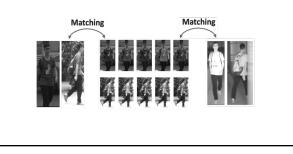
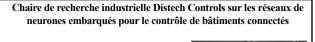


Video Analytics & Surveillance – Cross-Modal ReID

Visible-Infrared ReID

- match persons/objects across RGB and IR cameras
- challenge: the large shift between RGB and IR data distributions





Objectives:

- Control of intelligent building occupancy analysis using low-cost distributed sensors and AI
- Reducing energy footprint and increasing comfort in buildings
- Applications for using low resolution

Challenges:

77

8

- Integration of information from various low-resolution sensors: IR, RGB, etc.
- · Adapting systems to changing environmental conditions
- Reducing the complexity of deep networks for embedded platforms

10

Common Challenges

Improving performance:

- domain shifts and fusion across different cameras and modalities
- variations for different people, objects, and capture conditions (pose, occlusion, illumination, scale, motion blur, etc.)
- robustness of models trained on image data using limited and ambiguous annotations

Reducing complexity:

- state-of-art deep learning (DL) models are complex and can grow with the number of cameras and modalities
- cost of collecting and annotating large-scale datasets

9

Objective: learn robust domain-invariant representations from source domain (SD) and target domain (TD) samples

Common approaches:

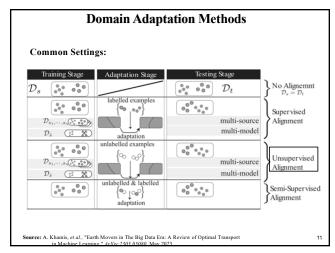
- 1. **discrepancy-based:** fine-tune model with source and target data to diminish shift between domain distributions
 - e.g., use a *statistical criterion* (MMD, CORAL, KL divergence, etc.) to align the SD and TD distributions
- 2. adversarial-based: rely on domain discriminator to predict if samples are drawn from SD or TD, and encourage domain confusion
 - e.g., *non-generative models* map SD to TD representation space using a discriminator and domain confusion loss

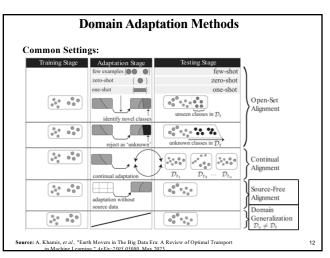
Source: A. Khamis, et al., "Earth Movers in The Big Data Era: A Review of Optimal Transport

10

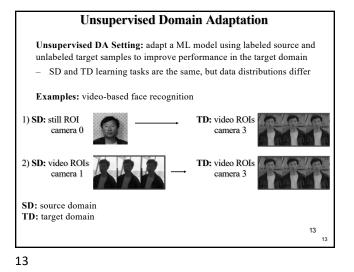
9

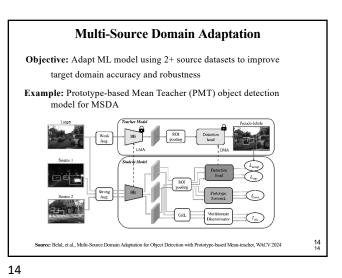
9



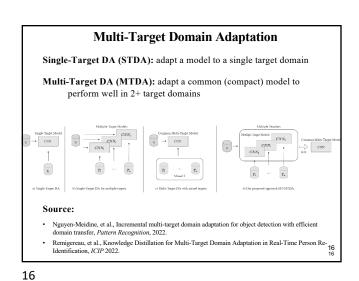


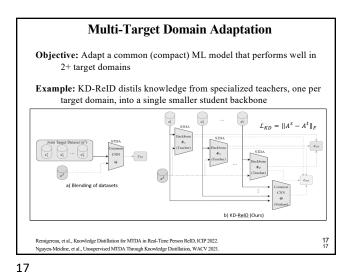
12

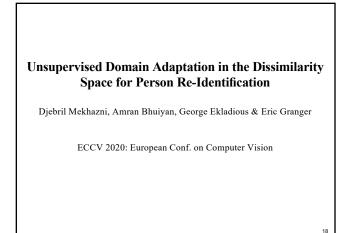


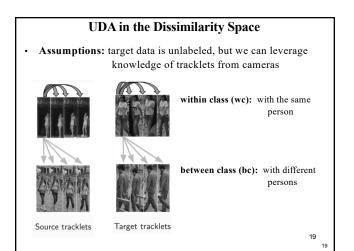


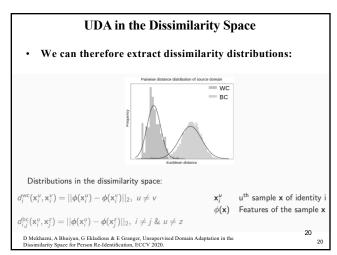
Multi-source Domain Adaptation Objective: Adapt ML model using 2+ source datasets for improved accuracy and robustness Example: Prototype-based Mean Teacher (PMT) object detection model for MSDA Prototyp based ototype alignmer totype Glo · Prototype-based feature alignment with 3 source domains (and 3 classes) After alignment, class confusion and intra-class distance to global prototypes are reduced arce: Belal, et al., Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher, WACV 2024

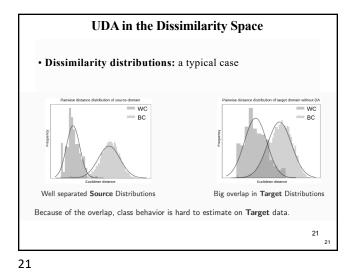


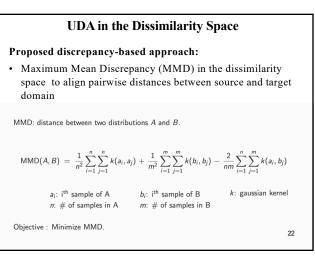


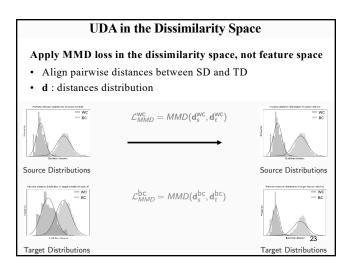


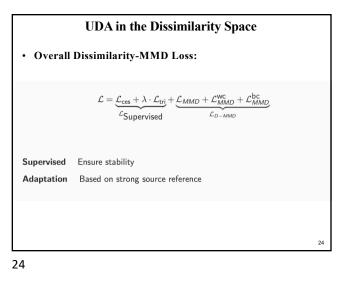


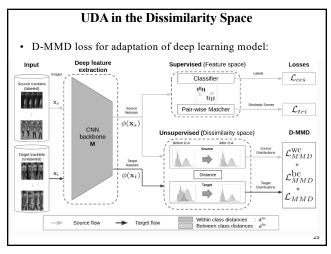












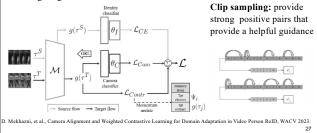
UDA in the Dissimilarity Space Example of results - comparison with state-of-art: Person ReID accuracy on Duke and MSMT target datasets, with • Market1501 as source dataset Source: Market1501 Methods DukeMTMC MSMT17 r-1 r-5 r-10 mAP r-5 r-10 mAP r-1 Lower Bound 44.7 12.3 2.0 23.7 38.8 6.1 12.0 15.6 BUC [Lin et al., 2019] 62.6 47.4 68.4 27.5 ECN [Zhong et al., 2019] 63.3 75.8 80.4 40.4 25.3 36.3 42.1 8.5 D-MMD (Ours) 63.5 78.8 83.9 46.0 29.1 46.3 54.1 13.5 Conclusion: Dissimilarity space was a viable alternative for image retrieval (metric learning) problems 26 26

26

UDA in the Dissimilarity Space

Camera Alignment and Weighted Contrastive Learning for UDA in Video Person ReID

- A camera classifier performs adversarial alignment between target camera distributions
- Estimates the reliability of contrastive loss for image pairs using *k*NN weighting



UDA in the Dissimilarity Space

Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person ReID

Method	Setting	iLIDS - (2 can		$PRID \rightarrow (2 can)$		$iLIDS \rightarrow MARS$ (6 cameras)		
hiomou	beening	Rank-1	mAP	Rank-1	mAP	Rank-1	mAP	
Lower Bound (sup. S only)	-	49.0	60.0	12.7	20.9	19.8	10.1	
DGM+IDE [40], ICCV'19	OneEx		-	-	-	36.8	16.8	
Stepwise [22], ICCV'17	OneEx	- 1	-	-	-	41.2	19.6	
EUG [36], CVPR'18	OneEx	-	-	-	-	62.2	42.5	
TAUDL [3], BMVC'18	Unsup	85.3	-	56.9	-	46.8	21.4	
UTAL [17], TPAMI'19	Unsup	54.7	-	35.1	-	49.9	35.2	
UGA [35], ICCV'19	Unsup	80.9	-	57.3	-	58.1	39.3	
BUC [19], AAAI'19	Unsup	- 1	-	-	-	61.1	38.0	
Soft Sim. [20], CVPR'20	Unsup	-	-	-	-	61.9	43.6	
SPCL [*] [8], NeurIPS'20	UDA	77.6	82.1	41.9	47.6	37.6	20.4	
Ours $(\mathcal{L}_{cam}^{clc})$	UDA	70.8	77.3	32.0	42.6	31.5	16.3	
Ours $(\mathcal{L}_{cam}^{cLC} + \mathcal{L}_{contr}^{kNN})$	UDA	86.5	89.9	58.3	66.7	62.2	44.8	
Upper Bound (sup. $S \cup T$)	Tuning	92.1	94.5	76.0	84.0	86.9	81.8	

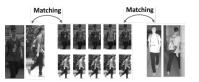
28

29

- challenging because of the large shift between RGB and IR data distributions

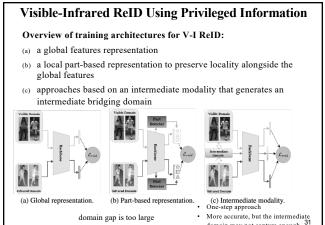
Our approach: reduce the domain gap - leverage related privileged information (PI) as intermediate domains to train the CNN backbone:

- · learning under privileged information (LUPI) paradigm
- · generate privileged intermediate representations that connect the RGB and IR modalities during training epochs



30

29



domain gap is too large

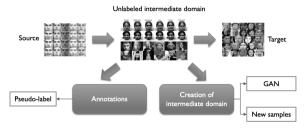
Gradual Domain Adaptation

Motivation:

· select intermediate domains with smaller domain shift

• gradual and multi-step UDA can improve accuracy when there is a large domain shift

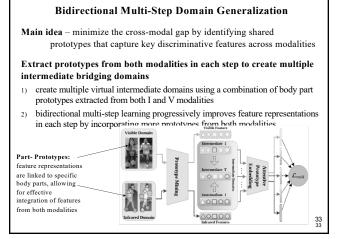
Example in face recognition:

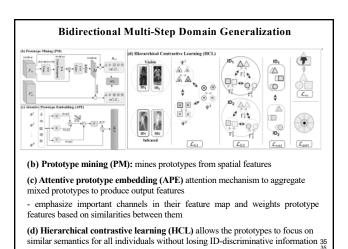


32

31

domain may not capture enough ³ common discriminant information





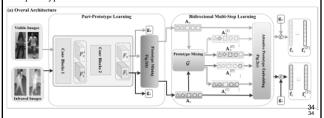
Bidirectional Multi-Step Domain Generalization

Overall Training Architecture:

• Prototype learning module (left): extracts body part prototype representations from V and I images

- uses a shallow U-Net to create a region mask for each prototype

• **Bidirectional multi-step learning module (right):** learns discriminant features using multiple intermediate domains created by mixing prototype information

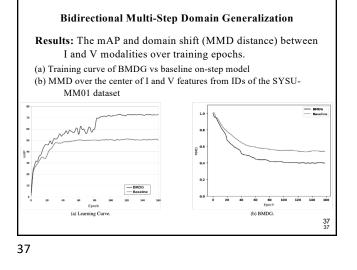


34



Results: Accuracy of the proposed BMDG and state-of-the-art methods on the SYSU-MM01 (single-shot setting) and RegDB datasets. All numbers are percent.

	Family		SYSU-MM01						RegDB						
ranny		All Search			Indoor Search			Visible \rightarrow Infrared			Infrared \rightarrow Visible				
	Method	Venue	R1	R10	mAP	R1	R10	mAP	R1	R10	mAP	R1	R10	mAl	
	SMCL[36]	ICCV'21	67.39	92.84	61.78	68.84	96.55	75.56	83.93	-	79.83	83.05	-	78.5	
ate	MMN [53]	ICM'21	70.60	96.20	66.90	76.20	99.30	79.60	91.60	97.70	84.10	87.50	96.00	80.5	
Intermediate	RPIG [2]	ECCVw'22	71.08	96.42	67.56	82.35	98.30	82.73	87.95	98.3	82.73	86.80	96.02	81.2	
E	FTMI [31]	MVA'23	60.5	90.5	57.3	-	-	-	79.00	91.10	73.60	78.8	91.3	73.	
l fe	G2DA [33]	PR'23	63.94	93.34	60.73	71.06	97.31	76.01	-		-		-	-	
-	SEFL [11]	CVPR'23	75.18	96.87	70.12	78.40	97.46	81.20	91.07	-	85.23	92.18	-	86.5	
	BMDG (ours)a	-	75.43	<u>97.42</u>	72.86	82.35	98.02	82.16	92.59	98.11	89.18	<u>94.08</u>	97.0	88.6	
	BMDG (ours) ^b	-	76.39	97.90	78.22	83.59	<u>98.96</u>	83.87	94.76	<u>98.91</u>	92.21	94.56	98.31	93.0	
														3	



Bidirectional Multi-Step Domain Generalization

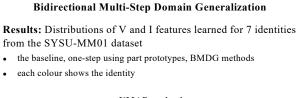
Ablations: Accuracy (R1% and mAP%) of BMDG for different numbers of part prototypes (K) and intermediate steps (T)

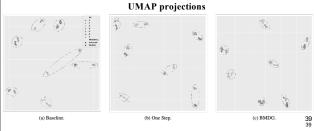
T	Number of part prototypes (K)					T		Numbe	r of par	t prototy	pes (K)		
1	3	4	5	6	7	10	1	3	4	5	6	7	10
0	68.25	69.24	69.40	70.27	70.03	68.12	0	65.98	67.03	67.23	68.11	67.55	65.66
1	69.97	70.81	72.07	71.97	71.31	69.28	1	67.42	68.72	69.28	69.46	68.32	69.28
2	71.20	72.35	73.98	73.61	72.45	71.25	2	69.51	70.08	70.72	71.14	69.97	71.25
3	73.32	73.94	74.11	74.98	73.22	71.67	3	71.44	71.69	71.82	72.02	71.06	71.67
4	-	74.08	74.15	75.43	73.51	71.99	4	-	71.98	72.15	72.86	71.19	69.00
6	- 1	-	-	75.37	73.52	72.15	6	-	-	-	72.40	71.17	69.54
10	-	-	-	-	-	72.07	10	-	-	-	-	-	69.46

Accuracy of part-based ReID methods with BMDG on the SYSU-MM01, under single-shot setting with training.

Method	R1 (%)	mAP (%)
DDAG [46]	53.62	52.71
DDAG with BMDG	55.36	54.05
MPANet [41]	66.24	62.89
MPANet with BMDG	68.74	64.25
SAAI [10]	71.87	68.16
SAAI with BMDG	73 69	70.08

38



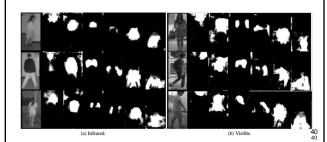


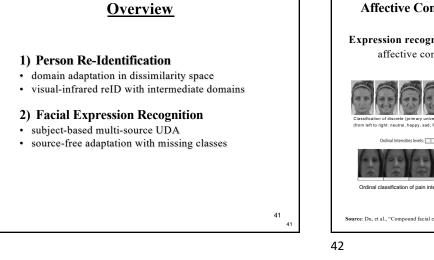
39

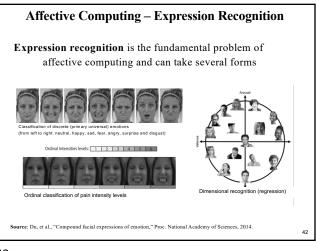
Bidirectional Multi-Step Domain Generalization

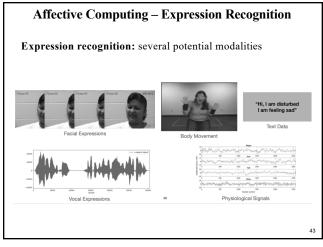
Results: Prototype regions extracted by the PM module for (a) infrared and (b) visible images. The region mask of prototypes focuses on similar body parts without accounting for identity

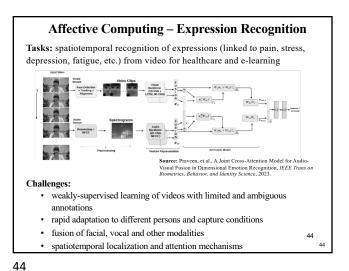
• mask size is 18×9, which is then resized to fit the original input image











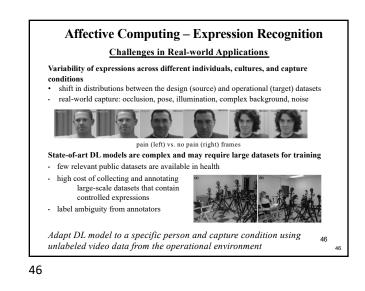
Chaire de recherche FRSQ double Concordia-ÉTS-CIUSSS-NIM en IA et santé numérique pour le changement des comportements de santé

Objectives:

- predict a subject's affective state in health diagnosis and monitoring
- estimating non-verbal cues to personalize eHealth interventions in behavior change programs
- spontaneous recognition of facial, textual, and vocal expressions related to engagement, ambivalence, hesitation, motivation, etc.



45



Subject-Based Domain Adaptation for Facial Expression Recognition

O. Zeeshan, M. H. Aslam, S. Belharbi, A. L Koerich, M. Pedersoli, S. Bacon & E. Granger

submitted to Face and Gesture 2024

Subject-based UDA for Facial Expression Recognition

UDA methods: several have been proposed to adapt deep FER models across source and target data sets

Challenge:

- the high intra- and inter-person variability in FER, so it would help to account for different subjects
- state-of-the-art methods do not scale well to a larger number of source domains

Our general approach:

- consider that each subject corresponds to a domain, not entire datasets, but ensure that it can scale well to many sources
- employ an MSDA method leverage multiple subject-specific source domains allows for an accurate representation of the intra- and interperson variability

48

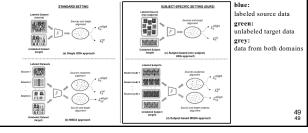
47

47

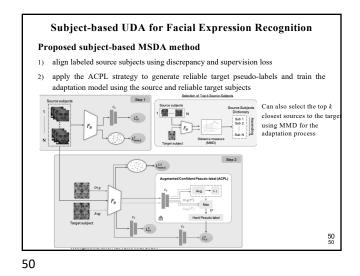
Subject-based UDA for Facial Expression Recognition

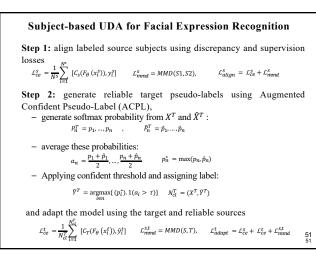
Settings for adaptation of a deep FER model:

- a) Single UDA, where one labeled dataset is adapted to a single unlabeled dataset
- b) MSDA aligns multiple source datasets and then adapts to the single target domain
- c) Subject-based UDA considers that a single labeled source dataset as a mix with different subject IDs is aligned with unlabeled target subjects
- d) Subject-based UDA considers each subject as a separate domain, mitigating the domain shift among the sources and then aligning the source with the target subject



49





ResNet18 is used in all of the experiments

Setting	Methods	Sub-1	Sub-2	Sub-3	Sub- 4	Sub-5	Sub-6	Sub-7	Sub-8	Sub-9	Sub-10	Avg
Source combined	Source-only Subject-based (UDA)	0.62 0.73	0.61 0.64	0.65 0.73	0.55 0.59		0.71 0.75	0.7 0.76	0.52 0.53	0.54 0.51	0.55 0.58	0.59 0.63
Multi- Source	MiSDA CMSDA SImpAI Subject-based (MSDA) Subject-based with top-k	0.67 0.93 0.80 0.93 0.93	0.66 0.47 0.69 0.69 0.71	0.81 0.55 0.84	0.58 0.87 0.75 0.64 0.87	0.53 0.52 0.57	0.50 0.84 0.81 0.85 0.92	0.67 0.57 0.71 0.81 0.86	0.56 0.54 0.61 0.58 0.77	0.54 0.74 0.59 0.60 0.84	0.67 0.70 0.56 0.60 0.68	0.60 0.70 0.65 0.71 0.83
Oracle	Fully-supervised	0.99	0.91	0.98	0.97	0.98	0.97	0.96	0.95	0.99	0.98	0.96
	Selected	l a max o	f top k=	30 close	st sou	rce subje	cts from	each targ	et subject			
Source:	Zeeshan et al., Subje Recognition arX				tion fo	r Facial	Expressi	on				

54

Subject-based UDA for Facial Expression Recognition

Results: UNBC-McMaster Shoulder Pain with 25 subjects

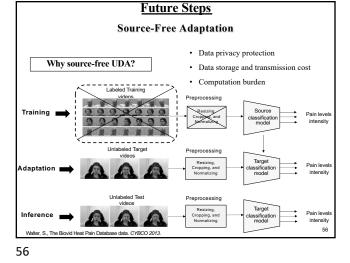
- 5 subjects treated as a target domain, the remaining 20 subjects as source domains
- ResNet18 is used in all of the experiments

Setting4	Sub-1	Sub-1	Sub-2	Sub-3	Sub-4	Sub-5	Avg
Source combined	source-only	0.74	0.84	0.81	0.68	0.83	0.78
	Subject-based (UDA)	0.76	0.87	0.84	0.70	0.85	0.80
Multi-Source DA	M ³ SDA	0.78	0.87	0.92	0.66	0.81	0.80
	CMSDA	0.80	0.86	0.83	0.71	0.85	0.81
	SImpAI	0.80	0.88	0.81	0.70	0.87	0.81
	Subject-based (MSDA)	0.81	0.91	0.94	0.72	0.92	0.86
Oracle	Fully-supervised	0.99	0.91	0.98	0.97	0.98	0.96

Selected top k=10 closest source subjects from each target subject

53

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item>



Future Steps

Blue: ACPL technique with only horizontal-flip augmentation.

d PL III EHTS (PP

• Cyan: standard way of generating pseudo-label

Orange: EHTS (PFAN) approach.

.

•

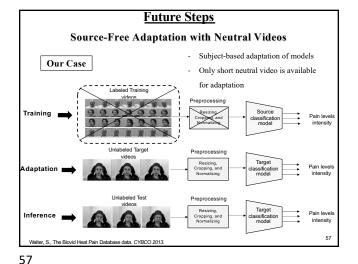
•

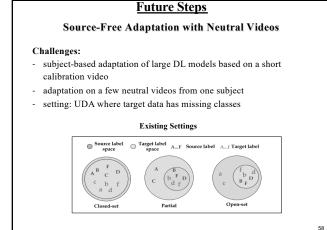
54

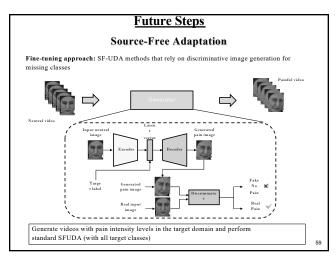
53 53 Better analysis of techniques like ACPL for generating target pseudo-labels:

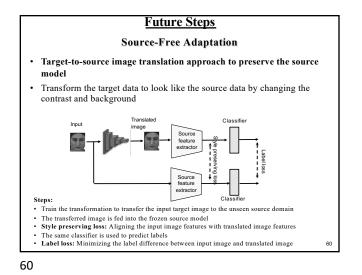
Green: ACPL strategy by combining different augmentation, i.e., horizontalflip, vertical-flip, increase sharpness, and rotation-90°

oine aug)
ACPL









Conclusion

Many challenges remain in video-based recognition

- model: limited robustness to variations
- domain and modality shifts: divergence between domain data

But many opportunities to improve performance with the abundance of target videos?

- rely on tracklet, clip, and cluster information
- spatiotemporal dependency in videos, optical flow, etc.
- deep DA using unlabeled or weakly-labeled videos
- cross-domain (e.g., camera) and multi-modal adaptation and generalization

61

Potential Areas for Collaboration

Developing DL models for visual recognition based on image data with limited annotations:

- rapid adaptation/calibration of DL models for deployment
- video-base emotion recognition
- methods weaky-supervised learning
- weakly-supervised spatial and temporal localization for visual interpretation
- joint detection & embedding (JDE) for cost-effective ReID and multiobject tracking

Align distributions to handle multiple cameras scenarios ÉTS

62