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Domain Adaptation in Video Recognition

Eric Granger
Dept. of Systems Engineering
ETS Montreal

Research Interests

machine learning — domain adaptation, incremental, and
weakly-supervised, and multimodal learning

computer vision
pattern recognition in static and dynamically changing
environments

information fusion
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Application Areas Overview

Video Analytics and Surveillance:
« real-time object detection, tracking,
re-identification and fusion

Affective Computing in Healthcare:
* spatiotemporal expression recognition
* multimodal fusion

Analysis of Medical Images

* Dbreast cancer grading and
localization in histology

1) Person Re-Identification
* domain adaptation in dissimilarity space
« visual-infrared ReID with intermediate domains

2) Facial Expression Recognition
* subject-based MSDA
* source-free adaptation
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Video Analytics & Surveillance — Re-Identification

Task: Match individuals or objects captured over a distributed
set of non-overlapping camera viewpoints

Re-identification Matching
Score

Camera A

Camera B

Gallery Set

Challenges: low resolution, motion blur, occlusions, variation in pose
and illumination, misalignment over different camera views

Source: T. Wang et al., Person Re-Identification by Video Ranking, ECCV2014.

Video Analytics & Surveillance — Re-Identification

DL models for video-based similarity matching:
— Train: metric learning of the embedding network for pairwise similarity

— Test: given a clip of probe and gallery images, predict their similarity

Feature features
Aggregation
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Similarity( ¢, ,

Query Video Clip

Deep CNN
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Aggregated feature
representation of clips from
previously captured tracklets

Source: M Kiran et al., 2021. Holistic guidance for occluded person re-identification. BMVC 2021

Video Analytics & Surveillance — Cross-Modal ReID

Visible-Infrared ReID
« match persons/objects across RGB and IR cameras

« challenge: the large shift between RGB and IR data distributions

Matching Matching
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Chaire de recherche industrielle Distech Controls sur les réseaux de
neurones embarqués pour le controle de bitiments connectés

Objectives:
e Control of intelligent building occupancy
analysis using low-cost distributed sensors and Al

e Reducing energy footprint and increasing
comfort in buildings

® Applications for using low - resolution

Challenges:

e Integration of information from various low-resolution sensors: IR, RGB, etc.
e Adapting systems to changing environmental conditions

e Reducing the complexity of deep networks for embedded platforms
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Common Challenges

Improving performance:
— domain shifts and fusion across different cameras and modalities

— variations for different people, objects, and capture conditions
(pose, occlusion, illumination, scale, motion blur, etc.)

— robustness of models trained on image data using limited and
ambiguous annotations

Reducing complexity:
—  state-of-art deep learning (DL) models are complex and can
grow with the number of cameras and modalities

— cost of collecting and annotating large-scale datasets

Domain Adaptation Methods

Objective: learn robust domain-invariant representations from source
domain (SD) and target domain (TD) samples

Common approaches:
1. discrepancy-based: fine-tune model with source and target data to
diminish shift between domain distributions

* e.g., use astatistical criterion (MMD, CORAL, KL divergence,
etc.) to align the SD and TD distributions

2. adversarial-based: rely on domain discriminator to predict if
samples are drawn from SD or TD, and encourage domain confusion
* e.g., non-generative models map SD to TD representation space
using a discriminator and domain confusion loss

9 10
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Unsupervised Domain Adaptation

Unsupervised DA Setting: adapt a ML model using labeled source and
unlabeled target samples to improve performance in the target domain

— SD and TD learning tasks are the same, but data distributions differ

Examples: video-based face recognition

1) SD: still ROI TD: video ROIs
camera 0 camera 3
2) SD: video ROIs A r TD: video ROIs
camera 1 ¢ - camera 3 . ! (

SD: source domain
TD: target domain

Multi-Source Domain Adaptation
Objective: Adapt ML model using 2+ source datasets to improve
target domain accuracy and robustness

Example: Prototype-based Mean Teacher (PMT) object detection
model for MSDA

Targer Teacher Model

EHE-

[

Source | @Mt Model
I

’, ,

Sourco 2

18 1 Source: Belal, et al., Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher, WACV 2024 1:‘
13 14
Multi-source Domain Adaptation Multi-Target Domain Adaptation
Objective: Adapt ML model using 2+ source datasets for improved Single-Target DA (STDA): adapt a model to a single target domain
acouracy and robustness Multi-Target DA (MTDA): adapt a common (compact) model to
Example: Prototype-based Mean Teacher (PMT) object detection perform well in 2+ target domains
model for MSDA
al " ear —
Prototype | | & ‘ - e | ™ ‘ Commmon Mui-Tuge Mod
based | - N bus) : : 5| ew
dligument Global prototypes I 1
—) _loal (
/ prototypes 1 kS & . .
3
Global prototypes ek

* Prototype-based feature alignment with 3 source domains (and 3 classes)

« After alignment, class confusion and intra-class distance to global prototypes are reduced.

Source: Belal, et al., Multi-Source Domain Adaptation for Object Detection with Prototype-based Mean-teacher, WACV 2024 1 g

Source:

t domain

Nguyen-Meidine, et al., Iti-t for object detection with efficient

domain transfer, Pattern Recognition, 2022.
etal., Kn lge Disti
Identification, ICIP 2022.

for Multi-Target Domain Adaptation in Real-Time Person Re-
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16
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Multi-Target Domain Adaptation

Objective: Adapt a common (compact) ML model that performs well in
2+ target domains
Unsupervised Domain Adaptation in the Dissimilarity

Example: KD-RelD distils knowledge from specialized teachers, one per . N
Space for Person Re-Identification

target domain, into a single smaller student backbone

— T soA
o
L

a) Blending of datasets

Lip = I14° ~ A'llp Djebril Mekhazni, Amran Bhuiyan, George Ekladious & Eric Granger

ECCV 2020: European Conf. on Computer Vision

b) KD-RelD (Ours)
Remigereau, et al., Knowledge Distillation for MTDA in Real-Time Person RelD, ICIP 2022. 17
Nguyen-Meidine, et al., Unsupervised MTDA Through Knowledge Distillation, WACV 2021. ” 18
17 18
UDA in the Dissimilarity Space UDA in the Dissimilarity Space
« Assumptions: target data is unlabeled, but we can leverage e L. .
p 8 i 8 *  We can therefore extract dissimilarity distributions:
knowledge of tracklets from cameras
Pavise disance disvbusonofsorce doman
wc
within class (we): with the same BC
person -
:
between class (bc): with different S
persons Distributions in the dissimilarity space:
d(x¥,xY) O(x¥) — d(xY)||2, u# v x! uth sample x of identity i
¢(x) Features of the sample x
Source tracklets Target tracklets dbs(x¥, x%) O(x¥) —p(x%)||2, i #j & u#z
1 19 D Mekhazni, A Bhuiyan, G Ekladious & E Granger, Unsupervised Domain Adaptation in the ® 20
Dissis Space for Person R ECCV 2020.
19 20
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UDA in the Dissimilarity Space

» Dissimilarity distributions: a typical case

Pairwise distance distribution of source domain Paiise distance distribution of target domain without DA

wcC wc
BC BC

Frequency
Frequency

Eucidean distance Eucidean distance.

Well separated Source Distributions Big overlap in Target Distributions

Because of the overlap, class behavior is hard to estimate on Target data.

21

21

UDA in the Dissimilarity Space

Proposed discrepancy-based approach:

¢ Maximum Mean Discrepancy (MMD) in the dissimilarity
space to align pairwise distances between source and target

domain

MMD: distance between two distributions A and B.

MMD(A, B) = %sz(a“aj) + %ZZk(bi,bj) - izzk(anbj)

i=1 j=1 i=1 j=1 i=1 j=1

h sample of A b;: ith sample of B k: gaussian kernel

m: # of samples in B

e fi
n: # of samples in A

Objective : Minimize MMD. 2

21

22

UDA in the Dissimilarity Space

Apply MMD loss in the dissimilarity space, not feature space
+ Align pairwise distances between SD and TD

* d : distances distribution

L1 = MMD(d2<, 1)

Source Distributions

wic

5 L‘Iteﬁvlv = MMD(dEC~d?C) s

23
Target Distributions

Target Distributions

UDA in the Dissimilarity Space

¢ Overall Dissimilarity-MMD Loss:

L= Lees+ A~ Lo+ Laamap + L% + L2500
Cees T2 Pt T EMMD T v T~ M,

£Supervised Lo-mmp

Supervised  Ensure stability

Adaptation Based on strong source reference

24

23

24
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UDA in the Dissimilarity Space

* D-MMD loss for adaptation of deep learning model:

Input Deep feature Supervised (Feature space) Losses
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UDA in the Dissimilarity Space

Example of results — comparison with state-of-art:

Person RelD accuracy on Duke and MSMT target datasets, with

Market1501 as source dataset

Source: Market1501
Methods DukeMTMC MSMT17
r-1 r-5 r-10  mAP r-1 r-5 r-10  mAP
Lower Bound 237 388 447 123 6.1 120 15.6 2.0
BUC [Lin et al., 2019] 474 626 684 275 - - - -
ECN [Zhong et al., 2019] | 63.3 758 80.4 40.4 | 253 36.3 421 8.5
D-MMD (Ours) 63.5 78.8 83.9 46.0 || 29.1 46.3 541 135
Conclusion: Dissimilarity space was a viable alternative for image
retrieval (metric learning) problems 2%
2

25
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UDA in the Dissimilarity Space

Camera Alignment and Weighted Contrastive Learning for UDA in
Video Person RelD

* A camera classifier performs adversarial alignment between target
camera distributions
« Estimates the reliability of contrastive loss for image pairs using ANN

weighting
sy Clip sampling: provide
1 strong positive pairs that
Lcg provide a helpful guidance
=l
B - -
e Lcam L
g PV et {2
SN —9(m) Gmen 0N ) )
‘ classifier .
A E(ri),inv —

Source flow  — Target flow

D. Mekhazni, et al., Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person ReID, WACV 2023.
27

UDA in the Dissimilarity Space

Camera Alignment and Weighted Contrastive Learning for Domain
Adaptation in Video Person ReID

iLIDS — PRID  PRID — iLIDS
(2 cameras)

(2 cameras)

iLIDS — MARS
(6 cameras)

Method Setting

| Rank-1 mAP Rank-1 mAP Rank-l1 mAP
Lower Bound (sup. S only) - | 490 600 127 209 198 10.1
DGM+IDE [40], ICCV’19 OneEx - - - - 36.8 16.8
Stepwise [22], ICCV’17 OneEx - - - - 412 19.6
EUG [36], CVPR'18 OneEx - - - - 62.2 425
TAUDL [3], BMVC'18 Unsup 85.3 - 56.9 - 46.8 214
UTAL [17], TPAMI'19 Unsup 54.7 - 35.1 - 19.9 35.2
UGA [35], ICCV’19 Unsup 80.9 - 57.3 - 58.1 39.3
BUC [19], AAAT'19 Unsup - - - - 61.1 38.0
Soft Sim. [20], CVPR'20 Unsup - - - - 61.9 436
SPCL* [8], NeurIPS'20 UDA 776 821 419 476 376 20.4
Ours (L85, UDA 708 773 320 426 315 16.3
Ours (£S5, + L) UDA 86.5 89.9 583 66.7 62.2 44.8
Upper Bound (sup. SUT) ~ Tuning | 921 945 760 840 869 81.8

Source: D. Mekhazni, et al., Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person RelD, WACV 2023,

28
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Bidirectional Multi-Step Domain Generalization for
Visible-Infrared Person Re-Identification

M. Alehdaghi, P. Shamsolmoali, R.M.O. Cruz & E. Granger

submitted to CVPR 2024

29

Visible-Infrared RelD Using Privileged Information

Cross-Modal ReID — match persons/objects across RGB and IR cameras

- challenging because of the large shift between RGB and IR data distributions

Our approach: reduce the domain gap — leverage related privileged
information (PI) as intermediate domains to train the CNN backbone:
« learning under privileged information (LUPI) paradigm
« generate privileged intermediate representations that connect the RGB
and IR modalities during training epochs

Matching Matching

N N

Al

29
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Visible-Infrared RelD Using Privileged Information

Overview of training architectures for V-I RelD:
(a) a global features representation

() a local part-based representation to preserve locality alongside the
global features

(¢) approaches based on an intermediate modality that generates an
intermediate bridging domain

auoppey

LY E

Inrared bomain Infrared Damsin

(a) Global representation.

Intrared Domain

(b) Part-based representation. (c) Intermediate modality.

¢ One-step approach

domain gap is too large * More accurate, but the intermediate
domain may not capture enough

common discriminant information 3!

Gradual Domain Adaptation

Motivation:

 select intermediate domains with smaller domain shift
 gradual and multi-step UDA can improve accuracy when there is a

large domain shift

Example in face recognition:

Unlabeled intermediate domain

Pseudo-label

Annotations . n ¢
intermediate domain

New samples

31

32
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Bidirectional Multi-Step Domain Generalization

Main idea — minimize the cross-modal gap by identifying shared
prototypes that capture key discriminative features across modalities

Extract prototypes from both modalities in each step to create multiple

intermediate bridging domains

1) create multiple virtual intermediate domains using a combination of body part
prototypes extracted from both I and V modalities

2) bidirectional multi-step learning progressively improves feature representations
in each step by incorporatine mare nrotatvnes f:rrmq hoth madalities

Visible Domain

ntermediate 1
a
Part- Prototypes:
feature representations o

are linked to specific
for effective T _‘él!T_r “‘ .

P —

Supuy adior01g

body parts, allowing
integration of features 2000
from both modalities
40000

Infrared Domain
Tiraed Festures 33

]

Bidirectional Multi-Step Domain Generalization

Overall Training Architecture:

* Prototype learning module (left): extracts body part prototype
representations from V and I images

- uses a shallow U-Net to create a region mask for each prototype

* Bidirectional multi-step learning module (right): learns discriminant
features using multiple intermediate domains created by mixing
prototype information

Overal Architecture

Part-Pratony pe Learsing Midrechonsl Mude-step |earning
A

Vb bwagen

L A . Y
i il
2 ? p f.
§ g8 F, z1 g
H ] £2
H £ 83 N A
2 | ‘ - 3
. 7 - ; N
fof
irared bosges "
34
34

33

34

Bidirectional Multi-Step Domain Generalization

4 Prettye Mg (P

Jd) Mierarebical Contrastive Lesraing (HCL)

Vine @3 1Dy ,
A {
0
0
A c.
3
=y
- .
T r ©;
o Ly Lot [

(b) Prototype mining (PM): mines prototypes from spatial features

(¢) Attentive prototype embedding (APE) attention mechanism to aggregate
mixed prototypes to produce output features

- emphasize important channels in their feature map and weights prototype
features based on similarities between them

(d) Hierarchical contrastive learning (HCL) allows the prototypes to focus on
similar semantics for all individuals without losing ID-discriminative information %

Bidirectional Multi-Step Domain Generalization

Results: Accuracy of the proposed BMDG and state-of-the-art methods on
the SYSU-MMO1 (single-shot setting) and RegDB datasets. All numbers
are percent.

Family SYSU-MMOT RegDB |

Al Search Indoor Search Visible - Infrared || Infrared - Visible |

Method Venue | R1 | R10 | mAP | Ri | RI0 | mAP | Rl | Ri0 | mAP | Ri | Ri0 | mAP |
SMCL[S6] | ICCV'21 || 6739 | 9284 | 6178 || 6884 | 96.55 | 75.56 || 8393 | - | 7983 || 83.05 | - | 7857
2 MMN[53] | IeM21 | 7060 | 9620 | 6690 | 7620 | 99.30 | 79.60 || 91.60 | 97.70 | 84.10 | 87.50 | 96.00 | 80.50
| RPIG2] | ECCVw22 || 7108 | 9642 | 67.56 || 8235 | 98.30 | 8273 || 87.95 | 983 | 8273 | 86.80 | 96.02 | 81.26
E|FTMIp] | MvA23 | 605 | 905 [ 573 | - | - | - | 7900|9110 | 7360 | 788 | 913 | 737
2| Ga(3) PR'23 || 6394 9334 | 6073 || 7106 [ 9731 | 7601 || - | - | - -] -
SEFL[I]] | CVPR'23 || 75.18 | 9687 | 7012 || 7840 | 97.46 | 81.20 || 9107 | - | 8523 || 92.18 | - | 8659
BMDG (oursf| - 7543 | 9742 | 7286 | 8235 | 98.02 | 82.16 | 9259 | 98.11 | 89.18 || 94.08 | 97.0 | 88.67
BMDG (ours)’| - 7639 | 9790 | 78.22 | 8359 | 98.96 | 83.87 || 9476 | 9891 | 92.21 || 9456 | 9831 | 93.07
36

36

35

36
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Bidirectional Multi-Step Domain Generalization

Results: The mAP and domain shift (MMD distance) between
I and V modalities over training epochs.

(a) Training curve of BMDG vs baseline on-step model
(b) MMD over the center of I and V features from IDs of the SYSU-
MMO1 dataset

— BMoc

o = » “ W ow om w w © 20 40 0 s 10 120 140 160
Epoch Epoch

(#) Learning Curve. (b) BMDG.

Bidirectional Multi-Step Domain Generalization

Ablations: Accuracy (R1% and mAP%) of BMDG for different numbers
of part prototypes (K ) and intermediate steps (T )

T Number of part prototypes (K) | T Number of part prototypes (K)
3 4 5 6 7 0 | 3 5 6 7 10

0 |[ 6825 6924 69.40 7027 7003 6812 | | 0 || 6598 67.03 6723 68.11 67.55 65.66
1 || 6997 7081 7207 7197 7131 6928 1 || 6742 6872 69.28 69.46 6832 69.28
2 || 7120 7235 7398 7361 7245 7125 2 || 69.51 7008 7072 71.14 69.97 71.25
3 || 7332 7394 7411 7498 7322 7167 | | 3 | 7144 7169 7182 7202 7106 71.67
4 - 7408 7415 7543 7351 7199 | | 4 - 7198 7215 7286 7119 69.00
6 - - 7537 7352 7215 6 - - 7240 7117 69.54
10 - - 7207 | |10 - - 6946

Accuracy of part-based ReID methods with BMDG on the SYSU-MMO1,
under single-shot setting with training.

[ Method [[ R1(%) | mAP (%) |
DDAG [46] 5362 | 5271
DDAG withBMDG || 5536 | 54.05
MPANet [41] 6624 | 6289
MPANet with BMDG || 68.74 | 6425
SAAI[10] 7187 | 68.16
SAAI with BMDG 7360 | 7008

38
38

37

38

Bidirectional Multi-Step Domain Generalization

Results: Distributions of V and I features learned for 7 identities
from the SYSU-MMO1 dataset
o the baseline, one-step using part prototypes, BMDG methods

o cach colour shows the identity

UMAP projections

(a) Baseline. (b) One Step. (c) BMDG. 39

39

Bidirectional Multi-Step Domain Generalization

Results: Prototype regions extracted by the PM module for (a) infrared and
(b) visible images. The region mask of prototypes focuses on similar body
parts without accounting for identity

o mask size is 18x9, which is then resized to fit the original input image

(a) Infrared (b) Visible.

39

40
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Overview

1) Person Re-Identification
« domain adaptation in dissimilarity space
« visual-infrared reID with intermediate domains

2) Facial Expression Recognition
« subject-based multi-source UDA
« source-free adaptation with missing classes

41
41

Affective Computing — Expression Recognition

Expression recognition is the fundamental problem of
affective computing and can take several forms

Classification of discrete (primary universal) emotions
(from left to right: neutral, happy. sad, fear, angry, surprise and disgust)

Arousal

£

Valence

Ordinal Itensities levels: [T 2 |3 Jmam]

e ) ) Dimensional recognition (regression;
Ordinal classification of pain intensity levels gnition (reg! )

Source: Du, et al., “Compound facial expressions of emotion,” Proc. National Academy of Sciences, 2014,
42

4

1

42

Affective Computing — Expression Recognition

Expression recognition: several potential modalities

0 e

Facial Expressions

“Hi, | am disturbed
1am feeling sad”

Text Data
Body Movement

B

Vocal Expressions

Physiological Signals

43

Affective Computing — Expression Recognition

Tasks: spatiotemporal recognition of expressions (linked to pain, stress,
depression, fatigue, etc.) from video for healthcare and e-learning

- video Cips ;
e o f
. n L :

Source: Praveen, et al., A Joint Cross-Attention Model for Audio-
Visual Fusion in Dimensional Emotion Recognition, IEEE Trans on
Biometrics, Behavior; and Identity Science, 2023.

Challenges:

» weakly-supervised learning of videos with limited and ambiguous
annotations

« rapid adaptation to different persons and capture conditions
« fusion of facial, vocal and other modalities
 spatiotemporal localization and attention mechanisms 44

43

44
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Chaire de recherche FRSQ double Concordia-ETS-CIUSSS-NIM en IA
et santé numérique pour le changement des comportements de santé

CHaIRE DouBLE FRSQ ﬁ m FRSQ DouBLE CHamm

e predict a subject’s affective state in health diagnosis and monitoring

Objectives:

e estimating non-verbal cues to personalize eHealth interventions in
behavior change programs
e spontaneous recognition of facial, textual, and vocal expressions related

to engagement, ambivalence, hesitation, motivation, etc.

45

Affective Computing — Expression Recognition
Challenges in Real-world Applications

Variability of expressions across different individuals, cultures, and capture

conditions

« shift in distributions between the design (source) and operational (target) datasets
real-world capture: occlusion, pose, illumination, complex background, noise

pain (left) vs. no pain (right) frames
State-of-art DL models are complex and may require large datasets for training

few relevant public datasets are available in health

high cost of collecting and annotating ®
large-scale datasets that contain
controlled expressions

label ambiguity from annotators

Adapt DL model to a specific person and capture condition using 46
unlabeled video data from the operational environment

46

45 46
Subject-based UDA for Facial Expression Recognition
UDA methods: several have been proposed to adapt deep FER models
. . . . d t t dat: 1
Subject-Based Domain Adaptation for Facial ACToss soutee and farget ata seis
Expression Recognition Challenge:
the high intra- and inter-person variability in FER, so it would help to
O. Zeeshan, M. H. Aslam, S. Belharbi, A. L Koerich, M. account for different subjects
Pedersoli, S. Bacon & E. Granger state-of-the-art methods do not scale well to a larger number of source
domains
submitted to Face and Gesture 2024
Our general approach:
consider that each subject corresponds to a domain, not entire datasets,
but ensure that it can scale well to many sources
employ an MSDA method — leverage multiple subject-specific source
domains allows for an accurate representation of the intra- and inter-
person variability 48
47 48
47 48

12
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Subject-based UDA for Facial Expression Recognition

Settings for adaptation of a deep FER model:
a) Single UDA, where one labeled dataset is adapted to a single unlabeled dataset
b) MSDA aligns multiple source datasets and then adapts to the single target domain

¢) Subject-based UDA considers that a single labeled source dataset as a mix with different
subject IDs is aligned with unlabeled target subjects

d) Subject-based UDA considers cach subject as a separate domain, mitigating the domain shift
among the sources and then aligning the source with the target subject

- blue:
s s labeled source data

Libod s e
oo

[@\\ " L | green:
A Q : Il O unlabeled target data
4 b s grey:
- data from both domains
[ R —

Laoka st

Subject-based UDA for Facial Expression Recognition
Proposed subject-based MSDA method

1) align labeled source subjects using discrepancy and supervision loss

2) apply the ACPL strategy to generate reliable target pseudo-labels and train the
adaptation model using the source and reliable target subjects

- H ) CEs
using MMD for the

>
i
= 1 g 1
i@ adaptation process

Dstance measure |~~~
Target subject ()

Step2.
e

Augmented Confident Pseudo-label (ACPL)

—_=== sourcesujes  Can also select the top &
closest sources to the targe|

49 — — 50
Subject-based UDA for Facial Expression Recognition Subject-based UDA for Facial Expression Recognition
Step 1: align labeled source subjects using discrepancy and supervision Results: BioVid heat and pain (PartA) with 87 subjects
losses L o 10 subjects treated as a target domain, the remaining 77 subjects as source domains
3 =—ZCF X)), VE S = Lign = L&+ L3 . . )
“ WL [CsCFo GO 8] Lima = MMD(S1, 52), atign = Sce T Smma o ResNetl8 is used in all of the experiments
Step 2: generate reliable target pseudo-labels using Augmented Seti Method Subl
Setting ethods  |Sub-1|Sub-2|Sub-3", | Sub-5| Sub-6 | Sub-7 | Sub-8 |Sub-9|Sub-10| ~Av.
Confident Pseudo-Label (ACPL), 4 &
— generate softmax probability from X7 and X7 : Source Si‘;;‘;z:’:‘:cyd 062 | 0.61 | 0.65[0.55 0.51 | 071 | 0.7 | 052 | 0.54 | 055 | 0.59
BT = pyy e om BT = Py combined ba) 0.73 | 0.64 | 0.73 [0.59| 0.54 | 0.75 | 0.76 | 0.53 | 0.51 | 0.58 | 0.63
M:SDA
— average these probabilities: CMSDA 0.67 | 0.66 | 0.61{0.58 0.55 | 0.50 | 0.67 | 0.56 | 0.54 | 0.67 | 0.60
b b, i SlmpAl 0.93 | 0.47 | 0.81 |0.87| 0.53 | 0.84 | 0.57 | 0.54 | 0.74 | 0.70 | 0.70
prtPL Pt D A b Multi- >
e e P = max(n, Pn) Source | Sublject-based | 0.80 | 0.69 | 055 [0.75) 052 | 081 | 071 | 0.61 | 0.59 | 056 | 0.65
. L (MSDA) 0.93 | 0.69 | 0.84 [0.64| 0.57 | 0.85 | 0.81 | 0.58 | 0.60 | 0.60 | 0.71
— Applying confident threshold and assigning label: Subject-based | 0.93 | 0.71 | 0.86 (0.87| 0.88 | 0.92 | 0.86 | 0.77 | 0.84 | 0.68 | 0.83
with top-k
PT = argmax{ (p)). 1(a; > T NG = @7 .
o {D-1a> 0} N = (XLYD Oracle | Fully-supervised | 0.99 | 0.91 | 0.98 {0.97| 0.98 | 0.97 | 0.96 | 0.95 | 0.99 | 0.98 | 0.96
and adapt the model using the target and reliable sources
1 NG Selected a max of top k=30 closest source subjects from each target subject
o =D oo DI Cina =MMDOT), Lo = Lot Lot Liba g1 o
Na &y 2 Source: Zeeshan et al., Subject-Based Domain Adaptation for Facial Expression %
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Subject-based UDA for Facial Expression Recognition

Results: UNBC-McMaster Shoulder Pain with 25 subjects
e 5 subjects treated as a target domain, the remaining 20 subjects as source domains

e ResNetl8 is used in all of the experiments

Future Steps

Better analysis of techniques like ACPL for generating target pseudo-labels:
« Cyan: standard way of generating pseudo-label

* Orange: EHTS (PFAN) approach.

* Green: ACPL strategy by combining different augmentation, i.e., horizontal-

flip, vertical-flip, increase sharpness, and rotation-90°
Settingd Sub-1 Sub-1 | Sub-2 Sub-3 Sub-4 Sub-5 Avg R A X i i
* Blue: ACPL technique with only horizontal-flip augmentation.
S bined source-only 0.74 0.84 0.81 0.68 0.83 0.78
ource combine Subject-based (UDA) | 0.76 0.87 0.84 0.70 0.85 0.80
T o T om v o e o0 A ———— ) = om
i CMSDA 0.80 0.86 0.83 0.71 0.85 0.81
Multi-Source DA SImpAl 0.80 0.88 0.81 0.70 0.87 0.81
Subject-based (MSDA) | 081 0.91 0.94 0.72 0.92 0.86
Oracle Fully-supervised 0.99 091 0.98 0.97 0.98 096
Selected top k=10 closest source subjects from each target subject E ‘ ' I I
53 o4 4 a4 44444 54
53 Targe subjcts 54
Future Steps Future Steps
. . . Source-Free Adaptation
Subject-based DA using self-paced learning
Most to least similar subjects to the target domains used to adapt the * Data privacy protection
. ? .
models ‘ Why source-free UDA? ‘ + Data storage and transmission cost
Subject-based MSDA (curriculum learning) o + Computation burden
+ select top-k closest source subjects, using some distance between source and | R . .
target distributions H reprocessing
. . . . . . .. 1
« adapt to the target subject by aligning with each source subject individually Training mmp ! Source Pain levels
Target : classification Intensity
1
\
Source Sublects
Dictionary Unlabeled Target
videos
—— | s Pain levels
H peacell) | sw2 | Align Source with
[—p
| Ccommeomany 1| Selectthe op target subjects
Usibr | somce sbioc Untabeled Test preprocessing
Subjects B videos 1
(Sources) Inf BRI, s Pain levels
¥ Update after every epochs nference mmh A A A Ee ety clasefcation intensity
55 Walter, S., The Biovid Heat Pain Database data. CYBCO 2013. 56
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Future Steps
Source-Free Adaptation with Neutral Videos

- Subject-based adaptation of models

- Only short neutral video is available

for adaptation

Preprocessing

Future Step

Source-Free Adaptation with Neutral Videos

Challenges:
- subject-based adaptation of large DL models based on a short
calibration video

- adaptation on a few neutral videos from one subject

ini Source S ..
Training  m) classifcation | Painlevels - setting: UDA where target data has missing classes
model |—» intensity
Existing Settings
Unlabeled Target Preprocessin :
videos op "9 @ Sourcelabel ) Targetlabel |, Sourcelabel .. Target label
o e Pain levels i )
N ion cr nd *| classification in lev
eV - W - W - e i e
d
c
Unlabeled Test Preprocessing
videos
P Target Pain level
Inference - A A A Cropp » classification ‘ain levels Closed-set Partial Open-set
Norm: model intensity
Walter, S., The Biovid Heat Pain Database data. CYBCO 2013. 57 8
Future Steps Future Steps
Source-Free Adaptation Source-Free Adaptation
Fine-tuning approach: SF-UDA methods that rely on discriminative image generation for . Target_to_source image translation approach to preserve the source
missing classes
model
Painful video
« Transform the target data to look like the source data by changing the
|:> contrast and background
Neutral video Translated Classifier
Input image
Source
; ; - =
1 1 extractor e t
1 | 13 [
! I '8 '8
1 I 12 \s
' 1 '3 '
1 1 Source | 4z '
: Farge A feature —
1 1 Steps: Classifier
1 Real
Iy Pain ,' * Train the transformation to transfer the input target image to the unseen source domain
~
R e -7 * The transferred image is fed into the frozen source model
Generate videos with pain intensity levels in the target domain and perform « Style preservu?g‘ lo?s: Aligning lh.c input image features with translated image features
standard SFUDA (with all target classes) « The same classifier is used to predict labels
Z 8 ’ 59 « Label loss: Minimizing the label difference between input image and translated image 60
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Conclusion

Many challenges remain in video-based recognition
- model: limited robustness to variations

- domain and modality shifts: divergence between domain
data

But many opportunities to improve performance with the
abundance of target videos?

- rely on tracklet, clip, and cluster information
- spatiotemporal dependency in videos, optical flow, etc.
- deep DA using unlabeled or weakly-labeled videos

- cross-domain (e.g., camera) and multi-modal adaptation
and generalization

61

61

62

Potential Areas for Collaboration

Developing DL models for visual recognition based on image data
with limited annotations:

rapid adaptation/calibration of DL models for deployment
video-base emotion recognition
methods weaky-supervised learning

weakly-supervised spatial and temporal localization for visual
interpretation

joint detection & embedding (JDE) for cost-effective ReID and multi-
object tracking

/] Align distributions to handle
48— — + multiple cameras scenarios
I IDE Detection Embedding

Le génie pour Iindustric
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