor Network (MGTN) concept
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The MGTN performance in ForEx, over 9
currencies, 4 features, and 30 time steps
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Portfolio optimisation through graph cuts
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Portfolio optimisation through graph cuts
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Graphs for Transportation Networks
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Passenger flow as a diffusion process
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Vulnerability of Underground Stations
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Introducing new underground lines
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Graphs for Transportation Networks

Fig. 1. Graph representation of the London underground network in Zones 1 and
2. The circles denote the vertices (stations) and the lines between the circles
designate the underground lines.

Fig. 2. Betweenness centrality, designated by magenta-colour ed bars, of the
London underground network in Zones 1 and 2.

Fig. 3. Gr aph of the London underground network in Zones 1 and 2 after
performing geographically constrained k-edge augmentation, for k=2.

Fig. 4. Net passenger out-flow during the mor ning r ush hour. The magenta bars
denote a net out-fl ow of passengers while the blue bars designate a net in-flow of
passengers. Stations l ocated withi n busi ness districts exhibit the greates t net out-
flow of passengers, while stations located in residenti al areas, toward the
outskirts, exhibit the largest net in-flow of passengers.

Fig. 5. Popul ation density implied by our dif fusion graph model, obtai ned fr om the
net passenger out-flow during the morni ng rush hour within Zones 1 and 2. As
expected, business districts exhibit the lowest population density, while residential
areas (Zone 2) exhibit the highest commuter population density

Fig. 6. The evening net passenger-flow, estimated fr om the morning rush hour
data, based on the hypergraph neur al network model. The power of the proposed
hypergraphmodel is reflected in the reverse net flow from themorning rush hours,
as people move from central business areas back to residential zones.
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Our recent work on tensors
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Our recent work on graphs
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