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Lecture Outline

@ Introduction and relevance

© Problem statement: An ollustrative example
© Building a graph from signal measurements
© System on a graph and graph filtering

@ Graph clustering

©@ Dimensionality reduction through graphs

@ Graphs and tensors

© Graphs for finance

© Multi-graph tensor network (MGTN)

@ Graph cuts for portfolio managament

@ Graphs for public transportation planning and analysis
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Graph Data Analytics at Imperial College

+ Inthe early days, the main
goal was to optimize the
graphs themselves, rather

Comm.3 Principles of communication networks
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Basic ideas on connectivity constraints, limited and unlimited reachability of swiChing centres. than signals on graphs! F?St
The location of switching centres for optimum network covering. forV\./e.ard 40 yegrsl, weareina
Traffic flow and generalized network flows. The maximum flow minimum cut theorem. position to optimize both the
Communication networks with limited link capacities. The routing problem. Spanning tree and graphs and the graph signals!
shortest spanning tree. Routing subject to congestion.

1 m G Imperial College
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Introduction to power systems X Of Science Technolo;
Electrical drive systems and Technology {‘ %

Advanced power systems
Electrical machines II
Statistics

Graph theory

N

+ Graphs were taught

University of London

within

Communication + Beginnings of Graph Theory
Networks and in . ey at EEE Department, Imperial
Business School.

College London.
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Graph basics

o [0 1
1 1 0
2 1 1
3 1 0
Aun = 4 0 1
5 0 0
6 0 0
7 Lo o
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[0 1
0 0
1 0
1 0
Aar = | 5
0 0
0 0
Figure 1: Typical graph structures. (a) Undirected graph and (b) 0 0
Directed graph. L
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Modern Applications: Graphs for recommender
systems
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YouTube

The adjacency matrix from the previous slide describes our search for a
holiday destination!
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Graph operators

@)

Figure 5: The K neighborhoods of vertex O for the graph from Fig
4, where: (a) 1 and (h) K — 2. The neighboring vertices are

Figure 4: Walks of length K = 2 from vertex 1 to vertex 5. 4, whe

12

< I 1 =
%\U‘ x2 1 31)
Figure 8: Cartesian product of two graphs Figure 7: Kronecker (tensor) product of two graphs.
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An lllustrative Example

Consider a multi-sensor setup for measuring a temperature field in a
known geographical region. The temperature sensing locations are
chosen according to the significance of a particular geographic area to
local users, with N = 64 sensing points in total.
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An lllustrative Example

@ Classical Data Analytics requires an arrangement of the
quintessentially spatial temperature samples into a linear structure

@ “Lexicographic” ordering is not amenable to exploiting the spatial
information related to the actual sensor arrangement, dictated by
the terrain.

@ This exemplifies that even a most routine temperature
measurement setup requires a more complex estimation structure
than the simple linear one corresponding to the classical signal
processing framework

@ To introduce a “situation-aware" noise reduction scheme for the
temperature field, we proceed to explore a graph-theoretic
framework to this problem, starting from a local signal average
operator. An effective estimation strategy should include domain
knowledge.
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Graph Topology (Edges and Weights) |

There are three possible classes of problems which dictate the
definition of graph edges:

@ Geometry of the vertex positions: The distances between
vertex positions play a crucial role in establishing relations
between the sensed data. In many physical processes, the
presence of edges and their associated connecting weights is
defined based on the vertex distances. An exponential function of
the Euclidean distance between vertices, r,,,, may be used,
where for a given distance threshold, 7,

—r2 -
Wmn —e rmn/a or Wmn —e rmn/oc

if 7mn <1 and W,,, =0 for r,,, = 1. This form has been used in
the graph in Fig. 2, whereby the altitude difference, A ,,,, was
accounted for as W,,,,, = e "mn/@ g~ hmn/B,
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Graph Topology (Edges and Weights) Il

@ Physically well defined relations among the sensing
positions: Examples include electric circuits, linear heat transfer
systems, spring-mass systems, and various forms of networks like
social, computer or power networks. In these cases, the edge
weights are defined as a part of problem definition.

@ Data similarity dictates the underlying graph topology: This
scenario is the most common in image and biomedical signal
processing. Various approaches can be used to define data
similarity, including the correlation matrix between the signals at
various sensors or the corresponding inverse covariance
(precision) matrix. Learning a graph (its edges) based on the set of
the available data is an interesting and currently extensively
studied research area.
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Graph Signal

From a multi-sensor measurement to a graph signal
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Local Signal Average

@ For example, for the sensing points n = 20 and n = 37, the
“domain knowledge aware" local estimation takes the form

y(20) = x(20) + x(19) + x(22) + x(23) (1)
y(37) =x(37) + x(32) + x(33) + x(35) + x(61). (2)
’ i 4 ®® a .
@ ; ¢ O
o v o © ® —
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Local Signal Average

@ In classical Signal Processing this can be achieved through a
moving average operator, through averaging across the
neighboring neighboring nodes, in the linear graph.

@ Since the sensor network measures a set of related temperatures
from irregularly spaced sensors, an effective estimation strategy
should include domain knowledge.

@ For example, for the sensing points n =20 and n = 37, the
“domain knowledge aware" local estimation takes the form

y(20) = x(20) + x(19) + x(22) + x(23) (3)
y(37) =x(37) + x(32) + x(33) + x(35) + x(61). (4)

@ The full set of relations among the sensing points can be arranged

into the matrix form
y = X+ Ax, (5)
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Adjacency Matrix

@ The full set of relations among the sensing points can be arranged
into the matrix form
y = X+ Ax, (6)

@ The matrix A is the connectivity or adjacency matrix of a graph.
It indicates the neighboring sensing locations for each n. The
elements of A are either 1 (vertices are related) or 0 (not related).
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Weighted Graph

@ To emphasize our trust in a particular sensor (i.e., to model sensor
relevance), a weighting scheme may be imposed on the edges
(connectivity) between the sensing points,

y(n)=x(n)+ Z W,mx(m). (7)

m#n

@ We have now arrived at a weighted graph, whereby each edge has
an associated weight, W,,,,,,

@ A matrix form of a weighted cumulative graph signal

y=x+Wx. (8)

@ The weighting coefficients within the estimate for each y(n) should
sum up to unity.
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International financial network: A weighted graph
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International financial
networks

* Thegraph represents
relations (edges) among
major financial institutions
(nodes) across the world

* The network shows a high
connectivity among the
financial institutions that
have mutual share-holdings
and closed loops involving
several nodes

« Thisindicates that the
financial sector is strongly
interdependent, which may
affect market competition
and systemic risk and
make the network
vulnerable to instability

Green: Asian

Image from Schweizer et al., Science, vol. 325, pp. 422-425, 2009
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Degree Matrix and Laplacian

@ A normalized form of (8)

y= %(x +D 'Wx), (9)

@ The diagonal normalization matrix, D, is called the degree matrix,
are D, =3 0 Whm.

@ An important operator for graph signal processing is the graph
Laplacian, L, which is defined as

L=D-W

is a combination of the degree matrix and weighting matrix.
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An illustrative example

0 023 074 024 0 0 0 0
0.23 0 035 0 023 0 0 0
0.74 0.35 0 026 024 0 0 0
0.24 0 0.26 0 0 0 032 0

0 023 024 0 0 051 0 0.14
0 0 0 0 0.51 0 0 015
0 0 0 032 0 0 0 032
0 0 0 0 014 015 032 0

Figurc 2: An cxample of a weighted graph. L d

Definition: A degree matrix, D, for an undirected graph Definition: The Laplacian matrix is defined as
is a diagonal matrix with the diagonal elements, D,
equal to the sum of the weights of all edges connected to L=D-W.

the vertex m, that is
For an undirected graph the Laplacian matrix is sym-

Dy = z Winn- metric L = LT, while e.g. the Laplacian for the weighted
n graph from Fig. 2 is

For an unweighted and undirected graph, the value of 121 023 074 024 0 0 0 0
the element D,,,, is equal to the number of edges con- 023 081 0.35 0 023 0 0 0
nected to the m-th vertex. —0.74 —0.35 1.59 —0.26 —0.24 0 0 0

[For the undirected weighted graph from Fig. 2, the —0.24 0 —0.26 0.82 0 0 —0.32 0
degree matrix is given by L= 0 —0.23 —0.24 0 1.12 —0.51 0 —0.14

[f2,8 0 8 9 8 98] o o o-om o 0 06l o
0 08 0 O 0O O 0 © —0. 64 —0.
lo o0 15 0 0o o o ol 0 0 0 0 —0.14 —0.15 —0.32 0.61
b I 0O 0 0 08 0 0 0 0 I ) o (6)
[ 0 0 0 0 112 0 0 0 | For many reasons, it is often advantageous to deal with
| o o 0 0 0 066 0 O | the normalized Laplacian, defined as
0 0 0 0 0 0 064 0
l 0O 0 0 0 0 0 o0 u,b‘lJ Ly=DY}D-W)D Y2 =1-D"'2wD~ /2,
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System on a Graph |

@ A system on a graph — graph shifted input

M-1
y=hoWox+h Whx+-+ Ay WY =Y h,,W"x, (10)
m=0
where, WO =1, while ko, k1, ..., hy_1 are system coefficients.

@ The corresponding classic system is a standard FIR filter,
y(n)=hox(n)+hix(n—1)+---+hpy_1x(n—M+1). (11)

@ A system defined using the Laplacian
y=Lox+hL'x+---+hy_ LM x (12)

gives an unbiased estimate of a constant, i.e. if x=c theny =c.
@ A simple first order system based on the graph Laplacian can be
written as
y=x+h1Lx (13)
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The Problem with the Graph Shift Operator

@ The signal shift on a graph can be viewed as the movement of a
signal sample from the considered vertex along all edges
connected to this vertex. The signal shift operator can then be
compactly defined using the graph adjacency matrix as

Xshifted = AX.

The energy of the shifted signal is not the same as the energy of
the original signal (graph shift is not isometric).
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Standard Shift vs Graph Shift Operator

S " Operator

0 0 0 O
i1 o-0-0-0=»0-0-0-0=0-0
0010 x =1[2,0,1,0]7 y =1[0,2,0,1]7 y=10,0,2,0]"
0 00 1
A=15 0 o 8 » O
0110
x =1[2,0,1,0]" x=1[0,1,2,1]" x=1[0,2,03]"

A solution: A Class of Doubly Stochastic Shift Operators for Random Graph
Signals and their Boundedness, B. Scalzo, D. P. Mandic, et al.
arXiv:1908.01596
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Vertex Domain Filtering

Physically, the minimum of xLx” implies the smoothest possible signal
and to arrive at this solution we may employ steepest descent.

@ The signal value at an iteration p is adjusted in the opposite
direction of the gradient, 0E /0x” = 2Lx
@ This yields the iterative procedure

Xp11 =Xp —alix, =T -al)x,.

@ The signal x, 1 is as an output of the first order system.

@ The minimum of the quadratic form xLx” corresponds to a
constant signal. To avoid obtaining only constant steady state, the
above iteration process can be used in alternation with

Xp+2 = I+ ,BL)Xp+1

@ This two-step iterative processes is known as Taubin’s a — 8
algorithm.
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Vertex Domain Filtering Results

For appropriate values of a and S, this system can give a good and
very simple approximation of a graph low-pass filter.

The original noisy signal was filtered using Taubin’s algorithm, with
a=0.2 and =0.1. After 50 iterations, the signal-to-noise ratio
improved from the original SNRy = 14.2 dB to 26.8 dB.
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Eigen-properties of Graph Laplacian: An Analogy
with Fourier Transform

20 = 0.000 I o= 0.000 r=0000 1 (lqpl B
] : § 5
I A §I f e
I I I vertex index, n il I It I I I
Fa b S A
a) constant eigenvector, ug(n)
A1 =0.286 I I I AL = 0.010 n=0020 11 .

b) slow-vaying eigenvector, u;(n)

I ] Ay = 1.804 Ao = 1.466 ? e
! [
= %%WW et % " A,
1 1 zI sl e
| IHI II. bt o
c) fast-varying eigenvector, uy(n) The
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Let us remind ourselves of spectral vectors

With spectral vectors we can choose the number of features to represent data and perform dimensionality reduction

@ a 2w a
wn) : : :
w [ ] ‘ ] l ] ; £
i1 (n H 2 : l 2
2(n) | ] | ]
(n) - l " { 1 s } 1
uz(n g En 1 o m
us(n) i 4
Two- dimensional spectral vectors: Three-dimensional spectral vectors:
qz = [u1(2),u3(2)] and g = [u1(6),u,(6)] G2 = [u1(2),u,(2),u3(2)] and g = [u,(6),u,(6),u3(6)]

Dimensionality reduction through spectral vectors is particularly useful
in large-dimensional graphs which exhibit lower-dimensional clusters,
as illustrated in the next example
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Vertex Clustering Based on the Eigenvectors

@ The Laplacian quadratic form of an eigenvector (its smoothness
index) is equal to the corresponding eigenvalue,

u] (Lug) =u] (\pug) = Ay

@ The eigenvector corresponding to A1 = 0 is a constant (maximally
smooth for any vertex ordering).

@ Spectral similarity of vertices is defined using eigenvectors, if the
eigenvector elements ur(n), k =1,2,...,P are assigned to the
vertex n. If w; is omitted, then a (P — 1)-dimensional spectral
vector becomes q,, = [us(n),...,up(n)]’.

@ The spectral similarity between vertices n and m is defined as the
two-norm [[q, —qml2.
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Vertex clustering: The temperature graph

@ Keep the original vertex positions and color them according to the
spectral vectors qp,.

@ Coloring is performed using the eigenvector elements ua(n),
us(n), and u4(n) as color coordinates for the vertex n.

o ® © @ Graph segmentation, by grouping
. o L @909 vertices with similar colors.
% o 2 @ The graph segmentation is a
e T signal-independent operation. It
o O@ T °. %%O roughly indicates the data
o e . -0 P connectivity between sensor data
s values on this graph, and suggests
pa Sl $ oo that the data processing will
s - predominantly be localized within

these regions.
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Image clustering: Very straightforward via graphs

Fig.1. Original image Fig. 2. Graph based on structural similarity

Fig. 3. Spectral clustering based on (a) the Fiedler (smoothest)
Eigenvector, and (b) the two smoothest Eigenvectors.
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Image Classification: Optical Character
Recognition

Graph representation of a set of hand-written
images of the letter “b”. The images serve as
vertices, while the weight matrix for the
edges is defined through the structural
similarity index metric (SSIM) between the
images. The vertices are colored in (c) using

@) @) first the smoothest (Fiedler) eigenvector, u1
O ® (left), and then the two smoothest
Q Q eigenvectors, u1 and u2, of the generalized
@) o) @) 0 eigenvectors of the Laplacian (right).
O O
o © o ©
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Marks per student and per course

2D map with randomly positioned vertices

3D Laplacian eigenmap
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Graphs for Dimensionality Reduction
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Graph Topology Learning from Data

)

B T AN O I
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L] -10

DOV TOVTRWTL T PP T
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Fig. 2. Temperatures measured at N = 16 sensing
locations over P = 150 days

Ground thruth weight matrix W Column LASSO learned W

10 12 14

Fig. 1. Sensing locations in a geographic region near the 02 4 6 8 1012 14 02 4 6 8
Adriatic sea. . . . )
Fig. 3. Ground truth weight matrix, W, obtained through
geographic properties of the sensing locations (left), and the
learned weight matrix, W, estimated using the LASSO
approach from data.
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Some data that are naturally both tensor and

graph

LinkedIn

Email

(a)

0 0°h
—1i 00
011

'\

\
Friends l

©

001
00 0
1 0 0

movies X5

- 000
. T 00 1
: 010
Bl o1 Email
Gl 1o
Friends
A B C

LinkedIn | ~—
users e ~ X

Also, a social network can be seen as a tensor, or even Netflix movie
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Some tensor data: Financial system

Context

Entity

Financial system represented as a tensor of
context x asset x entity x country x ---

Each physical mode of this tensor also has a graph structure, which can
be a graph on a regular or irregular domain
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Graphs and tensors in finance

Graph domain 1

Pe o ©

e S We can establish a graph
structure for e.g. portfolios,

[ 1 currency exchange, ...

Graph domain 2

°.
o

Features

Directed time graph Carry graph

Left: A time dimension graph

Right: A graph representation of
foreign exchange, where the edges
are derived from the carry factor
(related to interest rate in a particular
country)
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Why tensors?

1,000,000 pixels

2 N

1000 pixels

1,000 pixels

1,000 pixels

o A simple re-arrangement into a cube transforms the 1,000 x 1,000,000
matrix of frames into a 3-way tensor of size 1,000 x 1,000 x 1,000
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Canonical Polyadic Decomposition (CPD)

s|axid 000T

N <
1000 pixels

After tensorizing the video clip, tensor order N = 3, the dimension in every
mode I = 1000, and the tensor rank is R. Typically R <« I.
with length(a,;)=1000, length(b;)=1000, length(c;)=1000, i=1,2,...,R

o Raw data format &+ IV = 1000 x 1000 x 1000 = 10° pixels = 1 Giga-pixel

o In the CPD format, this becomes N x I x R = 3 x 1000 x 10 = 30, 000 pixels
(for R=10), that is, compression of almost 5 orders of magnitude

o In scientific computing, if we sample a cube at I = 10, 000 points, then IV = 10"
raw samples become N X I X R = 3 x 10° samples in CPD
For N=4, 1=10*, R=10, the IV = 10'® raw samples ~ 4 x 10° samples in CPD
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Tensor Rank: An intuitive example

Cr Cg CB
e 7 4
4 y y
= rank-1 + rank-1 + rank-1
Color ensemble Base color 1 Base color 2 Base color 3

o All colors are just combination of three base colors: red, green and blue 3 rank = 3

o Vectors cg, cg, Cp represent intensity, i.e. each value characterises how much of the
base color there is in the corresponding slice

128 0.5 128 0.5 128 0.5
256 1 256 1 0 0
cp= |256| = | 1 cg=|0]|=1[0 cg= |256| = 1
0 0 256 1 256 1
256 1 128 0.5 32 0.125
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Putting everting together: From a Forex tensor to
a Forex graph tensor network

o
&
Jo: features 2\\0\
K
L
v

- x

I,: time-steps

Jo: features

I: time-steps  I,: currencies

Features:

- Low price

- High Price

- Logreturn

- Peak to peak return

Weight Matri;’x‘ Output Layer

Trading volume
Start price
End price, .....

Features do not admit graph
representation and are instead
3 : combined using standard (NN)
*, Input Tensor Graph Filters weight matrix

A Multi-Graph Tensor Network
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The Multi-Graph Tensor Network (MGTN) concept

Raw multi-graph tensor data Filtered multi-graph tensor data
X € RIoXlaxlpxxly Ye RIXaXIzxXly
_ f ( A \
Multi-graph
filter layer

1
1l L/)l \J L\JJ;/ Dense neural
\ Fea(}lretsion nethlayH
N & © o [1 1.
°<( 6/\/) —@— L/( J/ \/\!/
H L
&
—

s
AN e . K7 N L L 7
/5 < /" / / / l, o l /
w\/ / N c\\’,,, N l/

\. J
Graph-1  Graph-2 Graph-M Graph-1  Graph-2 Graph-M

- Raw tensor data may have multiple graph repres. The graph filtering operation exhibits locality maintains keeps structure

- The feature mode (in grey) does not undergo graph filtering but standard (perhaps NN) filtering through weight matrix W
- The filtered graph data are processed first through a NN which is shown in a TT format, then through standard NN
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The MGTN performance in ForEx, over 9
currencies, 4 features, and 30 time steps

1008
1006
1004
1002

1000

Danilo Mandic Imperial College London, UK Ackn: Data Analytics on Graphs: A New Paradigm in Mac

Test-Set Trading Performance

Out-of-sample trading performance,
averaged over 5 European currencies.

Vertical axis: Investment growth of an
Initial portfolio value of $1000.

MGTN required much lower parameter
complexity, using:
- 10% of trainable parameters
compared with GCN
20 % of trainable parameters

500 1000 1500 2000 2500 3000 compared with GRU
Agent TR (%) SR MD (%) HR(%) NP
fMGTN 0.8018 0.0445 0.2893 52.8056 531
GRU 0.0260 0.0012 0.3477 50.4008 3107
TINN 01628 00064 03493  50.6346 451
GON 00538 -0.0032 04180  50.2338 5891

Performance comparison for the considered agents for the task of algorithmic trading of
currencies. The evaluation metrics are: Total Return (TR), Sharpe ratio (SR), Maz Drawdown

(MD), Hit Rate (HR), and Number of Parameters (NP).
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Portfolio optimisation through graph cuts

The optimal portfolio holdings then become
I 1
W= ———
17z 11
Instability issues remain prominent, as the matrix inversion of X required in (4) may
lead to significant errors for ill-conditioned (singular) matrices.

(4)

Problem: The more collinear portfolio assets the more unstable the above solution

Solution: The obvious need for greater diversification, e.g. through graph cuts

A universe of N assets can be represented as a set of vertices on a market graph,
whereby the edge weight, W,,, between vertices m and n is defined as the absolute
correlation coefficient, |pmn|, of their respective returns of assets m and n, that is

= |pmn| (8)

| mnl
V Ummo'nn

where o, = cov {rm(t), ra(t)} is the covariance of returns between the assets m and n.

Winn =

In this way, we have W,,, = 0 if the assets m and n are statistically independent (not
connected), and W, > 0 if they are statistically dependent (connected on a graph).
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Portfolio optimisation through graph cuts

(@) (b) (© (d)
Figure: Visualisation of the 100-vertex market graph connectivity and its partitions into disjoint
sub-graphs (separated by dashed grey lines). The edges (blue lines) were calculated based on the
correlation between assets. (a) Fully connected market graph with 5050 edges. (b) Partitioned graph
after K =1 portfolio cuts (CutV), with 2746 edges. (c) Partitioned graph after K = 2 portfolio cuts
(CutV), with 1731 edges. (d) Partitioned graph after K = 10 portfolio cuts (CutV), with 575 edges.
Notice that the number of edges required to model the market graph is significantly reduced with each
subsequent portfolio cut, since S/ H' L(NZ+N;) < 3(N*+N), VK > 0.

200 MV —— CutV (AS1) — CutN (AS1) AS1: Akind of ratio cut (the subgraphs
CutV (AS2) CutN (AS2) simultaneously as large as possible)
xTLx
CutN(Vl,Vz) = Tx

AS2: A kind of volume normalized
" minimum cut (similar total degrees
2016 2017 2018 of nodes in subgraphs)

Date xTLx
Cul'V(V]7 VQ) = m

(a) Evolution of wealth for both the traditional (EW and MV) and graph-theoretic asset
allocation strategies, based on (K = 10) portfolio cuts.
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Graphs for Transportation Networks

156

+ The rapid development of world's economies has been
followed by an increasing proportion of population moving
o cities

+ World's urban traffic congestion has become an
overwhelming issue

* Underground traffic networks frequently experience signal
failures and train derailments

+ The economic costs of such transport delays to central
London business are estimated to be £1.2 billion per year

*  Appropriate and physically meaningful tools to
understand, quantify, and plan for the resilience of
transportation networks to disruptions are therefore a

Fig. 1. Graph representation of the London underground nefwork in Zones 1 and

pre-r‘eqmsne for the plannmg and dally b of 2. The circles denote the vertices (stations) and the lines between the circles
publlc transpon designate the underground fings.

Y -2

21
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Passenger flow as a diffusion process

* We can model data on graph via o
Fick’s law of diffusion [3]: (B
¢

e q=—kV¢p

92
*  Where:

. . Fig. 5. A graph of the London network through Fick's
* q. flux (amount per unit area) law of diffusion. Consider a simplified path graph with two stations surrounded by
the ions, ¢ and ¢, (proportional to the circle area), which
5 g A A exhibit the corresponding net fluxes, g, and q,. Stations surrounded by large
* k: coefficient of diffusivity P b s DR B T L R
. surrounded by low population (business districts) experience net out-flow of
. ¢: Coneentrahon passengers. The overall net flow (in-flow and out-flow) of passengers across the

entire network sums up to zero.

e Given:
» Diagonal degree matrix: D € RV*N,
where D;; = ¥; 4;; and 0 otherwise

»  Graph Laplacian matrix: L € R¥*V,
definedas L = (D — A)

«  Diffusion on graph can be modelled as:

q= —kL¢ =

Fig. 6. Net passenger out-flow during the morning rush hour. The magenta bars
denote a net out-flow of passengers while the blue bars designate a net in-flow of
passengers. Stations located within business districts exhibit the greatest net out-
flow of passengers, while stations located in residential areas, toward the
outskirts, exhibit the largest net in-flow of passengers.
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Vulnerability of Underground Stations

Betweenness centrality [1] metric as a

measure of the vulnerability o
It measures the extent to which a given

vertex lies in between pairs or groups of

other vertices of the graph:

B, = z o(k, m|n)

o(k,m)
k,mev
¢ a(k,m) denotes the number of
shortest paths between k and m : = =
Fig. 2. centrality, i by gent: loured bars, of the

e o(k,m|n) the number of those paths London underground network in Zones 1 and 2. o
passing through a vertex n

¢ We can invert Fick’s law of
diffusion, q = —KkL¢, to estimate
the population surrounding various
stations as:
~ 1
=__L*
¢ L
e Where:
— L+ denotes the pseUdO-inverse Fig. 7. ;’opulalion dsr;s‘iry implied by‘:;ur diffusion gr;;:h model, obl;ljned from the

net passenger out-flow during the morning rush hour within Zones 1 and 2. As

Of the Lap|acia n matrix expected, business districts exhibit the lowest population density, while residential

areas (Zone 2) exhibit the highest commuter population density
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Introducing new underground lines

» Agraph is said to be k-edge connected if it .
cannot be regrouped into distinct sub-graphs
unless k or more edges are removed

*  The transport network forms a 1-edge
connected graph, meaning that removal of 1
edge is enough to disconnect some stations
from the network

* Robust network by k-edge augmentation [2]:
* Determine the minimum set of additional
edges, A, such that A N € = @ and the e ! 12
resulting graph Gy = {V, € U A} remains Fig. 3. Graph of the London underground network in Zones 1 and 2, after
k_edge connected performing a naive k-edge augmentation, for k=2.

*  Previous solution is optimal in terms of the
number of new connections required, |A|
* However, it is unrealistic to build such
direct long-range connections
* Assuming that the cost of building a new
connection is proportional to the
geographic distance between two stations,
d(vy,v,), we can constrain the search
space of the k-edge augmentation
problem with a threshold, a : o o i
Fig. 4. Graph of the London underground network in Zones 1 and 2 after
d(vy,v,) < aforall (vy,v,) €A z ined k-edge fon, for k=2.

Danilo Mandic Imperial College London, UK Ackn: Data Analytics on Graphs: A New Paradigm in Mac December 16, 2021 46 /49



Qraphs for Trar]‘sportation Netwqus

Fig. 1. Graph representation of the London underground nefwork in Zones 1 and
2 The circles denote the vertices (stations) and the lines between the circles

designate the underground fines.

Fig. 2. Betweenness centrality, designated by magenta-coloured bars, of the

London underground network in Zones 1 and 2.

Fig. 3. Graph of the London underground network in Zones 1 and 2 after
‘performing geographically constrained k-eage augmentation, for k=2,

Fig. 4. Net passenger out-flow during the morning rush hour. The magenta bars
denote a net out-low of passengers while the blue bars designate a net in-ow of
passengers. Stations located within business districts exhibit the greatest net out-
flow of passengers, while stations located in residential areas, toward the
outskirts, exhibit the largest et in-flow of passengers.

Danilo Mandic Imperial College London, UK Ackn: Data Analytics on Graphs: A New Paradigm in Mac

Fig. 5. Population density implied by our diffusion graph model, obtained from the
et passenger out-fow during the morring rush hour within Zones 1 and 2. As
expected, business disticts extibit the lowest population densiy, while residential
areas (Zone 2) exhibit the highest commuter population density

Fig. 6. The evening net passenger-flow, estimated from the morning rush hour
data, based on the hypergraph neural network model, The power of the proposed
hypergraphmodal s reflected i the reverse net flow from themorning rush hours,
as peaple move from central business areas back to residential zones.
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Our recent work on tensors

A. Cichocki, D. Mandic, et al. A. Cichocki, D. Mandic, et al.

Foundations and Trends® in
Machine Learning
9:4-5

TENSOR
DECOMPOSITIONS
for Signal Processing
Applications

From two-way to multiway component analysis

uuuuuuuuuuuuu s o Foundations and Trends in
IEEE SPM, March 2015 Machine Learning, Parts 1 & 2
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Our recent work on graphs
L. Stankovic, D. P. Mandic, et al.

A series of thee articles on Data Analytics on Graphs in three consecutive
issues of Foundations and Trends in Machine Learning, 2020.

Part 1: Graphs and Spectra on Graphs, FnTML, vol. 13, no. 1, pp. 1-157
Part II: Signals on Graphs, vol. 13, no. 2-3, pp. 158-331

Part Ill: Machine Learning on Graphs, from Graph Topology to
Applications, pp. 332-530

Foundations and Trends® in Machine Learning
Data Analytics on Graphs Part Ill:
Machine Learning on Graphs, from

Graph Topology to Applications

Data Analytics
on Graphs

Understanding the Basis of Graph Signal Processing
via an Infuifive Example-Driven Approa

Bruno Scalzo
Imperial College London
UK

Shengsi Li
Imperial College London

shengii170imperial ac uk

Anthony G. Constantinides
tenegro  Imperial College Lt

a constantinidesimperial ac.uk
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