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INTRODUCTION

▶ Machine learning has made significant strides in handling and analyzing heterogeneous data.
▶ Such data comprise diverse types of variables including numerical, categorical, count, and

ordinal ones.
▶ Traditional modeling approaches face challenges in effectively handling such mixed datasets.
▶ For instance, electronic health records in hospitals contain various clinical measurements,

diagnoses, and demographic information, combining numerical lab values with categorical
variables such as race and blood type.

▶ The effective managing and extracting of meaningful insights from heterogeneous data holds
immense importance.

▶ Machine learning tasks can be of different types including classification, regression, and
imputation. Can we approach them in a unified way?
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DEEP GENERATIVE MODELS BASED ON GAUSSIAN PROCESSES

▶ Deep generative models are powerful unsupervised methods, capable of capturing latent
structures in complex, high-dimensional data.

▶ Can deep structures and abstract learning be accomplished using smaller datasets?
▶ One class of such methods is known as deep Gaussian processes (DGPs).
▶ The building blocks of DGPs are Gaussian processes (GPs).
▶ GPs are Bayesian models that exploit distributions over functions, and they offer robustness

against overfitting while providing a principled approach to tune hyperparameters and assess
uncertainty bounds in their outputs.

▶ An extension of the use of GPs to unsupervised settings are GP latent variable models (GPLVMs),
and they aim at learning smooth mappings from a latent space to the data space.

▶ These expressive unsupervised methods have demonstrated their ability to capture latent
structures in complex, high-dimensional data.

M. AJIRAK AND P. M. DJURIĆ 2024 BELLAIRS WORKSHOP ON MACHINE LEARNING AND STATISTICAL SIGNAL PROCESSING, HOLETOWN, BARBADOS 2 / 19



AN INTRODUCTORY EXAMPLE OF A GAUSSIAN PROCESS
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(a) In-distribution (green star) and out-of-distribution
(red star) test inputs.
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Figure 1
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GAUSSIAN PROCESSES

▶ A GP is a collection of random variables of which any
finite subset has a multivariate Gaussian distribution.

▶ A GP is parameterized by its mean function and
covariance function

f (x) ∼ GP
(
m(x), k

(
x, x′

))
m(x) = E[f (x)]

kθ(x, x′) = E
[
(f (x)− m(x))

(
f
(
x′
)
− m

(
x′
))]

▶ We learn the hyperparameters by optimizing the log
marginal likelihood

p(y|X) =
∫

p(y|f,X)p(f|X)df

log p(y|X) = −1
2

y⊤
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KNN + σ2
NIN

)−1
y
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GAUSSIAN PROCESS LATENT VARIABLE MODELS

▶ Unsupervised extension of GPs
▶ The outputs Y ∈ RN×D are associated with inputs X ∈ RN×Q through D different GPs

p(Y|X) =
D∏

d=1

p (yd|X)

p (yd|X) = N
(

yd|0,KNN + β−1IN

)
▶ The goal is to find the posterior of the latent input X, p(X|Y).
▶ Standard variational inference

p(X|Y) ≈ q(X) =
N∏

n=1

N (xn|µn,Sn)

p(Y) ≥
D∑

d=1

∫
q(X) log p(yd|X)dX −KL(q(X)∥p(X))

▶ Thus, instead of treating the latent variables as deterministic quantities, the Bayesian GPLVMs
represent them as random variables following respective probability distributions.
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A PICTORIAL DESCRIPTION AND AN EXAMPLE
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Figure 3. Mapping from a latent space to a data space
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(a) D = 10, N = 100, RBF
kernel with l = 0.2, and
β = 0.01.
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(b) Three different GPLVMs.

Figure 4. An example of 10-dimensional feature vectors projected on a two-dimensional space.
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INFERENCE WITH INDUCING POINTS

▶ The model is defined as follows:

p(X) =
N∏

n=1

p(xn)

p(F|U,X,θ) =
D∏

d=1

N
(

fd;KNMK−1
MMud,RNN

)

p(Y|F,X, σ2
y) =

N∏
n=1

D∏
d=1

N
(

yn,d; fd (xn) , σ
2
y

)
where F ∈ RN×D and U ∈ RM×D; KNN corresponds to a covariance matrix generated by
evaluating a user-specified positive-definite kernel function kθ (x, x′) on the latent points {xn}N

n=1,
with hyperparameters θ, which are shared across all dimensions D. Similarly, KMM is a
covariance matrix evaluated on the latent points {zm}M

m=1. Finally,

RNN = KNN − KNMK−1
MMKMN

where KNM ∈ RN×M and KMN ∈ RM×N are cross-covariance matrices evaluated at the latent
points {xn}N

n=1 and {zm}M
m=1.

▶ The unknowns of the model are F,U,X, θ, and σ2
y .

▶ The joint posterior of interest is p(F,X,U,θ, σ2
y|Y).

▶ Learning the unknowns is a highly nonlinear problem.
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EVIDENCE LOWER BOUND

log p(Y) = log

∫
p(X)p(U)p(F|X,U)p(Y|F)dXdFdU

≥ −KL(q(X)∥p(X))− KL(q(U)∥p(U))

+

N∑
n=1

D∑
d=1

∫
q (xn) q (Ud) p (fnd|xn,Ud)

× log p (ynd|fnd)dxndfndUd := L

M. AJIRAK AND P. M. DJURIĆ 2024 BELLAIRS WORKSHOP ON MACHINE LEARNING AND STATISTICAL SIGNAL PROCESSING, HOLETOWN, BARBADOS 8 / 19



CATEGORICAL VARIABLES

▶ The output Y ∈ RN×D is categorical
▶ Motivation: clinical patient records

Exam 1 : c11 c12 · · · c1K
Exam 2 : c21 c22 · · · c2K

...
...

...
. . .

...
Exam D : cD1 cD2 · · · cDK

yn =


yn1
yn2

...
ynD


▶ Form of a real-world database

Y =


y11 y21 · · · yN1
y21 y22 · · · yN2

...
...

. . .
...

yD1 y2D · · · yND


D×N

M. AJIRAK AND P. M. DJURIĆ 2024 BELLAIRS WORKSHOP ON MACHINE LEARNING AND STATISTICAL SIGNAL PROCESSING, HOLETOWN, BARBADOS 9 / 19



THE INVOLVED DISTRIBUTIONS

▶ Evidence

p(Y) =
∫

p(X)p(U)p(F|X,U)p(Y|F)dXdFdU

▶ The prior

p (fnd|xn,Ud) =

K∏
k=1

N (fndk;k⊤
d,nMK−1

d,MMudk,

kd,nn − k⊤
d,nMK−1

d,MMkd,Mn)

▶ The posterior distribution of X,F and U

q(X,F,U) = q(X)q(U)p(F|X,U).

▶ We put variational distributions q(X) and q(U)
on X and U, respectively.

(a) Latent weights

(b) Inducing variables

Figure 5. Latent weights and inducing variables.
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INFERENCE OF THE MODEL

xnq
iid∼ N

(
0, σ2

x

)
Fdk

iid∼ GP (0, kd)

fndk = Fdk (xn)

umdk = Fdk (zm)

p(ynd = k) =
exp (fndk)∑K

k′=1 exp (fndk′)

Figure 6. A graphical representation of a model for
categorical variables.
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MIXED CATEGORICAL AND NUMERICAL DATA

The generative model

xn
iid∼ N (0,Σ)

Fd,k
iid∼ GP (0,Kd) , d = 1 : Dc

fn,d,k = Fd,k (xn) , d = 1 : Dc

Fd
iid∼ GP (0,Kd) , d = Dc+1 : Dc+Dq

fn,d = Fd (xn) , d = Dc+1 : Dc+Dq

p(yn,d = k) =
exp

(
fn,d,k

)∑K
k′=1 exp

(
fn,d,k′

) , d = 1 : Dc

p(yn,d) = N (fn,d, σ2
q), d = Dc+1 : Dc+Dq

… …

Figure 7. A generative model, where every
dimension in the observation vector
yn = [yn1, . . . , ynD] corresponds to either
numerical or categorical variable.
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DEEP GAUSSIAN PROCESSES LATENT VARIABLE MODELS

x f yF Y

Figure 8. A two-layer DGPLVM. The functions F and Y are determined by the GPs.

▶ DGPs are organized as sequences of hidden layers of latent variables.
▶ The nodes in this architecture serve as inputs for the layer to the right, while the observed

outputs reside in the leaves of the hierarchical structure.
▶ GPs play a crucial role in modeling the relationships between these layers.
▶ Each layer in the DGP is essentially a GPLVM, where latent variables can be approximately

marginalized, allowing for the computation of a variational lower bound on the likelihood.
▶ The appropriate size of the latent spaces can be determined using automatic relevance

determination (ARD) priors.
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MULTI-INPUT – MULTI-OUTPUT GENERALIZATION

▶ Multi-layer generalization of GPs and
GPLVMs

▶ Input layer X = F0 ∈ RN×Q

▶ Intermediate latent layers Fl ∈ RN×Dl
for

l = 1, . . . ,L
▶ Observation layer, denoted as Y ∈ RN×D

▶ The layers are characterized by inducing
inputs Zl and inducing outputs Ul

▶ The input X can be unobserved with our
choice of prior
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Figure 9. A network of GPs.
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A TWO-STAGE FRAMEWORK FOR DEEP GPLVM

The generative model:

xn ∼ p(x)

Fd ∼ GP
(

0, kf
d(., .)|θ

f
d

)
fnd = Fd(xn)

Yd ∼ GP
(
0, ky

d(., .|θ
y
d)
)

ynd = Yd(fnd) Figure 10. A graphical representation of the generative
model.
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INFERENCE

▶ The marginal distribution of each variable is defined by

pθd(ynd) = Ep(fnd)pθd(ynd|fnd) (1)

▶ The optimization objective is to maximize

N∑
n=1

Eqϕd (fnd|ynd) log
pθd(ynd|fnd)p(fnd)

qϕd(fnd|ynd)
(2)

▶ The model of fnd is given by

fnd ∼ qϕd (fnd|ynd) , ∀d ∈ {1, . . . ,D} (3)

▶ The optimization objective is to maximize

N∑
n=1

Eqλ(xn|fn,yn) log
pψ (fn, xn)

qλ (xn|fn,yn)
(4)
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EXPERIMENTS AND RESULTS ON PROMOTE DATA

▶

AvgErr =
1
D

∑
d

err(d) (5)

▶

err(d) =
1
n

N∑
n=1

I (ynd ̸= ŷnd) (6)

▶

err(d) =

√
1
n
∑N

n=1 (ynd − ŷnd)
2

max (yd)−min (yd)
(7)

Table 1. Average imputation error for different variable types with 20% of missing data of each variable.

Depression Financial Emotional
(Continuous) (Categorical) (Binary)

Mean Imputation 0.277 0.237 0.362
One-hot/Iterative 0.240 0.231 0.359

HI-GP 0.246 0.215 0.347
Two-stage-GP 0.230 0.214 0.338
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EXPERIMENTS AND RESULTS (CONTD.)
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(a) Original data
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(b) Data generated by the two-stage GP

Figure 11. Distributions of the original and generated data. Within each subfigure, histograms for each
dimension are displayed on the diagonal, while off-diagonal plots illustrate joint distributions among the
dimensions.
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CONCLUSIONS

▶ We discussed deep Gaussian process latent variable models for processing heterogeneous data.
▶ The main idea is that the generative model of all the heterogeneous data uses the same latent

input to produce all the data.
▶ The latent input data undergo two transformations, both represented by sets of Gaussian

processes.
▶ We optimize our model by using variational inference and exploiting the concept of inducing

points.
▶ The model was tested on a dataset called PROMOTE, which is used for studying unwanted

perinatal outcomes and maternal mental health morbidities.
▶ The results suggest that the deep Gaussian process latent variable model has an excellent

capacity to learn from heterogeneous data.
▶ If we have missing output data, the machine learning task is to predict them, which may amount

to regression, classification, or imputation.
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