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Agenda
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 Part II - Incremental (online) and ensemble Gaussian processes (IE-GP)

 Closing remarks and outlook

 Part I - Gaussian processes (GPs) and random features (RFs) 

 Part III.A - Bayesian (black-box or bandit) optimization using GPs

 Part III.B – Reinforcement learning (RL) using (E)GPs
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Motivating context

Classification Regression

 Nonlinear function models are widespread in real-world applications

Massive scale Unknown nonlinearity Unknown dynamics

 Challenges and opportunities

Uncertainty quantification

Reinforcement learning Dimensionality reduction
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 Gaussian processes (GPs) and random features (RFs) 

 GP/RF basics and applications

 GP links with wide and deep neural networks (DNNs)  

 Deep GPs

Part I
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Learning functions from data
Goal: Given data , find         : 

 Even unsupervised tasks boil down to function learning
 E.g., dimensionality reduction, clustering, anomaly detection …

y

x

Ex1. Regression: Curve fitting for e.g. temperature forecasting

Ex2. Classification: For e.g., disease diagnosis

[P. Spetsieris et al PNAS 2015]
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Learning functions with kernels
Model: view f  as deterministic from a Hilbert space  

cost regularizer

kernel

Q1. Kernel selection? Q2. Prior information?

 E.g.,  Least-squares cost and L2 regularizer kernel ridge regression 

Q3. Efficient solvers? Q4. Performance analysis?

 Bayesian view is well motivated!

 Given data                      , find 
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Goal: Learn posterior pdf of f using Bayes’ rule 

(as1) Likelihood 

GP-based learning

Data likelihood

Function posterior

(as0)

GP prior on f

Model: View learning function f as random with GP prior

C. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT Press, Cambridge, 2006.
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GP-based inference 

S1. Posterior pdf of function value at test input 

S2. Posterior pdf of test output

 Numerical or MC sampling for non-Gaussian likelihoods 

?

Goal: Given training data               and test input      , infer (pdf of)  

computable posterior

`transition prior’

likelihood
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 If likelihood also Gaussian, then 

+ -



 Mean and variance in closed form! 

 Wiener filtering

GP regression predictor 

+
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GP-based classifier
Challenge: likelihood is non-Gaussian; e.g., logistic 

 Gaussian approximation of non-Gaussian posterior [Williams et al.’98]

 Numerical or MC sampling approximation  

C. Williams and D. Barber, “Bayesian classification with Gaussian processes,” IEEE T-PAMI, 1998.
T. P. Minka, A family of algorithms for approximate Bayesian inference, PhD thesis, MIT, 2001.

S0. 

S1. 

S2. 
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GP kernel adaptivity and scalability
 Kernel (hyper) parameters; e.g., 

 For GP regression

 Kt selection decoupled from ft estimation; Gaussian approx. for classification  

 Curse of dimensionality (CoD)

Remedies: low-rank or structured Kt approximants [Quiñonero-Candela et al.’05], 
[Titsias’09], [Lázaro-Gredilla et al.’10], [Wilson et al.’15], [Nickisch et al.’18]

 Complexity          ; storage
 CoD also in kernel selection 

J. Quiñonero-Candela et al., “A unifying view of sparse approximate Gaussian process regression,” JMLR, 2005.
M. Titsias, “Variational learning of inducing variables in sparse Gaussian processes,” AISTATS, 2009.
A. Wilson et al., “Kernel interpolation for scalable structured Gaussian processes (KISS-GP),” ICML, 2015.
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Random features via Fourier spectrum  
RF1.  Draw D random vectors from the kernel’s Fourier transform 

RF2. Form 2Dx1 random feature (RF) vector

A. Rahimi and B. Recht, “Random features for large scale kernel machines,”  
Proc. Advances in Neural Info. Process. Syst., pp. 117-1184, Canada, Dec. 2008.

 RF-based linear kernel approximant

Key idea: Random linear function 

 Prior

2D-rank approx. of Kt

is a parametric GP with
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RF-driven parametric GPs

 Complexity ： scalable especially for

 Parametric generative model 

 Batch GPR predictor

Vanilla GP:

RF-based GP:

M. Lázaro-Gredilla et al., “Sparse spectrum Gaussian process regression,” JMLR, 2010.
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Incremental RF-GP learning
 Propagate posterior of    as in recursive Bayes  

 GPR

corrective pdf
via 

predictive pdf
via 

 Complexity

[Gijsberts-Metta’13] 

A. Gijsberts and G. Metta, “Real-time model learning using incremental sparse spectrum GPR,” 
Neural Networks, 2013. 
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Hashtag popularity

 GPR model trained per hashtag

D. Preotiuc-Pietro and  T. Cohn, "A temporal model of text periodicities using Gaussian processes," 
Proc. Conf. on Empirical Methods of NLP, pp. 977-988, Seattle, WA, 2013.

Extrapolation for #goodmorning

 Can also predict hashtag from tweet

 xh,t timestamp of hashtag h with yh,t occurrences     

Interpolation for #goodmorning
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Astronomical time series modeling

 GPs used for exoplanet discovery and characterization

yt : Stellar rotation yt : Astroseismic oscillations

D. Foreman-Mackey, E. Agol, S. Ambikasaran, and R. Angus, Fast and scalable Gaussian process 
modeling with applications to astronomical time series, The Astronomical Journal, 2017.

 Special kernel matrix (tridiagonal) can afford large-scale KF-type inversion 

 xt timestamp with yt astronomical observation at t
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GP classification for remote sensing

 Large-scale imagery prompts RF approximation for GPs

P. Morales-Álvarez, A. Pérez-Suay, R. Molina, G. Camps-Valls, “Remote sensing image classification with
large-scale Gaussian processes,” IEEE Trans. Geoscience and Remote Sensing, pp. 1103–14, 2018.

 Classify whether pixels of multispectral images belong to clouds or not

RGB Infrared GP classifier

 xt : multispectral features per pixel; yt ϵ {0,1} labels (annotated for training)     

Classification rate vs frame no.
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GPs for dynamic state estimation

J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian Process Dynamical Models,” 
Proc. NIPS, pp 1441–1448, 2006.

Goal: Given observations yt , estimate xt (offline) using GP models for f and g 

 GP models can extrapolate and interpolate missing data

 Gaussian kernel  Linear kernel

 Blue dots are 
state estimates

 Green dots are 
state predictions
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Deep neural networks

 First layer

 Next  layers 

.

.

.

Input layer Layer 1 Layer 2 Layer 3

Q. How about parametric function estimators? A. E.g., Deep neural nets (DNNs)
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Bayesian neural networks (BNNs)

 Zero-mean Gaussian BNN parameters                     with variances 

 For bounded variance per layer, normalize variances per neuron:  

Proposition 1 [Neal‘96] For L=2, if                    have bounded variances, then as  

the output                    (nonlinearity φ) converges in distr. to a 0-mean GP 

with

R. M. Neal, Bayesian Learning for Neural Networks, Springer, 1996.

 independent across 
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Sketch of the proof …  

 Gaussian BNN parameters

R. M. Neal, Bayesian Learning for Neural Networks, Springer, 1996.

 Central limit theorem asserts as                a Gaussian pdf with mean and variance

 Likewise for t  training vectors 

 For L=2
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Normal limiting distribution across layers

T. Hazan and T. Jaakkola. “Steps Toward Deep Kernel Methods from Infinite Neural Networks,” ArXiv, 2015
A.G. Matthews, et al., “Gaussian Processes Behavior in Wide Deep Neural Networks,” ICLR, 2018.

Proposition 2. If the st layer input is Gaussian distributed with mean and variance

then as                       the limiting pdf of the l-th layer  input is also Gaussian with

 Limiting GP has recursively computable kernels



23

Deep BNNs vis-a-vis GPs

Q. How about finite ? 

A.G. Matthews, et al., “Gaussian Processes Behaviour in Wide Deep Neural Networks,” ICLR, 2018.

Theorem. For a BNN with ReLU as      and any              there are strictly increasing 

and thus             , so that as             the NN output pdf converges to a GP

with kernel 

 Width function      :  
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Deep BNNs versus GPs - Empirical comparison

 Compare                      and                   using maximum mean discrepancy metric 

 Sample estimator over κ-induced RHKS functions (in    ) [Gretton etal’12]

A. Gretton, et al., “A Kernel Two-sample test,” Journal of Machine Learning Research, 2012. 
A.G. Matthews, et al., “Gaussian Processes Behaviour in Wide Deep Neural Networks,” ICLR, 2018.

 Faster convergence for wider 
and shallower BNNs 

 Sample MMD2 versus 
number of neurons per layer 

 Draw                  and 
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Going deep…

A. Damianou, and N. Lawrence, "Deep Gaussian processes," 
Proc. of AISTATS, pp. 207-215, Scottsdale, AZ, April 2013.

 Deep (D) GPs: cascade of L-layer GPs to boost expressiveness

DGP prior
(non-Gaussian) 

 Intractable integration due to CoD

Likelihood
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RF-based DGPs

K. Cutajar, E.V. Bonilla, P. Michiardi, and M. Filippone, “Random feature expansions for deep 
Gaussian processes,” Proc. ICML, pp. 884–893, Fort Lauderdale, FL, April 2017.

 Parametric layer-to-layer mapping

 Per-datum likelihood                    ,

Kernel parameters

 Common kernel across each layer nodes
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Training and testing with DGPs

Training: find         and                      using variational inference

Testing: draw realizations                     to obtain output posterior pdf  

 Approximate intractable                      with tractable                                                

 Solvable via stochastic optimization
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Testing DGP for regression
Benchmarks: DGP-EP [Bui et al.’16], VAR-GP [Hensman et al.’15], dropout-based DNN

Bui et al., “Deep Gaussian Processes for Regression using Approximate Expectation Propagation,” ICML, 2016.
Hensman et al., “Scalable variational Gaussian process classification,” Proc. AISTATS, 2015.

 RF-based DGPs lower RMSE and quantify uncertainty 

Powerplant

Protein

RMSE vs runtime MNLL(uncertainty quant.)(t=9,568, d=4)

(t=45,730, d=9)

𝒙𝒙𝜏𝜏: protein structure attributes
𝑦𝑦𝜏𝜏: protein functionality

𝒙𝒙𝜏𝜏: hourly ambient measurements 
𝑦𝑦𝜏𝜏: electric energy output
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Testing DGP for classification

 RF-based DGPs scale well; 
exhibit lower error; and 
quantify uncertainty

Spam

EEG

Error rate vs runtime
(t=4,601, Dx=57)

(t=14,979, Dx=14)

𝒙𝒙𝜏𝜏: freq. of words/characters per email
𝑦𝑦𝜏𝜏: 1 (spam) or 0 (not spam)

𝒙𝒙𝜏𝜏: measurements from 14 electrodes
𝑦𝑦𝜏𝜏: 1 (alcoholic) or 0 (not alcoholic)

MNLL(uncertainty quant.)
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 IE-GP basics and analysis

 Dynamic IE-GP learning

 Unsupervised learning using (E) GPs

Part II

 Incremental (online) and ensemble Gaussian processes (IE-GP)

 Graph-guided EGP-based learning
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Motivation for incremental emsembles

Q. Lu, G. V. Karanikolas, Y. Shen, and G. B. Giannakis, "Ensemble Gaussian Processes with Spectral 
Features for Online Interactive Learning with Scalability," Proc. of AISTATS, Palermo, Italy, June 2020.

 Adaptability to operational environments

 Uncertainty quantification and scalability

 Performance guarantees valid even in adversarial settings

 Highly expressive model class

 Online refinement of the model

Incremental Ensembles of GPs

 Robustness to unknown dynamics  
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Ensemble GP learning

 GP prior per learner m

 Ensemble (E) GP prior

Q. Lu, G. V. Karanikolas, Y. Shen, and G. B. Giannakis, "Ensemble Gaussian Processes with Spectral 
Features for Online Interactive Learning with Scalability," Proc. of AISTATS, Palermo, Italy, June 2020.

 Learners seek (in parallel)                        

 EGPs can model a richer space of learning functions  

Q. How expressive is a single GP? 

 RF-based EGP
(non-Gaussian prior) 

A. The more the merrier … 

 Meta-learner weighs experts using
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Incremental EGP
Prediction

 Gaussian likelihood         low complexity                     updates  

Correction

• Expert      forms RF-based prediction

• Ensemble prediction

• Expert      updates

• EGP meta-learner updates weight
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Regret analysis for IE-GP
Goal: Bound performance of IE-GP relative to batch benchmark  

 No assumptions on data generation       valid in adversarial settings  

IE-GP prediction loss instantaneous benchmark loss

(as1)               is convex and continuously twice differentiable wrt

(as2)               has bounded first two derivatives wrt

(as3)   Kernels                are shift-invariant and bounded

Theorem. Under (as1)-(as3), IE-GP attains                             w.h.p. 
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Switching EGP for global dynamic models 

Q. Lu, G. V. Karanikolas, and G. B. Giannakis, ”Incremental Ensemble Gaussian Processes,”
submitted to IEEE-TPAMI, June 2021.

Q. How about global and local dynamics? A. Time-varying learner index     and

 Markov chain dynamics at meta-learner:

 Weight prediction at meta-learner

 Online loss for switching (S) IE-GP

 Used to form ensemble prediction
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Regret analysis for global SIE-GP learning

36

Switching regret: accounting for model shift in the benchmark

(as4)

(as5) Number of model switches  

Theorem. Under (as1)-(as5), SIE-GP attains                                 w.h.p.

Q. Lu, G. V. Karanikolas, and G. B. Giannakis, ”Incremental Ensemble Gaussian Processes,”
submitted to T-PAMI, June 2021.



Q. How each individual GP learners account for dynamics? 

A. Time-varying       with state-space (e.g., random walk) evolution  
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Local dynamic (D) IE-GP models 

Q. Lu, G. V. Karanikolas, Y. Shen, and G. B. Giannakis, "Ensemble Gaussian Processes with Spectral 
Features for Online Interactive Learning with Scalability," Proc. of AISTATS, Palermo, Italy, June 2020.

 Kalman filter (KF) updates exact for Gaussian likelihood

Outlook: DI-EGP for extended KF, unscented KF, and particle filtering

 Predictive pdf accounts for state transition 
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Testing EGP-based regression

Bui et al., ”Streaming sparse Gaussian process approximations,” NIPS, 2017.
Gijsberts et al., “Real-time model learning using incremental sparse spectrum GPR,” Neural Networks, 2013.
Shen et al., “RF-based online MKL in environments with unknown dynamics,” JMLR, 2019.

 Benchmarks:SSGP [Bui et al.‘17], AdaRaker [Shen et al.‘19]I-SSGPR [Gijsberts et al.‘13],

 Normalized mean-square error

 (D)IE-GP achieve state-of-the-art nMSEand running time

Tom’s Hardware Air QualitySARCOS
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Testing EGP-based classification

Banana IonosphereMusk

 Benchmarks: SSGP [Bui et al.‘17], AdaRaker [Shen et al.‘19]

 (S)IE-GP outperforms alternatives in classification error and running time



Dimensionality reduction with RFs and GPs

GPLVM postulates a nonlinear map f per dimension with GP prior [Lawrence ‘05]

 Random feature (RF) approximation for kernel     [Rahimi et al.’08]    

Goal: Obtain low-dimensional representation       for observation 

 RFs turn nonparametric fd to a linear parametric approximant 
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 For (normalized) `stationary’ kernel

draw , and form

to obtain kernel approximant:

A. Rahimi and B. Recht, “Random features for large scale kernel machines,” NIPS, 2008

N. Lawrence, “Probabilistic non-linear principal component analysis with Gaussian process latent variable models,” JMLR, 2005



RF-based GPLVM

 Marginalization over 

 RF approximation allows for               evaluations of likelihood and gradients

 MAP estimates 

 Nonconvex solver using e.g., conjugate gradient method [Møller ‘93]
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 Conditional likelihood

G. V. Karanikolas, Q. Lu, G. B. Giannakis, “Online Unsupervised Learning using Ensemble Gaussian 
Processes with Random Features,” Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing, 2021.



Online RF-based GPLVM

 Recursive updates

 Conditional likelihood: 

 MAP estimate of       

Goal. Seek latent representation      of new observation     given past 

 In practice, updates performed on the Cholesky factor of 

42



Ensemble online RF-based GPLVM

Algorithm for incoming  

• Per expert embeddings                computed in parallel

Challenge: Online choice of kernel? 

Remedy:    Ensemble of      experts, each with a different kernel 

• Output “best” embedding across experts                   (MAP estimate)                     

• Meta-learner updates expert weights

43G. V. Karanikolas, Q. Lu, G. B. Giannakis, “Online Unsupervised Learning using Ensemble Gaussian 
Processes with Random Features,” Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing, 2021.
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GP-based test for dimensionality reduction
 Broadens probabilistic PCA using a GP latent variable model (LVM)

N. D. Lawrence, “Probabilistic nonlinear principal component analysis with Gaussian process  
latent variable models,” Journal  of  Machine  Learning  Research,  pp. 1783–1816, 2005. 

 An independent GPR per dimension d

Goal: Given Dy x 1 vectors              ,  find latent Dx x 1 vectors  

PCA (Dx=2) GPLVM (Dx=2)

 GPLVM with linear kernel boils down to PCA with quantified uncertainty



Testing (E)RF-GPLVM

Alternatives: variational [Damianou et al. ‘16], online [Yao et al. ‘11], GPLVM [Lawrence ‘05] 

Figure of merit: error rate of nearest neighbor classification rule vs runtime

 ERF-GPLVM outperforms alternatives on benchmark datasets

Oil USPS 0-4

A. C. Damianou, M. K. Titsias, and N. D. Lawrence, “Variational inference for latent variables and uncertain inputs in Gaussian processes,” JMLR, 2016
A. Yao, J. Gall, L. V. Gool, and R. Urtasun, “Learning probabilistic non-linear latent variable models for tracking complex activities,” NIPS, 2011
N. Lawrence, “Probabilistic non-linear principal component analysis with Gaussian process latent variable models,” JMLR, 2005

45
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Learning functions over graphs

 Graph-guided semi-supervised learning (SSL)

 Graphs: model complex systems  
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Graph-guided incremental SSL 

 Graph                           with vertex set     and N x N adjacency matrix  

 Real-valued function on graph 

 : nodal value on observed set 

 : feature value at node n

Goal: Given and                   , predict values                   ,    

 Incremental setting: use                                 to predict 
and correct after          is observed 
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Incremental Graph-adaptive EGP

 Complexity

 Learner m
Prediction Correction

 Weight updates

 Meta-learner

Idea: Use one-hop connectivity vector       as input:

K. D. Polyzos, Q. Lu, G. B. Giannakis, “Graph-Adaptive Incremental Learning using an Ensemble of 
Gaussian Process Experts,” Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing, 2021.
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GradEGP vis-à-vis GCNs

 Batch approach      storage demand 

Conventional GCNsGradEGP

 Incremental       reduced storage 

 Demanding training phase Scalable online updates

 Deterministic       only point estimates  Bayesian       uncertainty quantification 

 Additional nodal features needed No need for additional nodal features

 Input: connectivity pattern of nodes Input: encrypted version connectivity 
pattern of nodes        privacy

T. N. Kipf, M. Welling, “Semi-Supervised Classification with Graph Convolutional Networks,” ICLR, 2016.

 Comparison with graph convolutional networks (GCNs) 
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Testing GradEGP

Benchmarks

Synthetic SBM (N=60) Email Eu (N=1,005) Network delay (N=70)

 Normalized mean-square error (NMSE)
Figures of merit

 Runtime

 GP [Rasmussen et al ’06]  Kernel ridge regression (KRR) [Romero et al ‘16] 
 GradRaker [Shen et al ‘19]
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Performance with uncertainty quantification
 NMSE versus n

 GradEGP outperforms alternatives and estimates stay within confidence intervals

 GradEGP with uncertainty quantification

K. D. Polyzos, Q. Lu, G. B. Giannakis, “Graph-Adaptive Incremental Learning using an Ensemble of 
Gaussian Process Experts,” Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing, 2021.
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Runtime comparison

(N=60) (N=1,005) (N=70)

 GradEGP runtime less than scalable GradRaker in large-scale networks

K. D. Polyzos, Q. Lu, G. B. Giannakis, “Graph-Adaptive Incremental Learning using an Ensemble of 
Gaussian Process Experts,” Proc. of Intl. Conf. on Acoustics, Speech, and Signal Processing, 2021.
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Q. More informative graph guidance than an ? A. How about per-node “egonet”?

 N x N adjacency matrix of node n egonet:  

 Egonet of node n

 Node n

 Direct neighbors of node n

 All edges connecting direct neighbors

 “Egonet feature” vector                                       

Model: Use egonet feature vector         as input

K. D. Polyzos, Q. Lu, G. B. Giannakis, “Ensemble Gaussian Processes over Egonet Features for Online 
Graph-Guided Learning,” Proc. of ASILOMAR, 2021.

Higher-order interactions

“GradEGP-ego”

 Sparse matrix due to limited connectivity 
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Egonet feature vector per node n

 captures connectivity of node n to all nodes through its egonet

 Degree of node n

 Connectivity of any node m with node n as a sum of edge weights with its egonet

 Collectively, as eigenvector of max eigenvalue 

 can also include edge centrality, clustering coefficient, network cohesion [Kolaczyk’96] 

E. D. Kolaczyk, Statistical Analysis of Network Data, Springer-Verlag New York,1996.

 Our          comprises degree and eigenvector centralities (a.k.a. `vertex centrality’) 

n m’
m
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Testing GradEGP-ego
Benchmarks: GP [Rasmussen et al ’06], KRR [Romero et al ‘16], GradRaker [Shen et al ‘19]

 Prediction performance with confidence intervals

 GradEGP-ego: state-of-the-art prediction performance
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Summarizing remarks

 Ensemble GPs offer wide adaptability to operational environments

 GPs as priors for nonparametric random function 
models with DNN links and uncertainty quantification 

 Online expert refinement with performance guarantees

 Robustness to (un)modeled global and local dynamics  

 RF offers linear parametric approximate models 
for online learning with scalability

 Interactive closed-loop reinforcement learning via (E) GPs

 Interactive open-loop learning (Bayesian optimization) using GPs 

 Supervised, unsupervised, and semi-supervised learning over graphs 

 Deep GP for richer model expressiveness
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Research outlook  

Q1. Desirable sweet spots by going wide and deep?

Q2. Particle filtering for nonlinearities and dynamics? 

Thank You! Stay safe! 

Q3. Distributed/federated IE-GP under computing/communication constraints?

Q4. EGP-based surrogate model for BO with ensemble acquisitions?

Q5. EGP-based value/policy function estimation for multi-agent RL?

Q6. Distributional robust EGP learning?



http://spincom.umn.edu

Credit to the ensemble that credit is due ...

Dr. P. Traganitis
UofM

Dr. Qin Lu
UofM

G.-V. Karanikolas
UofM

Prof. Y. Shen
UCI

Questions?
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K. Polyzos
UofM
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