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Research Interests

• machine learning – domain adaptation, incremental, and 
weakly-supervised, and multimodal learning

• computer vision 

• pattern recognition in static and dynamically changing 
environments

• information fusion
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Video Analytics and Surveillance: 
• real-time object detection, tracking, 

re-identification and fusion

Affective Computing in Healthcare: 
• spatiotemporal expression recognition 
• multimodal fusion

Analysis of Medical Images
• breast cancer grading and 

localization in histology

Application Areas
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1) Person Re-Identification 
• domain adaptation in dissimilarity space 
• visual-infrared ReID with intermediate domains

2) Facial Expression Recognition
• subject-based MSDA
• source-free adaptation  

Overview
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Task: Match individuals or objects captured over a distributed 
set of non-overlapping camera viewpoints

Challenges: low resolution, motion blur, occlusions, variation in pose 
and illumination, misalignment over different camera views

Source: T. Wang et al., Person Re-Identification by Video Ranking, ECCV2014.

Video Analytics & Surveillance – Re-Identification
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Video Analytics & Surveillance – Re-Identification

DL models for video-based similarity matching:   
− Train: metric learning of the embedding network for pairwise similarity 
− Test: given a clip of probe and gallery images, predict their similarity

6
Source: M Kiran et al., 2021. Holistic guidance for occluded person re-identification. BMVC 2021.
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Video Analytics & Surveillance – Cross-Modal ReID

Visible-Infrared ReID 
● match persons/objects across RGB and IR cameras
● challenge: the large shift between RGB and IR data distributions
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Chaire de recherche industrielle Distech Controls sur les réseaux de 
neurones embarqués pour le contrôle de bâtiments connectés

Objectives: 
● Control of intelligent building occupancy 

analysis using low-cost distributed sensors and AI

● Reducing energy footprint and increasing 
comfort in buildings

● Applications for using low - resolution sensors

Challenges: 
● Integration of information from various low-resolution sensors: IR, RGB, etc.
● Adapting systems to changing environmental conditions 
● Reducing the complexity of deep networks for embedded platforms

8
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Improving performance:
– domain shifts and fusion across different cameras and modalities

– variations for different people, objects, and capture conditions 
(pose, occlusion, illumination, scale, motion blur, etc.)

– robustness of models trained on image data using limited and 
ambiguous annotations

Reducing complexity:
– state-of-art deep learning (DL) models are complex and can 

grow with the number of cameras and modalities

– cost of collecting and annotating large-scale datasets 

Common Challenges  

9

9

10Source: A. Khamis, et al., "Earth Movers in The Big Data Era: A Review of Optimal Transport 
in Machine Learning." ArXiv:2305.05080, May 2023

Domain Adaptation Methods

Objective: learn robust domain-invariant representations from source 
domain (SD) and target domain (TD) samples

Common approaches:
1. discrepancy-based: fine-tune model with source and target data to 

diminish shift between domain distributions 

• e.g., use a statistical criterion (MMD, CORAL, KL divergence, 
etc.) to align the SD and TD distributions  

2. adversarial-based: rely on domain discriminator to predict if 
samples are drawn from SD or TD, and encourage domain confusion
• e.g., non-generative models map SD to TD representation space 

using a discriminator and domain confusion loss
10
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11Source: A. Khamis, et al., "Earth Movers in The Big Data Era: A Review of Optimal Transport 
in Machine Learning." ArXiv:2305.05080, May 2023

Domain Adaptation Methods

Common Settings: 
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12Source: A. Khamis, et al., "Earth Movers in The Big Data Era: A Review of Optimal Transport 
in Machine Learning." ArXiv:2305.05080, May 2023

Domain Adaptation Methods

Common Settings: 

12
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Unsupervised Domain Adaptation 

Unsupervised DA Setting: adapt a ML model using labeled source and 
unlabeled target samples to improve performance in the target domain
– SD and TD learning tasks are the same, but data distributions differ

Examples: video-based face recognition

1) SD: still ROI TD: video ROIs
camera 0 camera 3

2) SD: video ROIs TD: video ROIs
camera 1 camera 3

SD: source domain
TD: target domain

13
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Objective: Adapt ML model using 2+ source datasets to improve
target domain accuracy and robustness

Example: Prototype-based Mean Teacher (PMT) object detection
model for MSDA

Multi-Source Domain Adaptation

14Source: Belal, et al., Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher, WACV 2024
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Objective: Adapt ML model using 2+ source datasets for improved
accuracy and robustness

Example: Prototype-based Mean Teacher (PMT) object detection
model for MSDA

Multi-source Domain Adaptation

15Source: Belal, et al., Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher, WACV 2024

• Prototype-based feature alignment with 3 source domains (and 3 classes)
• After alignment, class confusion and intra-class distance to global prototypes are reduced.
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Multi-Target Domain Adaptation

Single-Target DA (STDA): adapt a model to a single target domain

Multi-Target DA (MTDA): adapt a common (compact) model to 
perform well in 2+ target domains

Source:
• Nguyen-Meidine, et al., Incremental multi-target domain adaptation for object detection with efficient 

domain transfer, Pattern Recognition, 2022.
• Remigereau, et al., Knowledge Distillation for Multi-Target Domain Adaptation in Real-Time Person Re-

Identification, ICIP 2022. 16
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Multi-Target Domain Adaptation

Objective: Adapt a common (compact) ML model that performs well in 
2+ target domains

Example: KD-ReID distils knowledge from specialized teachers, one per 
target domain, into a single smaller student backbone

Remigereau, et al., Knowledge Distillation for MTDA in Real-Time Person ReID, ICIP 2022.
Nguyen-Meidine, et al., Unsupervised MTDA Through Knowledge Distillation, WACV 2021.
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ℒ!" = 𝐴# − 𝐴$ %
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Unsupervised Domain Adaptation in the Dissimilarity 
Space for Person Re-Identification 

Djebril Mekhazni, Amran Bhuiyan, George Ekladious & Eric Granger

ECCV 2020: European Conf. on Computer Vision
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• Assumptions: target data is unlabeled, but we can leverage  
knowledge of tracklets from cameras

UDA in the Dissimilarity Space

within class (wc):  with the same 
person

between class (bc): with different 
persons

19
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• We can therefore extract dissimilarity distributions:

UDA in the Dissimilarity Space

20
D Mekhazni, A Bhuiyan, G Ekladious & E Granger, Unsupervised Domain Adaptation in the 
Dissimilarity Space for Person Re-Identification, ECCV 2020.

20
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• Dissimilarity distributions: a typical case

UDA in the Dissimilarity Space

21

21

22

Proposed discrepancy-based approach:
• Maximum Mean Discrepancy (MMD) in the dissimilarity 

space  to align pairwise distances between source and target 
domain

UDA in the Dissimilarity Space
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Apply MMD loss in the dissimilarity space, not feature space
• Align pairwise distances between SD and TD
• d : distances distribution

UDA in the Dissimilarity Space
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• Overall Dissimilarity-MMD Loss:

UDA in the Dissimilarity Space

24
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• D-MMD loss for adaptation of deep learning model:

UDA in the Dissimilarity Space
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Example of results – comparison with state-of-art:
• Person ReID accuracy on Duke and MSMT target datasets, with

Market1501 as source dataset

Conclusion: Dissimilarity space was a viable alternative for image 
retrieval (metric learning) problems

UDA in the Dissimilarity Space
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Camera Alignment and Weighted Contrastive Learning for UDA in 
Video Person ReID 

• A camera classifier performs adversarial alignment between target 
camera distributions

• Estimates the reliability of contrastive loss for image pairs using kNN 
weighting

UDA in the Dissimilarity Space

D. Mekhazni, et al., Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person ReID, WACV 2023.

Clip sampling: provide 
strong positive pairs that 
provide a helpful guidance

27
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Camera Alignment and Weighted Contrastive Learning for Domain 
Adaptation in Video Person ReID 

UDA in the Dissimilarity Space

28Source: D. Mekhazni, et al., Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person ReID, WACV 2023.
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Bidirectional Multi-Step Domain Generalization for 
Visible-Infrared Person Re-Identification 

M. Alehdaghi, P. Shamsolmoali, R.M.O. Cruz & E. Granger

submitted to CVPR 2024
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Visible-Infrared ReID Using Privileged Information

Cross-Modal ReID – match persons/objects across RGB and IR cameras

- challenging because of the large shift between RGB and IR data distributions

Our approach: reduce the domain gap – leverage related privileged 
information (PI) as intermediate domains to train the CNN backbone:

● learning under privileged information (LUPI) paradigm

● generate privileged intermediate representations that connect the RGB 
and IR modalities during training epochs

30
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Visible-Infrared ReID Using Privileged Information
Overview of training architectures for V-I ReID:
(a) a global features representation
(b) a local part-based representation to preserve locality alongside the 

global features
(c) approaches based on an intermediate modality that generates an 

intermediate bridging domain

31

• One-step approach 
• More accurate, but the intermediate 

domain may not capture enough 
common discriminant information

domain gap is too large

31
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Gradual Domain Adaptation
Motivation:
• select intermediate domains with smaller domain shift
• gradual and multi-step UDA can improve accuracy when there is a 

large domain shift

Example in face recognition: 

32
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Bidirectional Multi-Step Domain Generalization  

Main idea – minimize the cross-modal gap by identifying shared 
prototypes that capture key discriminative features across modalities

Extract prototypes from both modalities in each step to create multiple 
intermediate bridging domains
1) create multiple virtual intermediate domains using a combination of body part 

prototypes extracted from both I and V modalities 
2) bidirectional multi-step learning progressively improves feature representations 

in each step by incorporating more prototypes from both modalities 

33

Part- Prototypes: 
feature representations 
are linked to specific 
body parts, allowing 
for effective 
integration of features 
from both modalities

33
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Bidirectional Multi-Step Domain Generalization

34

Overall Training Architecture:

• Prototype learning module (left): extracts body part prototype 
representations from V and I images

- uses a shallow U-Net to create a region mask for each prototype
• Bidirectional multi-step learning module (right): learns discriminant 

features using multiple intermediate domains created by mixing 
prototype information

34
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(b) Prototype mining (PM): mines prototypes from spatial features

(c) Attentive prototype embedding (APE) attention mechanism to aggregate 
mixed prototypes to produce output features
- emphasize important channels in their feature map and weights prototype
features based on similarities between them

(d) Hierarchical contrastive learning (HCL) allows the prototypes to focus on 
similar semantics for all individuals without losing ID-discriminative information

Bidirectional Multi-Step Domain Generalization  

35
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Bidirectional Multi-Step Domain Generalization  

36

Results: Accuracy of the proposed BMDG and state-of-the-art methods on 
the SYSU-MM01 (single-shot setting) and RegDB datasets. All numbers 
are percent. 
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Bidirectional Multi-Step Domain Generalization

Results: The mAP and domain shift (MMD distance) between 
I and V modalities over training epochs. 

(a) Training curve of BMDG vs baseline on-step model
(b) MMD over the center of I and V features from IDs of the SYSU-

MM01 dataset
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Bidirectional Multi-Step Domain Generalization

Ablations: Accuracy (R1% and mAP%) of BMDG for different numbers 
of part prototypes (K ) and intermediate steps (T )

Accuracy of part-based ReID methods with BMDG on the SYSU-MM01, 
under single-shot setting with training.  

38
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Bidirectional Multi-Step Domain Generalization

Results: Distributions of V and I features learned for 7 identities 
from the SYSU-MM01 dataset 
● the baseline, one-step using part prototypes, BMDG methods
● each colour shows the identity  

UMAP projections

39
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Bidirectional Multi-Step Domain Generalization

Results: Prototype regions extracted by the PM module for (a) infrared and 
(b) visible images. The region mask of prototypes focuses on similar body 
parts without accounting for identity

● mask size is 18×9, which is then resized to fit the original input image

40
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1) Person Re-Identification 
• domain adaptation in dissimilarity space 
• visual-infrared reID with intermediate domains

2) Facial Expression Recognition
• subject-based multi-source UDA
• source-free adaptation with missing classes  

Overview

41
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Expression recognition is the fundamental problem of 
affective computing and can take several forms

Classification of discrete (primary universal) emotions
(from  left to right: neutral, happy, sad, fear, angry, surprise and disgust)

Ordinal classification of pain intensity levels
Dimensional recognition (regression)

Source: Du, et al., “Compound facial expressions of emotion,” Proc. National Academy of Sciences, 2014.

Affective Computing – Expression Recognition

42
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Expression recognition: several potential modalities

Affective Computing – Expression Recognition

43
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Affective Computing – Expression Recognition
Tasks: spatiotemporal recognition of expressions (linked to pain, stress, 
depression, fatigue, etc.) from video for healthcare and e-learning

Challenges: 
• weakly-supervised learning of videos with limited and ambiguous 

annotations
• rapid adaptation to different persons and capture conditions
• fusion of facial, vocal and other modalities
• spatiotemporal localization and attention mechanisms

44

Source: Praveen, et al., A Joint Cross-Attention Model for Audio-
Visual Fusion in Dimensional Emotion Recognition, IEEE Trans on 
Biometrics, Behavior, and Identity Science, 2023.

44
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Chaire de recherche FRSQ double Concordia-ÉTS-CIUSSS-NIM en IA 
et santé numérique pour le changement des comportements de santé

Objectives: 
● predict a subject’s affective state in health diagnosis and monitoring 
● estimating non-verbal cues to personalize eHealth interventions in  

behavior change programs
● spontaneous recognition of facial, textual, and vocal expressions related 

to engagement, ambivalence, hesitation, motivation, etc.

45
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Challenges in Real-world Applications

Variability of expressions across different individuals, cultures, and capture 
conditions 
• shift in distributions between the design (source) and operational (target) datasets
• real-world capture: occlusion, pose, illumination, complex background, noise

pain (left) vs. no pain (right) frames
State-of-art DL models are complex and may require large datasets for training
• few relevant public datasets are available in health
• high cost of collecting and annotating 

large-scale datasets that contain 
controlled expressions

• label ambiguity from annotators

Adapt DL model to a specific person and capture condition using 
unlabeled video data from the operational environment

Affective Computing – Expression Recognition
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Subject-Based Domain Adaptation for Facial 
Expression Recognition

O. Zeeshan, M. H. Aslam, S. Belharbi, A. L Koerich, M. 
Pedersoli, S. Bacon & E. Granger

submitted to Face and Gesture 2024

47
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UDA methods: several have been proposed to adapt deep FER models 
across source and target data sets

Challenge:

• the high intra- and inter-person variability in FER, so it would help to 
account for different subjects

• state-of-the-art methods do not scale well to a larger number of source 
domains 

Our general approach: 
• consider that each subject corresponds to a domain, not entire datasets, 

but ensure that it can scale well to many sources 
• employ an MSDA method – leverage multiple subject-specific source 

domains allows for an accurate representation of the intra- and inter-
person variability  

Subject-based UDA for Facial Expression Recognition

48

48
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Subject-based UDA for Facial Expression Recognition

49

Settings for adaptation of a deep FER model:
a) Single UDA, where one labeled dataset is adapted to a single unlabeled dataset

b) MSDA aligns multiple source datasets and then adapts to the single target domain

c) Subject-based UDA considers that a single labeled source dataset as a mix with different
subject IDs is aligned with unlabeled target subjects

d) Subject-based UDA considers each subject as a separate domain, mitigating the domain shift
among the sources and then aligning the source with the target subject

blue: 
labeled source data
green: 
unlabeled target data 
grey:
data from both domains

49
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Subject-based UDA for Facial Expression Recognition

50Source: Zeeshan et al., Subject-Based Domain Adaptation for Facial Expression 
Recognition, arXiv:2312.05632, 2023.

Proposed subject-based MSDA method
1) align labeled source subjects using discrepancy and supervision loss

2) apply the ACPL strategy to generate reliable target pseudo-labels and train the
adaptation model using the source and reliable target subjects

Can also select the top k
closest sources to the target 
using MMD for the 
adaptation process

50
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Subject-based UDA for Facial Expression Recognition

51

Step 1: align labeled source subjects using discrepancy and supervision
losses

Step 2: generate reliable target pseudo-labels using Augmented
Confident Pseudo-Label (ACPL),
– generate softmax probability from 𝑋% and #𝑋% :

– average these probabilities:

– Applying confident threshold and assigning label:
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and adapt the model using the target and reliable sources
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Subject-based UDA for Facial Expression Recognition

52Source: Zeeshan et al., Subject-Based Domain Adaptation for Facial Expression 
Recognition, arXiv:2312.05632, 2023.

Results: BioVid heat and pain (PartA) with 87 subjects
● 10 subjects treated as a target domain, the remaining 77 subjects as source domains

● ResNet18 is used in all of the experiments

Setting Methods Sub-1 Sub-2 Sub-3 Sub-
4 Sub-5 Sub-6 Sub-7 Sub-8 Sub-9 Sub-10 Avg

Source 
combined

Source-only
Subject-based 

(UDA)

0.62
0.73

0.61
0.64

0.65
0.73

0.55
0.59

0.51
0.54

0.71
0.75

0.7
0.76

0.52
0.53

0.54
0.51

0.55
0.58

0.59
0.63

Multi-
Source

M3SDA
CMSDA
SImpAI

Subject-based 
(MSDA)

Subject-based   
with top-k

0.67
0.93
0.80
0.93
0.93

0.66
0.47
0.69
0.69
0.71

0.61
0.81
0.55
0.84
0.86

0.58
0.87
0.75
0.64
0.87

0.55
0.53
0.52
0.57
0.88

0.50
0.84
0.81
0.85
0.92

0.67
0.57
0.71
0.81
0.86

0.56
0.54
0.61
0.58
0.77

0.54
0.74
0.59
0.60
0.84

0.67
0.70
0.56
0.60
0.68

0.60
0.70
0.65
0.71
0.83

Oracle Fully-supervised 0.99 0.91 0.98 0.97 0.98 0.97 0.96 0.95 0.99 0.98 0.96

Selected a max of top k=30 closest source subjects from each target subject 
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Subject-based UDA for Facial Expression Recognition

53

Results: UNBC-McMaster Shoulder Pain with 25 subjects
● 5 subjects treated as a target domain, the remaining 20 subjects as source domains

● ResNet18 is used in all of the experiments

Selected top k=10 closest source subjects from each target subject 

Setting4 Sub-1 Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Avg

Source combined
source-only

Subject-based (UDA)
0.74
0.76

0.84
0.87

0.81
0.84

0.68
0.70

0.83
0.85

0.78
0.80

Multi-Source DA

M3SDA
CMSDA
SImpAI

Subject-based (MSDA)

0.78
0.80
0.80
0.81

0.87
0.86
0.88
0.91

0.92
0.83
0.81
0.94

0.66
0.71
0.70
0.72

0.81
0.85
0.87
0.92

0.80
0.81
0.81
0.86

Oracle Fully-supervised 0.99 0.91 0.98 0.97 0.98 0.96

53
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Future Steps 

Better analysis of techniques like ACPL for generating target pseudo-labels:
• Cyan: standard way of generating pseudo-label
• Orange: EHTS (PFAN) approach.
• Green: ACPL strategy by combining different augmentation, i.e., horizontal-

flip, vertical-flip, increase sharpness, and rotation-90◦
• Blue: ACPL technique with only horizontal-flip augmentation.

54
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Future Steps

Subject-based DA using self-paced learning 

Most to least similar subjects to the target domains used to adapt the 
models 

Subject-based MSDA (curriculum learning)
• select top-k closest source subjects, using some distance between source and 

target distributions 
• adapt to the target subject by aligning with each source subject individually

Distance 
measure

(co s in e  s im ila rity )

Subjects
(Sources)

Target

Source Subjects  
D ictionary

𝐹2

Sub 1
Sub 2

.

.

.
Sub K

Update after every epochs

Select the top 
source subject

A lign Source w ith 
target subjects

55
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Future Steps
Source-Free Adaptation

Why source-free UDA?

Labeled Training 
videos

Unlabeled Target 
videos

Source 
classification

model

Resizing, 
Cropping, and 
Normalizing

Preprocessing

Resizing, 
Cropping, and 
Normalizing

Preprocessing

Target 
classification

model

Resizing, 
Cropping, and 
Normalizing

Preprocessing

Target 
classification

model

Training

Adaptation

Inference

Unlabeled Test 
videos

Pain levels 
intensity

Pain levels 
intensity

Pain levels 
intensity

• Data privacy protection

• Data storage and transmission cost

• Computation burden

Walter, S., The Biovid Heat Pain Database data. CYBCO 2013.  

56
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Future Steps
Source-Free Adaptation with Neutral Videos

Walter, S., The Biovid Heat Pain Database data. CYBCO 2013.  

Our Case
- Subject-based adaptation of models

- Only short neutral video is available 

for adaptation
Labeled Training 

videos

Unlabeled Target 
videos

Source 
classification

model

Resizing, 
Cropping, and 
Normalizing

Preprocessing

Resizing, 
Cropping, and 
Normalizing

Preprocessing

Target 
classification

model

Resizing, 
Cropping, and 
Normalizing

Preprocessing

Target 
classification

model

Training

Adaptation

Inference

Unlabeled Test 
videos

Pain levels 
intensity

Pain levels 
intensity

Pain levels 
intensity

57
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Future Steps
Source-Free Adaptation with Neutral Videos

Challenges:
- subject-based adaptation of large DL models based on a short 

calibration video
- adaptation on a few neutral videos from one subject
- setting: UDA where target data has missing classes

Existing Settings

58

59

E ncoder D ecoder

Laten
t 

vector

Targe
t label

D iscrim inato
r

R eal
Pain

Fake
N o 

Pain

Generated 
pain im age

Input neutral 
im age

Generated 
pain im age

R eal input 
im age

Generator

N eutral video

Painful video

Fine-tuning approach: SF-UDA methods that rely on discriminative image generation for 
missing classes

Future Steps
Source-Free Adaptation

Generate videos with pain intensity levels in the target domain and perform 
standard SFUDA (with all target classes)

59

60

Steps:
• Train the transformation to transfer the input target image to the unseen source domain
• The transferred image is fed into the frozen source model
• Style preserving loss: Aligning the input image features with translated image features
• The same classifier is used to predict labels
• Label loss: Minimizing the label difference between input image and translated image

Classifier

Source 
feature 

extractor

Input
Translated 
image

Source 
feature 

extractor

Style preserving loss

C lassifier

Labelloss

Future Steps
Source-Free Adaptation

• Target-to-source image translation approach to preserve the source 
model

• Transform the target data to look like the source data by changing the 
contrast and background

60
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Conclusion
Many challenges remain in video-based recognition

− model: limited robustness to variations
− domain and modality shifts: divergence between domain 

data

But many opportunities to improve performance with the 
abundance of target videos?

− rely on tracklet, clip, and cluster information
− spatiotemporal dependency in videos, optical flow, etc. 
− deep DA using unlabeled or weakly-labeled videos
− cross-domain (e.g., camera) and multi-modal adaptation 

and generalization 
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Developing DL models for visual recognition based on image data 
with limited annotations: 

● rapid adaptation/calibration of DL models for deployment

● video-base emotion recognition

● methods weaky-supervised learning
● weakly-supervised spatial and temporal localization for visual 

interpretation

● joint detection & embedding (JDE) for cost-effective ReID and multi-
object tracking

Potential Areas for Collaboration 

62

Align distributions to handle 
multiple cameras scenarios 

62


