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Online network change point detection

Online change point detection for random dot product graphs

Accelerated topology identification from smooth signals
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Problem statement

> Given: Stream of undirected graph observations {A[t]}

» Model: Random Dot Product Graph (RDPG) [Athreya et al'17]

» Goal: Detect in an online fashion when the underlying model changed

» Contributions and impact

= Marry sequential chage-point detection with graph representation learning
= Explainable algorithm for (pseudo) real-time network monitoring
= Guaranteed error-rate control, insights on detection delay
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Random dot product graphs

» Consider a latent space Xy C RY such that for all
xyeXy = x'yelo,1]
= Inner-product distribution F : Xy — [0, 1]
» Random dot product graphs (RDPGs) are defined as follows:
X1yeeoy XN i F,
Ajj | xi, % ~ Bernoulli(x;" x;)

for 1 <i,j < N, where Aj = Aj and A; =0

» A particularly tractable latent position random graph model
= Vertex positions X = [xy,...,xy]" € RVxd
= Connection probabilities P = XX T
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Connections to other models

» RDPGs ecompass several other classic models for network graphs
Ex: Erd6s-Renyi Gy, graphs with d =1 and Xy = {,/p}
Ex: SBM random graphs by constructing F with pmf
PX=xq)=aq, ¢g=1,...,Q
after selecting d and xi,...,xq such that w4 = qux,
» Approximation results for SBMs justify the expressiveness of RDPGs
» RDPGs are special cases of latent position models [Hoff et al'02]
Ajj | i, x; ~ Bernoulli(r(x;, X;))
= Approximate these accurately for large enough d [Tang et al'13]

» Q: Given a graph A, how do we estimate the latent positions X?
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Adjacency spectral embedding
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Interpretability of the embeddings

» Ex: Zachary's karate club graph with N = 34 (left)

» Node embeddings (rows of X) for d = 2 (right)

» Club’s administrator (i = 0) and instructor (j = 33) are orthogonal

» Interpretability of embeddings a valuable asset for RDPGs
= Magnitudes indicate how well connected nodes are
= Angles indicate positions in latent space (affinity to link)
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Mathematicians collaboration graph

» Most mathematicians have an Erdés number of at most 4 or 5
= Drawing created by R. Graham in 1979

Network Streams, Embeddings, and Topology Learning Bellairs Workshop



Mathematicians collaboration graph

» Coauthorship graph G(V, &), N = 4301 nodes with Erdds number < 2

= No discernible structure from the adjacency matrix A (left)

» Community structure revealed after row-colum permutation (right)

(i) Obtained the ASE X for the mathematicians
(ii) Performed angular k-means on X's rows [Scheinerman-Tucker'10]
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International relations

» Ex: Dynamic network G; of international relations among nations
= Nations (/,) € &; if they have an alliance treaty during year t

France vs. UK vector angle difference (5 year windowing)
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» Track the angle between UK and France's ASE from 1890-1995
» Orthogonal during the late 19th century
» Came closer during the wars, retreat during Nazi invasion in WWII
» Strong alignment starts in the 1970s in the run up to the EU
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Online change point detection: Training

> ldea: Estimating function approach [Kirsch-Tadjuidje'15]
= Training set of m “clean” graphs with no change point
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Online change point detection: Monitoring

» Sequentially observe matrices A[m + 1],A[m+2],...

m+k

» Monitor the cumulative sum S[m, k] = Z ()A()A(—r - A[t])

t=m+1

Proposition: For large k and under the null hypothesis, ['[m, k] :=
|S[m, k]||* has a generalized x? distribution.

' \ — w[k]l[m, k]
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Delay and change detectability

» Q: Can we get insights on the incurred detection delay?
Solution k* > k. of w[k*|E,c[[[m, k*]] > th[k*]
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» Q: Under what conditions will we miss a change?

Need to have a small model “perturbation-to-imperfection” ratio
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Wireless network monitoring

» Extended RDPG to handle weighted, directed networks
> Real network of Wi-Fi APs. Hourly RSSI measurements for N = 6 nodes
= Ground-truth from network admin: AP 4 was moved on 10/30
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» Explainability via interpretable ASE = Identify source of change
» Reproducibility = Try it @ https://github.com/git-artes/cpd_rdpg

Network Streams, Embeddings, and Topology Learning Bellairs Workshop


https://github.com/git-artes/cpd_rdpg

Outlook

» Non-convex gradient-based ASE for scalability and model tracking
» Handle missing data, aligned embeddings via warm restarts
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» Embeddings and online change-point detection from graph signals
» Statistical properties of non-parametric
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Network topology inference

Online change point detection for random dot product graphs

Accelerated topology identification from smooth signals
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Learning graphs from data

» Learning graphs from nodal observations

» Ex: Central to network neuroscience

= Functional network from fMRI signals

v

Most GSP works: how known graph G(V, &) affects signals and filters

> Feasible for e.g., physical or infrastructure networks
> Links are tangible and directly observable

v

Still, acquisition of updated topology information is challenging

= Sheer size, reconfiguration, privacy and security

v

Here, reverse path: how to use GSP to infer the graph topology?

v

Goal: fast, scalable algorithm with convergence rate guarantees
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Graph signal processing (GSP)

2 X4
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» Graph G with adjacency matrix W € RV*N
= Wj; = proximity between i and j

X:

Xl /

» Define a signal x € R" on top of the graph Q‘
= x; = signal value at node j € V

X3 X5

» Total variation of signal x with respect to Laplacian L =D — W

1
TV(x) =x'"Lx = 5 ; Wi (xi — x;)?
i#j

» Graph Signal Processing — Exploit structure encoded in L to process x

= Use GSP to learn the underlying G or a meaningful network model
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Problem formulation

Rationale

> Seek graphs on which data admit certain regularities

> Nearest-neighbor prediction
> Semi-supervised learning
» Efficient information-processing transforms

» Many real-world graph signals are smooth (i.e., TV(x) is small)

> Graphs based on similarities among vertex attributes
> Network formation driven by homophily, proximity in latent space

Problem statement

Given observations X' := {x,}F_,, identify a graph G such that
signals in X' are smooth on G.
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Signal smoothness meets edge sparsity

» Form X = [xy,...,xp] € RN*P let x| € R1*P denote its i-th row
= Euclidean distance matrix E € RY*N, where E; := ||%; — %;|?
» Neat trick: link between smoothness and sparsity [Kalofolias'16]

P
1

D TV(xp) = trace(X LX) = 5IW o El

p=1

= Sparse £ when data come from a smooth manifold

= Favor candidate edges (i, ) associated with small Ej
» Shows that edge sparsity on top of smoothness is redundant

» Parameterize graph learning problems in terms of W (instead of L)

=- Advantageous since constraints on W are decoupled
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Scalable topology identification framework

» General purpose graph-learning framework

min {nw o Ells — a1 log(W1) + ﬁnwn%}
s.to diag(W) =0, Wy=W;>0,i%j

= Logarithmic barrier forces positive degrees d = W1
= Penalize large edge-weights to control sparsity

» Efficient algorithms incurring O(N?) cost
= Primal-dual (PD) [Kalofolias'16] and ADMM [Wang et al'21]

» Cost has no Lipschitz gradient — No convergence rates
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Equivalent reformulation

» Handle constraints on entries of W

» Hollow and symmetric — Retain w := vec[triu[W]] € Ry(Nfl)/z
> Non-negative — I{w >0} =0ifw > 0, else [{w > 0} =

» Equivalent unconstrained, non-differentiable reformulation

min { I{w = 0} + 2w e+ 3||w[3 —al’ log (Sw) }

=f(w) =—g(Sw)

= S maps edge weights to nodal degrees, i.e., d = Sw

» Non-differentiable f(w) is strongly convex, g(d) is strictly convex

> Problem miny{f(w) + g(Sw)} has a unique optimal solution w*
» Amenable to fast dual-based proximal gradient (FDPG) solver
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Dual problem and its properties

» Variable splitting: miny 4 {f(w) + g(d)}, s. to d = Sw
» Attach Lagrange multipliers A € R" to equality constraints
> Lagrangian L(w,d, A) = f(w) + g(d) — (X, Sw —d)
» (Minimization form) dual problem is miny {F(A) + G(A)}, where
F(A) := max {(STA,w) — f(w)},
G(A) = max{(-A,d) — g(d)}

» Strong convexity of f implies a Lipschitz gradient property for F

Lemma. Function F(\) is smooth, and the gradient VF(A) is

Lipschitz continuous with constant L := %
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Fast dual-based proximal gradient method

» Key: apply accelerated proximal gradient method to the dual

1
Ak = prox;_1¢ <wk - zVF(wk)) )

14 /14 4t}
2 )

tht1 =

te — 1
tht1

Wkl = Ak + ( ) Ak — Ak—1]

» Rewrite in terms of problem parameters L, «, 3, S, signals in e

Proposition. The dual variable update iteration can be equiva-
lently rewritten as Ay = wy — L™1(SWx — ug), with

w, = max (0 75ka —2e
k — ; 2/8 )
u Swyi — Lwy + \/(SV_Vk = ka)Z + 4all
k =
2
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Algorithm summary

Algorithm 1: Topology inference via fast dual PG (FDPG)

N—-1

Input parameters «, 3, data e, set L =
Initialize t; = 1 and w1 = Ao at random.
for k=1,2,...,do

W) = max (0 sT “2’;‘3 26)

SWy — Lw g ++4/ (SWy — Lwy )2 +4all

U, = >

Ak = wi — L7H(SWy — uy)
1+\/1+4r

thy1 = ———

Wit1 = Ak + (tk 1) [Ak — Ax—1]
end

-
Output graph estimate wy = max (0, %gfze)

» Complexity of O(N?) on par with state-of-the-art algorithms
» Non-accelerated dual proximal gradient (DPG) method for ty =1, k > 1
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Convergence rate analysis

> Let A* be a minimizer of the dual cost ¢(A) := F(A) + G(A). Then

2(N —1)[1X0 — A*|I3
Bk?

= Celebrated O(1/k?) rate for FISTA [Beck-Teboulle’09]

P(Ak) — (A7) <

» Construct a primal sequence wy = argmin,, L(w, d, Ax)

T _
Wi — argmax {(STAk,W> _ f(w)} = max (0, S)\2k762e)

Theorem. For all k > 1, the primal sequence wy defined in terms
of dual iterates Ak generated by Algorithm 1 satistifies

W*HZ < V 2(N — 1)||A0 - A*H2
— ﬂk .

[V —
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Convergence performance

» Recovery of random and real-world graphs from simulated signals
» Networks: (a) SBM, N = 400; (b) brain, N = 66; (c) MN road, N = 2642
» Signals: P = 1000 i.i.d. smooth signals x, ~ A/(0, LT + 10721y)
» Examine evolution of primal variable error ||, — w*||2

ADMM DPG |

[y, — w*||2

i
S,
)

- 10
0 100 200 300 400 500 0 500 1000 1500 2000 0 0 1000 2000 3000 4000 5000
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(c)

(@) (b)

» FDPG converges markedly faster, uniformly across graph classes
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http://www.ece.rochester.edu/~gmateosb/code/FDPG.zip

Outlook

> Learning graph topologies via algorithm unrolling

Ak_1f
Algorithm 1: Dual PG (DPG) i STAp_1 — 2e
Input parameters o, 3, data e, set L = X1 e 28
Initialize Ao at random. '
for k=1,2,..., do Ao T
S
wi = max (0, 2422 | Swi — LA
e = Swy—LAg_ ,Jr\/[sWA —LX,_1)2+4all / Wi : 9
A=A — L7 (SWk*uk)
end Ak l! \
Output graph estimate W), = max (0 —'\i“) Wk_:_, : X _E_’\,’C
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— 103
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» Online dynamic graph learning from streaming signals
> Challenge: dual problem is not strongly convex
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