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graphs and graph signals

▶ A finite graph G = (V,E)

▶ Functions on its nodes
X(G) = {x : V → R}
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graph shift operators

Graph shift operators “diffuse” signals using the local topology
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sparse matrix-vector multiplication

▶ For x ∈ X(G), v ∈ V , graph shift operators follow

[Sx]v =
∑

u∈N(v)

[S]vu[x]u

▶ Identify X(G) with Rn

▶ S becomes a square n× n matrix
▶ x becomes a vector in Rn
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graph filtering

▶ Graph shift operators are “one-hop” diffusions

▶ A graph filter of degree K is simply a degree K polynomial:

H(S) =
K∑
k=0

hkS
k

▶ Yields the following locality property:

[H(S)x]v only depends on the signal and topology of NK(v)
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key questions

▶ What invariants are important in graph filtering?

▶ How to compare behavior of one filter across two graphs?

▶ Spectral analysis?

▶ How can graph signals be understood in the limit?
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machinery: rooted balls

▶ A rooted graph is a graph with a root
▶ If a graph is a tuple G = (V,E),
▶ A rooted graph is a triple Ḡ = (V,E, r), for some r ∈ V

▶ Signals are the same: X(Ḡ) = {x : V → R}

▶ A rooted K-ball is a rooted graph of radius K

▶ Denote by B̄K(v) the K-ball centered at v, for v ∈ V

▶ The corresponding signal by x̄K(v)

8 / 26



9 / 26



the space of motifs

▶ K-motifs are elements of

ΩK =
∐

Ḡ:rad(Ḡ)≤K

X(Ḡ)

▶ Define MK : V → ΩK as

MK(v) = (B̄K(v), x̄K(v))

▶ The diagram commutes

(G, x) (B̄K(v), x̄K(v))

R

MK(v)

[H(S)x]v [H(S̄)x̄]v
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locality of graph filtering
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probabilistic graph representations

▶ ΩK is a regular, Hausdorff topological space

▶ Approach: a graph with a signal is just a big bag of motifs

▶ For a graph G = (V,E) and signal x ∈ X(G), let U be the uniform
probability measure on V

▶ Define µ as the pushforward of U by MK

µ = (MK)∗(U)
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consequences

▶ The probability measure µ on ΩK does not care too much about the size
of the underlying graph

▶ A means to look at graphs and graph signals in a way that does not
depend on them having the same size

▶ Look at graphs through the lens of K-hop functions
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spectral analysis of graph signals

▶ A GSO of special interest: the graph Laplacian

[∆]uv =


deg(v) u = v

−1 (u, v) ∈ E

0 else.

▶ Spectrum contained in [0, 2 · dmax]

▶ Measures signal smoothness in the following way

⟨x,∆x⟩ =
∑

(u,v)∈E

(x(v)− x(u))2
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why are these called Fourier modes

▶ Let the eigenpairs of ∆ be (λj, zj) for 1 ≤ j ≤ |V |

▶ λj = ⟨zj,∆zj⟩

Figure from (Ortega et. al., 2018)

15 / 26



the power spectral measure

▶ The eigenvectors zj form an orthobasis for X(G)

▶ The “graph Fourier transform” represents a signal in this basis

x̂j = ⟨zj, x⟩

▶ Define a power distribution function Px : R → R

Px(λ) =
1

|V |
∑

j:λj≤λ

x̂2
j

▶ A finite measure on [0, 2 · dmax]
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moments of the power spectral measure

▶ For x ∈ X(G) with GFT x̂, define

mK(x) :=

∫
R
λKdPx(λ) =

1

|V |
⟨x,∆Kx⟩

▶ For ((V,E, r), x) ∈ ΩK , put

m̄K((V,E, r), x) = [x]r · [∆Kx]r

▶ It holds that

mK(x) = Eµ[m̄K ]
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descencion to a local map

The following diagram commutes

(G, x) µ

R

(MK)∗

mk E[m̄K ]
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why one ought to care

▶ For a K/2-tap graph filter H(∆) with coefficients {hk}Kk=0

▶ The MSE under AWGN η is given by

E
[

1

|V |
∥x−H(∆)(x+ η)∥22

]
=∫

R
(1−H(λ))2︸ ︷︷ ︸

degree K polynomial

dPx(λ) +

∫
R

(H(λ))2︸ ︷︷ ︸
degree K polynomial

dPη(λ)

▶ Performance in terms of integrals of power spectral measure

▶ If you know enough moments, you know the MSE
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convergence

▶ Let {Gn, xn}∞n=1 be a sequence of graphs and graph signals satisfying the
following assumptions:
1. The nodes of the graphs have uniformly bounded degree (dmax = D)
2. The graph signals are uniformly bounded

Theorem

▶ Let K ≥ 0 be given

▶ Denote by µn the pushforward measure of (Gn, xn)

▶ If the measures µn converge weakly, then mK(xn) converges

▶ If this holds for all K, the measures Pxn converge weakly
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proof sketch

Lemma

There exists a compact subspace A ⊆ ΩK such that for all bounded degree
graphs with bounded signals, the measure µ satisfies supp(µ) ⊆ A

▶ Compactness: all continuous functions are bounded

▶ m̄K is continuous, thus bounded

▶ Weak convergence of measure implies convergence of expectations

▶ Weak convergence of power measures: Stone-Weierstrass theorem
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finite approximation

Can we approximate arbitrarily large graphs with small graphs?

Theorem

▶ Suppose a “graph signal property” J descends to the expectation of a
continuous function J̄ on ΩK

▶ Let ϵ > 0 be given

▶ There is an n(ϵ) < ∞ such that for any (G, x) of degree D and signal in
[−1, 1], there exists a graph/signal (G0, x0) on at most n(ϵ) nodes where
|J(G, x)− J(G0, x0)| < ϵ
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proof sketch (1)

▶ Let ΩK,D[−1, 1] be the compact subspace of ΩK that supports all graphs
of degree bounded by D with signals contained in [−1, 1]

▶ ΩK is very nice → ΩK,D[−1, 1] admits a metric structure
▶ Urysohn’s metrization theorem
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proof sketch (2)

▶ If J̄ is continuous, it is (ϵ, δ)-uniformly continuous on ΩK,D[−1, 1]

▶ By Prokhorov’s theorem, the set of probability measures of bounded
graphs is compact

▶ Can argue for the continuity of J by descent to J̄

▶ Typical maximal packing arguments for function approximation: put
n(ϵ) to be the maximum graph size of a maximal δ/2-packing of the space
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further considerations

▶ Looking at motif distributions in graph signal processing can be used to
understand the graph Fourier transform
▶ This talk essentially looked at polynomials on Rn

▶ Attach any compact feature space to the nodes (GNNs)

▶ Compare graphs using integral probability metrics
▶ Metrize ΩK , yields a meaningful Wasserstein 1-distance between graphs based

on motif densities via the pullback of the metric

▶ Theory of graph limits
▶ Graphons and signals on them are studied by Ruiz, Chamon, Ribeiro, as well as

Morency & Leus
▶ Only handles dense graph limits: unbounded degree
▶ Appropriate limit objects for bounded degree (very sparse) graphs: graphings

(Lovász, 2012)
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