Designing graph filters and graph neural networks in the presence of graph perturbations

Antonio G. Marques
King Juan Carlos University - Madrid (Spain) http://tsc.urjc.es/~amarques
In collaboration with Samuel Rey, Victor Tenorio
Grants: PID2019-105032GB-I00, TED2021-130347B-I00, PID2022-136887NB-I00

(ANCGill Bellairs Research Institute

Coates Workshop - Barbados - Jan. 24, 2024

Why a robust GSP framework?

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
\Rightarrow Huge amounts of data are generated and stored
\Rightarrow Complexity of contemporary systems and networks is increasing
- Modeling the structure of the data as a graphs is an effective approach \Rightarrow GSP: harness graph topology to process the data [Shuman13][Ortega18]

Social network

Brain network

Home automation network

Why a robust GSP framework?

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
\Rightarrow Huge amounts of data are generated and stored
\Rightarrow Complexity of contemporary systems and networks is increasing
- Modeling the structure of the data as a graphs is an effective approach \Rightarrow GSP: harness graph topology to process the data [Shuman13][Ortega18]
- Problem: data is prone to errors and imperfections
\Rightarrow Noise, missing values, or outliers are ubiquitous in data science

Social network

Brain network

Home automation network

Data imperfections in GSP

Perturbations in the observed signals

- At the heart of SP, fairly studied in GSP
- GSP main focus: influence of the graph topology
\Rightarrow Graph-dependent noise in signals
\Rightarrow Node-dependent missing values

Data imperfections in GSP

Perturbations in the observed signals

- At the heart of SP, fairly studied in GSP

True signal

- GSP main focus: influence of the graph topology
\Rightarrow Graph-dependent noise in signals
\Rightarrow Node-dependent missing values

Noisy signal

Perturbations in the graph topology

- Critical for most GSP tools and methods
- Inherent to graph learning approach
- Even small perturbations lead to challenging problems
- Barely studied in the GSP literature!
\Rightarrow Uncertainty in the edges [Miettinen19],[Ceci20]
\Rightarrow Presence of hidden nodes

True graph

Fundamentals of GSP

- Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with N nodes and adjacency \mathbf{A}
$\Rightarrow A_{i j}=$ Proximity between i and j
- Define a signal $\mathrm{x} \in \mathbb{R}^{N}$ on top of the graph $\Rightarrow x_{i}=$ Signal value at node i

- Associated with \mathcal{G} is the graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ (e.g. A, L)
$\Rightarrow S_{i j} \neq 0$ if $i=j$ or $(i, j) \in \mathcal{E}$ (local structure in \mathcal{G}) [Shuman12][Sandryhaila13]

- GSP: Exploit structure encoded in $\mathbf{S}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}$ to process \mathbf{x}
\Rightarrow Key to that end: a) eigenvecs. of \mathbf{S} and b) polynomials on \mathbf{S}

Graph filters and GNNs

- Focus today: learn filter coefficients of GFs and GNNs when errors in S
\Rightarrow Let us spend more time with these two convolutional architectures
- Graph filter: mapping between graph signals written as polynomial on \mathbf{S}

$$
\mathbf{y}=\mathbf{H} \mathbf{x}=\sum_{k=0}^{K-1} h_{k} \mathbf{S}^{k} \mathbf{x}=h_{0} \mathbf{S}^{0} \mathbf{x}+h_{1} \mathbf{S}^{1} \mathbf{x}+h_{2} \mathbf{S}^{2} \mathbf{x}+\ldots+h_{K-1} \mathbf{S}^{K-1} \mathbf{x}
$$

\Rightarrow Sx local operation (\# hops) \Rightarrow local and efficient computation
\Rightarrow Well understood in the spectral domain $\Rightarrow \mathbf{H}$ and \mathbf{S} same eigenvecs.
\Rightarrow Reduces to time invariant filter if $[\mathbf{S x}]_{n}=[\mathbf{x}]_{n+1}$

Graph filters and GNNs

- NNs stack layers composing pointwise nonlinearities with linear transforms

$$
\begin{aligned}
& \mathbf{x}_{1}=\sigma_{1}\left(\mathbf{W}_{1} \mathbf{x}_{0}\right), \ldots, \mathbf{x}_{\ell}=\sigma_{\ell}\left(\mathbf{W}_{\ell} \mathbf{x}_{\ell-1}\right), \ldots, \mathbf{x}_{L}=\sigma_{L}\left(\mathbf{W}_{L \mathbf{x}_{L-1}}\right) \\
\Rightarrow & \mathrm{NN} \text { is } \mathbf{y}=f_{\boldsymbol{\Theta}}(\mathbf{x}) \text { with } \mathbf{y}=\mathbf{x}_{L}, \mathbf{x}_{0}=\mathbf{x}, \boldsymbol{\Theta}=\left\{\mathbf{W}_{\ell}\right\} \text { overparam }
\end{aligned}
$$

- GNNs incorporate $\mathcal{G}(\mathbf{S})$ into the $\mathrm{NN} \Rightarrow \mathbf{y}=\mathrm{f}_{\boldsymbol{\Theta}}(\mathbf{x} \mid \mathcal{G})$

- Graph-aware linear operators
- Parsimonious parametrization via GF
- Reduce to CNN if time convolution adopted
- Can be modified to deal with multi-feature

Fitting GFs and GNN to data

- Given training set $\mathcal{T}=\left\{\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)\right\}_{m=1}^{M}$ with input-output pairs over \mathcal{G}
$\Rightarrow \mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right], \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right]$
- GOAL: Use \mathcal{T} to learn graph-aware mapping from \mathcal{X} to \mathcal{Y}
- Key: postulate a mapping meaningful and easy to learn \Rightarrow GFs and GNNs
- Useful for: (1) Estimating output $\hat{\mathbf{y}}$ associated with input $\mathbf{x} \notin \mathcal{T}$ and (2) Identifying some network dynamics represented by filter coefficients

Fitting GFs and GNN to data

- Given training set $\mathcal{T}=\left\{\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)\right\}_{m=1}^{M}$ with input-output pairs over \mathcal{G}
$\Rightarrow \mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right], \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right]$
- GOAL: Use \mathcal{T} to learn graph-aware mapping from \mathcal{X} to \mathcal{Y}
- Key: postulate a mapping meaningful and easy to learn \Rightarrow GFs and GNNs
- Useful for: (1) Estimating output $\hat{\mathbf{y}}$ associated with input $\mathbf{x} \notin \mathcal{T}$ and (2) Identifying some network dynamics represented by filter coefficients
- If \mathbf{S} is perfectly known, optimal GF fitting

$$
\min _{H}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2} \quad \min _{\mathrm{h}}\left\|\mathbf{Y}-\sum_{k=0}^{N-1} h_{k} \mathbf{S}^{k} \mathbf{X}\right\|_{F}^{2} \quad \min _{\tilde{\mathrm{h}}}\left\|\mathbf{Y}-\mathbf{V} \operatorname{diag}(\tilde{\mathbf{h}}) \mathbf{V}^{\top} \mathbf{X}\right\|_{F}^{2}
$$

Fitting GFs and GNN to data

- Given training set $\mathcal{T}=\left\{\left(\mathbf{x}_{m}, \mathbf{y}_{m}\right)\right\}_{m=1}^{M}$ with input-output pairs over \mathcal{G}

$$
\Rightarrow \mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right], \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right]
$$

- GOAL: Use \mathcal{T} to learn graph-aware mapping from \mathcal{X} to \mathcal{Y}
- Key: postulate a mapping meaningful and easy to learn \Rightarrow GFs and GNNs
- Useful for: (1) Estimating output $\hat{\mathbf{y}}$ associated with input $\mathbf{x} \notin \mathcal{T}$ and (2) Identifying some network dynamics represented by filter coefficients
- If \mathbf{S} is perfectly known, optimal GF fitting

$$
\min _{H}\|\mathbf{Y}-\mathbf{H} \mathbf{X}\|_{F}^{2} \quad \min _{\mathrm{h}}\left\|\mathbf{Y}-\sum_{k=0}^{N-1} h_{k} \mathbf{S}^{k} \mathbf{X}\right\|_{F}^{2} \quad \min _{\tilde{\mathrm{h}}}\left\|\mathbf{Y}-\mathbf{V} \operatorname{diag}(\tilde{\mathbf{h}}) \mathbf{V}^{\top} \mathbf{X}\right\|_{F}^{2}
$$

- If \mathbf{S} is perfectly known, optimal GNN fitting

$$
\min _{\Theta} \sum_{m=1}^{M}\left\|\mathbf{y}_{m}-f_{\Theta}\left(\mathbf{x}_{m} \mid \mathbf{S}\right)\right\|_{2}^{2} \text { with } \Theta=\left\{\mathbf{h}_{\ell}\right\}_{\ell=1}^{L}
$$

\Rightarrow SGD (via backpropagation) over $\left\{\mathbf{h}_{\ell}\right\}_{\ell=1}^{L} \Rightarrow \mathbf{h}_{\ell}^{(t+1)}=\mathbf{h}_{\ell}^{(t)}+\mu \ldots$

Perturbed topology in graph filter ID

- When fitting GFs and GNN to data \Rightarrow Key that linear operators are polynomials of \mathbf{S}
- Assume access only to perturbed $\overline{\mathbf{S}} \in \mathbb{R}^{N \times N} \Rightarrow \overline{\mathbf{S}} \neq \mathbf{S}$ \Rightarrow The true \mathbf{S} is unknown
- What if we estimate the filter as $\mathbf{H}=\sum_{r=0}^{R-1} h_{r} \overline{\mathbf{S}}^{r}$? \Rightarrow Error between \mathbf{S}^{r} and $\overline{\mathbf{S}}^{r}$ grows with r

True \mathcal{G}

Observed \mathcal{G}

Perturbed topology in graph filter ID

- When fitting GFs and GNN to data \Rightarrow Key that linear operators are polynomials of \mathbf{S}
- Assume access only to perturbed $\overline{\mathbf{S}} \in \mathbb{R}^{N \times N} \Rightarrow \overline{\mathbf{S}} \neq \mathbf{S}$

True \mathcal{G} \Rightarrow The true \mathbf{S} is unknown

- What if we estimate the filter as $\mathbf{H}=\sum_{r=0}^{R-1} h_{r} \overline{\mathbf{S}}^{r}$? \Rightarrow Error between \mathbf{S}^{r} and $\overline{\mathbf{S}}^{r}$ grows with r

Observed \mathcal{G}

- Challenge: learning H as polynomial of $\overline{\mathrm{S}}$ entails high estimation error

Graph perturbations

Modeling graph perturbations

- Additive perturbation models are pervasive in $\mathrm{SP} \Rightarrow$ In graphs $\overline{\mathrm{S}}=\mathbf{S}+\Delta$
\Rightarrow Structure of $\Delta \in \mathbb{R}^{N \times N}$ depends on the type of perturbation
$\Rightarrow \mathbf{S}$ and $\overline{\mathbf{S}}$ are close according to some metric $d(\mathbf{S}, \overline{\mathbf{S}})$

Graph perturbations

Modeling graph perturbations

- Additive perturbation models are pervasive in $\mathrm{SP} \Rightarrow$ In graphs $\overline{\mathrm{S}}=\mathbf{S}+\Delta$
\Rightarrow Structure of $\Delta \in \mathbb{R}^{N \times N}$ depends on the type of perturbation
$\Rightarrow \mathbf{S}$ and $\overline{\mathbf{S}}$ are close according to some metric $d(\mathbf{S}, \overline{\mathbf{S}})$

Examples of topology perturbations

- When perturbations create/destroy edges $\Longrightarrow d(\mathbf{S}, \overline{\mathbf{S}})=\|\mathbf{S}-\overline{\mathbf{S}}\|_{0}$

$$
\Rightarrow \Delta_{i j}=1 \text { if } S_{i j}=0 \text { and } \Delta_{i j}=-1 \text { if } S_{i j}=1
$$

- When perturbations represent noisy edges $\Longrightarrow d(\mathbf{S}, \overline{\mathbf{S}})=\left\|\mathbf{S}_{\mathcal{E}}-\overline{\mathbf{S}}_{\mathcal{E}}\right\|_{2}^{2}$

$$
\Rightarrow \Delta_{i j}=0 \text { if } S_{i j}=0 \text { and } \Delta_{i j} \sim \mathcal{N}\left(0, \sigma^{2}\right) \text { if } S_{i j} \neq 0
$$

Challenges of additive graph perturbation models

- Analyzing / translating the effect on either \mathbf{S}^{r} or \mathbf{V} very difficult [Ceci20]
- Worst case bounds, AR/FIR filters of degree one, ER perturbations... [Miettinen19]

Fitting GFs and GNNs from perturbed GSO

- Given $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right], \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right]$ and perturbed $\overline{\mathbf{S}} \Rightarrow$ Find GF/GNN to:
\Rightarrow (1) Estimate output $\hat{\mathbf{y}}$ associated $\mathbf{x} \notin \mathcal{T}$
\Rightarrow (2) Identify true network dynamics represented by filter coefficients

Fitting GFs and GNNs from perturbed GSO

- Given $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right], \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right]$ and perturbed $\overline{\mathbf{S}} \Rightarrow$ Find GF/GNN to:
\Rightarrow (1) Estimate output $\hat{\mathbf{y}}$ associated $\mathbf{x} \notin \mathcal{T}$
\Rightarrow (2) Identify true network dynamics represented by filter coefficients
- Key in our approach: postulate true \mathbf{S} as an optimization variable
\Rightarrow OK: Enhanced (denoised) estimate of GSO is obtained
\Rightarrow OK: Additive model can be leveraged / We work on vertex domain
\Rightarrow KO: Optimization non-convex

Fitting GFs and GNNs from perturbed GSO

- Given $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right], \mathbf{Y}=\left[\mathbf{y}_{1}, \ldots, \mathbf{y}_{M}\right]$ and perturbed $\overline{\mathbf{S}} \Rightarrow$ Find GF/GNN to:
\Rightarrow (1) Estimate output $\hat{\mathbf{y}}$ associated $\mathbf{x} \notin \mathcal{T}$
\Rightarrow (2) Identify true network dynamics represented by filter coefficients
- Key in our approach: postulate true \mathbf{S} as an optimization variable
\Rightarrow OK: Enhanced (denoised) estimate of GSO is obtained
\Rightarrow OK: Additive model can be leveraged / We work on vertex domain
\Rightarrow KO: Optimization non-convex

Outline of the talk

- Formulation for a single GF
\Rightarrow Relaxations and algorithmic alternatives
- Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work

Robust Filter Identification (RFI): single filter case

- Since dealing with \mathbf{V} is challenging, a straightforward vertex-based approach is

$$
\min _{\mathrm{h}, \mathbf{S} \in \mathcal{S}}\left\|\mathbf{Y}-\sum_{k=0}^{N-1} h_{k} \mathbf{S}^{k} \mathbf{X}\right\|_{F}^{2}+\lambda d(\mathbf{S}, \overline{\mathbf{S}})+\beta\|\mathbf{S}\|_{0}
$$

\Rightarrow OK: Second term promotes closeness between $\overline{\mathbf{S}}$ and \mathbf{S}
\Rightarrow KO: High order polynomials: highly non-convex and numerically unstable

Proposed RFI formulation

Robust Filter Identification (RFI): single filter case

- Since dealing with \mathbf{V} is challenging, a straightforward vertex-based approach is

$$
\min _{\mathrm{h}, \mathbf{S} \in \mathcal{S}}\left\|\mathbf{Y}-\sum_{k=0}^{N-1} h_{k} \mathbf{S}^{k} \mathbf{X}\right\|_{F}^{2}+\lambda d(\mathbf{S}, \overline{\mathbf{S}})+\beta\|\mathbf{S}\|_{0}
$$

\Rightarrow OK: Second term promotes closeness between $\overline{\mathbf{S}}$ and \mathbf{S}
\Rightarrow KO: High order polynomials: highly non-convex and numerically unstable

Proposed RFI formulation

- Define full H as optimization variable
- Leverage that if GF is a polynomial of GSO, then H and S commute

$$
\min _{\mathbf{S} \in \mathcal{S}, \mathbf{H}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\lambda d(\mathbf{S}, \overline{\mathbf{S}})+\beta\|\mathbf{S}\|_{0} \quad \text { s.t. } \mathbf{S H}=\mathbf{H S}
$$

\Rightarrow Constraint: \mathbf{H} is a polynomial of \mathbf{S}.
\Rightarrow Regularizers: sparsity and closeness between $\overline{\mathbf{S}}$ and \mathbf{S}

- Operates fully in vertex domain, avoids computation of high-order polynomials
- Bilinear terms and ℓ_{0} render the problem non-convex

Towards a convex formulation

Dealing with ℓ_{0} norm

- We employ the ℓ_{1} reweighted norm based on logarithmic penalty [Candes08]

$$
\|\mathbf{Z}\|_{0} \approx r_{\delta}(\mathbf{Z}):=\sum_{i=1}^{1} \sum_{j=1}^{J} \log \left(\left|Z_{i j}\right|+\delta\right)
$$

\Rightarrow Produces sparser solutions than ℓ_{1} norm
\Rightarrow Majorization-Minimization approach based on linear approximation

Towards a convex formulation

Dealing with ℓ_{0} norm

- We employ the ℓ_{1} reweighted norm based on logarithmic penalty [Candes08]

$$
\|\mathbf{Z}\|_{0} \approx r_{\delta}(\mathbf{Z}):=\sum_{i=1}^{\prime} \sum_{j=1}^{J} \log \left(\left|Z_{i j}\right|+\delta\right)
$$

\Rightarrow Produces sparser solutions than ℓ_{1} norm
\Rightarrow Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

- Adopt an alternating-minimization approach to break the non-linearity
$\Rightarrow \mathbf{H}$ and \mathbf{S} are estimated in two separate iterative steps
\Rightarrow Each step requires solving a convex optimization problem

Towards a convex formulation

Dealing with ℓ_{0} norm

- We employ the ℓ_{1} reweighted norm based on logarithmic penalty [Candes08]

$$
\|\mathbf{Z}\|_{0} \approx r_{\delta}(\mathbf{Z}):=\sum_{i=1}^{\prime} \sum_{j=1}^{J} \log \left(\left|Z_{i j}\right|+\delta\right)
$$

\Rightarrow Produces sparser solutions than ℓ_{1} norm
\Rightarrow Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

- Adopt an alternating-minimization approach to break the non-linearity
$\Rightarrow \mathbf{H}$ and \mathbf{S} are estimated in two separate iterative steps
\Rightarrow Each step requires solving a convex optimization problem
- Rewrite optimization problem as

$$
\min _{\mathbf{S} \in \mathcal{S}, \mathbf{H}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\lambda r_{\delta_{1}}(\mathbf{S}-\overline{\mathbf{S}})+\beta r_{\delta_{2}}(\mathbf{S})+\gamma\|\mathbf{S H}-\mathbf{H S}\|_{F}^{2}
$$

\Rightarrow Constraint $\mathbf{S H}=\mathbf{H S}$ relaxed as a regularizer

Alternating optimization algorithm

- Step 1-GF Identification: estimate $\mathbf{H}^{(t+1)}$ with $\mathbf{S}^{(t)}$ fixed

$$
\mathbf{H}^{(t+1)}=\arg \min _{\mathbf{H}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\gamma\left\|\mathbf{S}^{(t)} \mathbf{H}-\mathbf{H} \mathbf{S}^{(t)}\right\|_{F}^{2}
$$

\Rightarrow LS problem with closed-form solution inverting an $N^{2} \times N^{2}$ matrix

- Step 2 - Graph Denoising: estimate $\mathbf{S}^{(t+1)}$ with $\mathbf{H}^{(t+1)}$ fixed

$$
\begin{aligned}
& \mathbf{S}^{(t+1)}=\arg \min _{\mathbf{S} \in \mathcal{S}} \sum_{i, j=1}^{N}\left(\lambda \bar{\Omega}_{i j}{ }^{(t)}\left|S_{i j}-\bar{S}_{i j}\right|+\beta \Omega_{i j}^{(t)}\left|S_{i j}\right|\right)+\gamma\left\|\mathbf{S} \mathbf{H}^{(t+1)}-\mathbf{H}^{(t+1)} \mathbf{S}\right\|_{F}^{2} \\
& \Rightarrow \text { With } \ell_{1} \text { weights } \Omega_{i j}^{(t)}, \bar{\Omega}_{i j}^{(t)} \text { computed from previous GSO S}{ }^{(t)}
\end{aligned}
$$

- Steps 1 and 2 repeated for $t=0, \ldots, t_{\text {max }}-1$ iterations

Alternating optimization algorithm

- Step 1-GF Identification: estimate $\mathbf{H}^{(t+1)}$ with $\mathbf{S}^{(t)}$ fixed

$$
\mathbf{H}^{(t+1)}=\arg \min _{\mathbf{H}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\gamma\left\|\mathbf{S}^{(t)} \mathbf{H}-\mathbf{H S ^ { (t) }}\right\|_{F}^{2}
$$

\Rightarrow LS problem with closed-form solution inverting an $N^{2} \times N^{2}$ matrix

- Step 2 - Graph Denoising: estimate $\mathbf{S}^{(t+1)}$ with $\mathbf{H}^{(t+1)}$ fixed

$$
\mathbf{S}^{(t+1)}=\arg \min _{\mathbf{S} \in \mathcal{S}} \sum_{i, j=1}^{N}\left(\lambda \bar{\Omega}_{i j}{ }^{(t)}\left|S_{i j}-\bar{S}_{i j}\right|+\beta \Omega_{i j}{ }^{(t)}\left|S_{i j}\right|\right)+\gamma\left\|\mathbf{S} \mathbf{H}^{(t+1)}-\mathbf{H}^{(t+1)} \mathbf{S}\right\|_{F}^{2}
$$ \Rightarrow With ℓ_{1} weights $\Omega_{i j}^{(t)}, \bar{\Omega}_{i j}^{(t)}$ computed from previous GSO $\mathbf{S}^{(t)}$

- Steps 1 and 2 repeated for $t=0, \ldots, t_{\text {max }}-1$ iterations

Theorem

The RFI algorithm converges to an stationary point if \mathbf{S} does not have repeated eigenvalues and every row of $\tilde{\mathbf{X}}=\mathbf{V}^{-1} \mathbf{X}$ is nonzero

Algorithmic enhancements

- Additional constraints: If data is graph-stationary

$$
\Rightarrow\left\|\mathbf{C}_{\mathbf{X}} \mathbf{S}-\mathbf{S} \mathbf{C}_{\mathbf{X}}\right\| \leq \epsilon_{\mathbf{X}} \text { and }\left\|\mathbf{C}_{\mathbf{Y}} \mathbf{S}-\mathbf{S C}_{\mathbf{Y}}\right\| \leq \epsilon_{\mathbf{Y}}
$$

Algorithmic enhancements

- Additional constraints: If data is graph-stationary

$$
\Rightarrow\left\|\mathbf{C}_{\mathbf{X}} \mathbf{S}-\mathbf{S C}_{\mathbf{X}}\right\| \leq \epsilon_{\mathbf{X}} \text { and }\left\|\mathbf{C}_{\mathbf{Y}} \mathbf{S}-\mathbf{S} \mathbf{C}_{\mathbf{Y}}\right\| \leq \epsilon_{\mathbf{Y}}
$$

- Efficient implementation: Computational complexity RFI alg. $\mathcal{O}\left(N^{7}\right)$
\Rightarrow Prohibitive for large graphs \Rightarrow Steps 1 and 2 via an iterative process

Algorithmic enhancements

- Additional constraints: If data is graph-stationary

$$
\Rightarrow\left\|\mathbf{C}_{\mathbf{X}} \mathbf{S}-\mathbf{S C}_{\mathbf{X}}\right\| \leq \epsilon_{\mathbf{X}} \text { and }\left\|\mathbf{C}_{\mathbf{Y}} \mathbf{S}-\mathbf{S} \mathbf{C}_{\mathbf{Y}}\right\| \leq \epsilon_{\mathbf{Y}}
$$

- Efficient implementation: Computational complexity RFI alg. $\mathcal{O}\left(N^{7}\right)$
\Rightarrow Prohibitive for large graphs \Rightarrow Steps 1 and 2 via an iterative process
- Step 1 - Efficient GF Identification
\Rightarrow Estimate $\mathbf{H}^{(t+1)}$ performing $\tau_{\text {max }}$ iterations of gradient descent
\Rightarrow Involves multiplications of $N \times N$ matrices
- Step 2 - Efficient Graph Denoising
\Rightarrow Estimate $\mathbf{S}^{(t+1)}$ via alternating optimization for $\tau_{\text {max }_{2}}$
\Rightarrow Solve N^{2} scalar problems
\Rightarrow Closed-form solution based on projected soft-thresholding
- Computational complexity reduced to $\mathcal{O}\left(N^{3}\right)$

Numerical Evaluation: Single Graph

- Test the estimates $\hat{\mathbf{H}}$ and $\hat{\mathbf{S}}$ with and without robust approach
\Rightarrow Graphs are sampled from the small-world random graph model
\Rightarrow We consider different types of perturbations

- RFI consistently outperforms classical FI
\Rightarrow Clear improvement in estimation of \mathbf{S} with respect to $\overline{\mathbf{S}}$
- Only destroying links is the most damaging perturbation

Outline: Robust multi-GF identification

- Given $X=\left[x_{1}, \ldots, x_{M}\right], Y=\left[y_{1}, \ldots, y_{M}\right]$ and perturbed $\bar{S} \Rightarrow$ Find GF/GNN \Rightarrow Key to our approach: postulate true S as an optimization variable
\Rightarrow Perform joint optimization
\Rightarrow Operate on the vertex domain

Outline of the talk

- Formulation for a single GF
\Rightarrow Relaxations and algorithmic alternatives
- Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work

Robust joint graph filter ID

- Now the goal is to estimate K GFs $\left\{\mathbf{H}_{k}\right\}_{k=1}^{K}$
\Rightarrow Are polynomials of the unknown \mathbf{S} but only $\overline{\mathbf{S}}$ is observed
\Rightarrow For each \mathbf{H}_{k} we have M_{k} input/output signals $\mathbf{X}_{k} / \mathbf{Y}_{k}$
- Several GFs show up in relevant settings [Segarra17][Liu18]
\Rightarrow Different network processes on a graph $\mathbf{Y}_{k}=\mathbf{H}_{k} \mathbf{X}_{k}+\mathbf{W}_{k}$
\Rightarrow Graph-based multivariate time series $\mathbf{Y}_{\kappa}=\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k}+\mathbf{X}_{\kappa}+\mathbf{W}_{k}$

Robust joint graph filter ID

- Now the goal is to estimate K GFs $\left\{\mathbf{H}_{k}\right\}_{k=1}^{K}$
\Rightarrow Are polynomials of the unknown \mathbf{S} but only $\overline{\mathbf{S}}$ is observed
\Rightarrow For each \mathbf{H}_{k} we have M_{k} input/output signals $\mathbf{X}_{k} / \mathbf{Y}_{k}$
- Several GFs show up in relevant settings [Segarra17][Liu18]
\Rightarrow Different network processes on a graph $\mathbf{Y}_{k}=\mathbf{H}_{k} \mathbf{X}_{k}+\mathbf{W}_{k}$
\Rightarrow Graph-based multivariate time series $\mathbf{Y}_{\kappa}=\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k}+\mathbf{X}_{\kappa}+\mathbf{W}_{k}$
- Joint identification exploits each \mathbf{H}_{k} being a polynomial on \mathbf{S}
$\min _{\mathbf{S} \in \mathcal{S},\left\{\mathbf{H}_{k}\right\}_{k=1}^{K}} \sum_{k=1}^{K} \alpha_{k}\left\|\mathbf{Y}_{k}-\mathbf{H}_{k} \mathbf{X}_{k}\right\|_{F}^{2}+\lambda d(\mathbf{S}, \overline{\mathbf{S}})+\beta\|\mathbf{S}\|_{0}+\sum_{k=1}^{K} \gamma\left\|\mathbf{S} \mathbf{H}_{k}-\mathbf{H}_{k} \mathbf{S}\right\|_{F}^{2}$
$\Rightarrow K$ commutativity constraints improve estimation of \mathbf{S}
$\Rightarrow A$ better estimate of \mathbf{S} leads to better estimates of \mathbf{H}_{k}
- Solved via 2-step alternating optimization

Robust joint graph filter ID: AR order K

- Consider an AR graph signal \mathbf{Y}_{κ} of order K with exogenous input \mathbf{X}_{κ}

$$
\mathbf{Y}_{\kappa}=\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k}+\mathbf{X}_{\kappa}, \text { with } \mathbf{H}_{k}=\sum_{r=0}^{N-1} h_{r, k} \mathbf{S}^{r},
$$

- Having access to $\overline{\mathrm{S}}$ and observations, we aim to solve $\min _{\mathbf{S} \in \mathcal{S},\left\{\mathbf{H}_{k}\right\}_{k=1}^{K}} \sum_{\kappa=K+1}^{\kappa_{\text {max }}}\left\|\mathbf{Y}_{\kappa}-\mathbf{X}_{\kappa}-\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k}\right\|_{F}^{2}+\lambda d(\mathbf{S}, \overline{\mathbf{S}})+\beta\|\mathbf{S}\|_{0}+\sum_{k=1}^{K} \gamma\left\|\mathbf{S} \mathbf{H}_{k}-\mathbf{H}_{k} \mathbf{S}\right\|_{F}^{2}$
\Rightarrow If exogenous input \mathbf{X}_{κ} not know, use covariance norm
- Solved via block-coordinate algorithm, new GF-id step is

Robust joint graph filter ID: AR order K

- Consider an AR graph signal \mathbf{Y}_{κ} of order K with exogenous input \mathbf{X}_{κ}

$$
\mathbf{Y}_{\kappa}=\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k}+\mathbf{X}_{\kappa}, \text { with } \mathbf{H}_{k}=\sum_{r=0}^{N-1} h_{r, k} \mathbf{S}^{r},
$$

- Having access to $\overline{\mathrm{S}}$ and observations, we aim to solve
$\min _{\mathbf{S} \in \mathcal{S},\left\{\mathbf{H}_{k}\right\}_{k=1}^{K}} \sum_{\kappa=K+1}^{\kappa_{\max }}\left\|\mathbf{Y}_{\kappa}-\mathbf{X}_{\kappa}-\sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k}\right\|_{F}^{2}+\lambda d(\mathbf{S}, \overline{\mathbf{S}})+\beta\|\mathbf{S}\|_{0}+\sum_{k=1}^{K} \gamma\left\|\mathbf{S} \mathbf{H}_{k}-\mathbf{H}_{k} \mathbf{S}\right\|_{F}^{2}$
\Rightarrow If exogenous input \mathbf{X}_{κ} not know, use covariance norm
- Solved via block-coordinate algorithm, new GF-id step is

$$
\begin{aligned}
\mathbf{H}_{k}^{(t+1)} & =\underset{\mathbf{H}_{k}}{\operatorname{argmin}} \sum_{\kappa=K+1}^{\kappa_{\text {max }}} \| \mathbf{Y}_{\kappa}-\mathbf{X}_{\kappa}-\mathbf{H}_{k} \mathbf{Y}_{\kappa-k}-\sum_{k^{\prime}<k} \mathbf{H}_{k^{\prime}}^{(t+1)} \mathbf{Y}_{\kappa-k^{\prime}} \\
& -\sum_{k^{\prime}>k} \mathbf{H}_{k^{\prime}}^{(t)} \mathbf{Y}_{\kappa-k^{\prime}}\left\|_{F}^{2}+\sum_{k=1}^{K} \gamma\right\| \mathbf{S}^{(t)} \mathbf{H}_{k}-\mathbf{H}_{k} \mathbf{S}^{(t)} \|_{F}^{2},
\end{aligned}
$$

Selected dataset

Weather stations network

NATIONAL CENTERS FOR
ENVIRONMENTAL INFORMATION

Weather station network

- Nodes are weather stations in California
- Signals are temperature measurements at each station
- 5-nearest neighbor graph from geographical distance between stations

Numerical Evaluation: Multiple GFs

- Predict temperature 1 or 3 days in the future
\Rightarrow Estimate \mathbf{H} using 25% or 50% of the available data
- Consider LS as a naive solution and TLS-SEM as a robust baseline

| | 1-Step | | 3-Step | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Models | TTS $=0.25$ | TTS $=0.5$ | TTS $=0.25$ | TTS $=0.5$ |
| LS | $6.9 \cdot 10^{-3}$ | $3.1 \cdot 10^{-3}$ | $2.1 \cdot 10^{-2}$ | $9.1 \cdot 10^{-3}$ |
| LS-GF | $3.3 \cdot 10^{-3}$ | $3.3 \cdot 10^{-3}$ | $8.4 \cdot 10^{-3}$ | $8.5 \cdot 10^{-3}$ |
| TLS-SEM | $4.0 \cdot 10^{1}$ | $3.7 \cdot 10^{-2}$ | $6.8 \cdot 10^{-1}$ | $5.5 \cdot 10^{-2}$ |
| RFI | $3.4 \cdot 10^{-3}$ | $3.1 \cdot 10^{-3}$ | $8.5 \cdot \mathbf{1 0} 0^{-3}$ | $7.5 \cdot 10^{-3}$ |
| AR(3)-RFI | $\mathbf{3 . 2} \cdot \mathbf{1 0}^{-\mathbf{3}}$ | $\mathbf{2 . 8} \cdot \mathbf{1 0}^{-\mathbf{3}}$ | $\mathbf{7 . 8} \cdot \mathbf{1 0}^{-\mathbf{3}}$ | $\mathbf{6 . 9} \cdot \mathbf{1 0}^{-\mathbf{3}}$ |

- Best performance achieved by joint inference assuming AR model of order 3
\Rightarrow Follow up closely by the (separate) RFI algorithm

Outline: Robust GNN design

- Given $X=\left[x_{1}, \ldots, x_{M}\right], Y=\left[y_{1}, \ldots, y_{M}\right]$ and perturbed $\bar{S} \Rightarrow$ Find GF/GNN \Rightarrow Key to our approach: postulate true S as an optimization variable
\Rightarrow Perform joint optimization
\Rightarrow Operate on the vertex domain

Outline of the talk

- Formulation for a single GF
\Rightarrow Relaxations and algorithmic alternatives
- Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work

Robust GNN design for perturbed GSOs

- GNNs stack layers composing pointwise nonlinearities with linear GFs

$$
\mathbf{x}_{1}=\sigma_{1}\left(\mathbf{H}\left(\mathbf{h}_{1} \mid \mathbf{S}\right) \mathbf{x}\right), \ldots, \mathbf{x}_{\ell}=\sigma_{\ell}\left(\mathbf{H}\left(\mathbf{h}_{\ell} \mid \mathbf{S}\right) \mathbf{x}_{\ell-1}\right), \ldots, \mathbf{y}=\sigma_{L}\left(\mathbf{H}\left(\mathbf{h}_{L} \mid \mathbf{S}\right) \mathbf{x}_{L-1}\right)
$$

\Rightarrow In practice, GNNs allow for multiple hidden features

$$
\mathbf{X}_{\ell}=\sigma_{\ell}\left(\mathbf{H}\left(\mathbf{h}_{\ell} \mid \mathbf{S}\right) \mathbf{X}_{\ell-1} \boldsymbol{\Xi}_{\ell}^{T}\right)
$$

\Rightarrow Mapping GNN: $\mathbf{y}=f_{\boldsymbol{\Theta}}(\mathbf{x} \mid \mathbf{S})$, with $\boldsymbol{\Theta}=\left\{\mathbf{h}_{\ell}, \boldsymbol{\Xi}_{\ell}\right\}_{\ell=1}^{L}$

- Our goal is to use \mathcal{T} and perturbed $\overline{\mathbf{S}}$ to estimate
\Rightarrow Robust GNN parameters [Jin20],[Kenlay21]
\Rightarrow Enhanced GSO
- Challenges: GNN highly nonconvex, error nonlinear in \mathbf{h} / \mathbf{H}
\Rightarrow Optimization typically addressed via SGD

Robust GNN design for perturbed GSOs

- Hence, we can approach the robust GNN design as

$$
\min _{\mathbf{h}, \Xi, \mathbf{S} \in \mathcal{S}} \sum_{m=1}^{M}\left\|\mathbf{y}_{m}-f_{[\mathbf{h}, \Xi]}\left(\mathbf{x}_{m} \mid \mathbf{S}\right)\right\|^{2}+\alpha d(\mathbf{S}, \overline{\mathbf{S}})+\lambda\|\mathbf{S}\|_{1}
$$

\Rightarrow As before, we could declare variables $\left\{\boldsymbol{H}_{\ell}\right\}$ and use commutativity
\Rightarrow However, in GNNs the polynomials are of low degree (2, 3...)

$$
\mathbf{X}_{\ell}=\sigma_{\ell}\left(\mathbf{H}\left(\mathbf{h}_{\ell}\right) \mathbf{X}_{\ell-1} \boldsymbol{\Xi}_{\ell}^{T}\right), \text { with } \mathbf{H}\left(\mathbf{h}_{\ell} \mid \mathbf{S}\right)=h_{0, \ell} \mathbf{l}+h_{1, \ell} \mathbf{S}+h_{2, \ell} \mathbf{S}^{2}
$$

Robust GNN design for perturbed GSOs

- Hence, we can approach the robust GNN design as

$$
\min _{\mathbf{h}, \Xi, \mathbf{S} \in \mathcal{S}} \sum_{m=1}^{M}\left\|\mathbf{y}_{m}-f_{[\mathbf{h}, \Xi]}\left(\mathbf{x}_{m} \mid \mathbf{S}\right)\right\|^{2}+\alpha d(\mathbf{S}, \overline{\mathbf{S}})+\lambda\|\mathbf{S}\|_{1}
$$

\Rightarrow As before, we could declare variables $\left\{\mathbf{H}_{\ell}\right\}$ and use commutativity
\Rightarrow However, in GNNs the polynomials are of low degree (2, 3...)

$$
\mathbf{X}_{\ell}=\sigma_{\ell}\left(\mathbf{H}\left(\mathbf{h}_{\ell}\right) \mathbf{X}_{\ell-1} \boldsymbol{\Xi}_{\ell}^{T}\right), \text { with } \mathbf{H}\left(\mathbf{h}_{\ell} \mid \mathbf{S}\right)=h_{0, \ell} \mathbf{I}+h_{1, \ell} \mathbf{S}+h_{2, \ell} \mathbf{S}^{2}
$$

- Optimizing over $\left\{h_{k, \ell}\right\}$ can be a possibility, the algorithm proceeds in 3 steps

$$
\begin{aligned}
& \Rightarrow \text { Step 1: } \mathbf{h}^{(t+1)}=\arg \min _{\mathbf{h}} \sum_{m=1}^{M}\left\|\mathbf{y}_{m}-f_{\left[\mathbf{h}, \mathbf{\Xi}^{(t)]}\right]}\left(\mathbf{x}_{m} \mid \mathbf{S}^{(t)}\right)\right\|^{2} \\
& \Rightarrow \text { Step 2: } \mathbf{\Xi}^{(t+1)}=\arg \min _{\Xi} \sum_{m=1}^{M}\left\|\mathbf{y}_{m}-f_{\left[\mathbf{h}^{(t+1)}, \boldsymbol{\Xi}\right]}\left(\mathbf{x}_{m} \mid \mathbf{S}^{(t)}\right)\right\|^{2} \\
& \Rightarrow \text { Step 3: } \mathbf{S}^{(t+1)}=\arg \min _{\mathbf{S} \in \mathcal{S}} \sum_{m=1}^{M}\left\|\mathbf{y}_{m}-f_{\left[\mathbf{h}^{(t+1)}, \mathbf{\Xi}^{(t+1)]}\right.}\left(\mathbf{x}_{m} \mid \mathbf{S}\right)\right\|^{2} \\
& +\alpha d(\mathbf{S}, \overline{\mathbf{S}})+\lambda\|\mathbf{S}\|_{1}
\end{aligned}
$$

- SGD needs to be used, Steps 1-2 standard via backpropagation

Selected datasets

- We test our approach on 2 citation nets and 3 webpage nets
\Rightarrow Nodes are scientific papers and edges citations among them
\Rightarrow Nodes are webpages and edges hyperlinks
\Rightarrow Node features indicate the presence of words from a fixed dictionary
- Cora dataset ${ }^{a}: ~ N=2708$ and $E=10556$
$\Rightarrow 1433$ node features, 7 classes of nodes
- Citeseer dataset ${ }^{b}: N=3327$ and $E=9228$ edges $\Rightarrow 3703$ node features, 6 classes of nodes
- WebKB1 dataset ${ }^{c}$: $N=183 / 251$ and $E=295 / 499$
$\Rightarrow 1703$ node features, 5 classes of webs (course, faculty...)

[^0]
Numerical Evaluation: GNNs (I)

- We test our robust GNN-H relative to other competitors
\Rightarrow Cora and Citeseer / Classical GCN and GAT
$\Rightarrow \mathrm{AGCN}$ with learnable H (i.e., our model ignoring perturbations)

- Results:

\Rightarrow As $d(\overline{\mathbf{S}}, \mathbf{S})$ increases: accuracy down \Rightarrow Relevance of robust designs
\Rightarrow When no errors, GAT outperforms, our robust GNN performs similarly
\Rightarrow When errors, robust GNN outperforms and degrades less noticeably

Numerical Evaluation: GNNs (II)

- Effect of perturbation on the graph \Rightarrow Edge rewiring
- Cornell and Texas datasets (WebKB1)

- RGCNH even improves the unperturbed case

Numerical Evaluation: GNNs (III)

- Using information about the perturbation
\Rightarrow Only a subset of nodes with edges perturbed

- RGCNH leverages the prior information

Alternative formulation of Robust GNN

- Considering \mathbf{S} as an optimization variable offers advantages...
- ... but it is problematic if powers are higher than 3,4

Alternative formulation of Robust GNN

- Considering \mathbf{S} as an optimization variable offers advantages...
- ... but it is problematic if powers are higher than 3, 4
- Alternative formulation

$$
\min _{\Theta, H, \mathbf{S} \in \mathcal{S}} \mathcal{L}\left(f_{\Theta}(\mathrm{H}, \mathbf{X}), \mathcal{Y}\right)+\alpha d(\mathbf{S}, \overline{\mathbf{S}})+\lambda \gamma(\mathbf{S})+\delta\|\mathbf{H} \mathbf{S}-\mathbf{S} H\|_{2}^{2}
$$

\Rightarrow In this case, the recursion is defined by

$$
\mathbf{X}_{\ell}=\sigma_{\ell}\left(\mathrm{H} \mathbf{X}_{\ell-1} \boldsymbol{\Theta}_{\ell}\right)
$$

\Rightarrow OK: avoids powers of \mathbf{S}
$\Rightarrow \mathrm{OK}$: commutativity term promotes H as a polynomial of $\mathrm{S} \Rightarrow \mathrm{GF}$
\Rightarrow OK: less parameters
\Rightarrow KO: new optimization variable

Alternative formulation of Robust GNN (II)

- Solve in three steps

$$
\begin{aligned}
& \Rightarrow \text { Step 1: } \Theta^{(t+1)}=\arg \min _{\Theta} \mathcal{L}\left(f_{\Theta}\left(\mathbf{H}^{(t)}, \mathbf{X}\right), \mathcal{Y}\right) \\
& \Rightarrow \text { Step 2: } \mathbf{H}^{(t+1)}=\arg \min _{H} \mathcal{L}\left(f_{\left.\Theta^{(t+1)}(\mathrm{H}, \mathbf{X}), \mathcal{Y}\right)}\right. \\
&+\delta\left\|H \mathbf{S}^{(t)}-\mathbf{S}^{(t)} \mathrm{H}\right\|_{2}^{2} \\
& \Rightarrow \text { Step 3: } \mathbf{S}^{(t+1)}=\arg \min _{\mathbf{S} \in \mathcal{S}} \alpha d(\mathbf{S}, \overline{\mathbf{S}})+\lambda \gamma(\mathbf{S}) \\
&+\delta\left\|\mathbf{H}^{(t+1)} \mathbf{S}-\mathbf{S} \mathbf{H}^{(t+1)}\right\|_{2}^{2}
\end{aligned}
$$

- Alternating optimization
\Rightarrow First two steps via SGD
\Rightarrow Gradient of commutativity term - linear
\Rightarrow Step 3 - convex!

Outline: Future lines of work

- Given $X=\left[x_{1}, \ldots, x_{M}\right], Y=\left[y_{1}, \ldots, y_{M}\right]$ and perturbed $\bar{S} \Rightarrow$ Find GF/GNN \Rightarrow Key to our approach: postulate true S as an optimization variable
\Rightarrow Perform joint optimization
\Rightarrow Operate on the vertex domain

Outline of the talk

- Formulation for a single GF
\Rightarrow Relaxations and algorithmic alternatives
- Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work

Future lines of work

Considering adversarial setups

- So far we have considered that perturbations were arbitrary
\Rightarrow As a result we focused in finding the best fit for the observations
\Rightarrow Mathematically

$$
\min _{\mathbf{S} \in \mathcal{S}, \mathbf{H}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\lambda r_{\delta_{1}}(\mathbf{S}-\overline{\mathbf{S}})+\beta r_{\delta_{2}}(\mathbf{S})+\gamma\|\mathbf{S H}-\mathbf{H S}\|_{F}^{2}
$$

Future lines of work

Considering adversarial setups

- So far we have considered that perturbations were arbitrary
\Rightarrow As a result we focused in finding the best fit for the observations
\Rightarrow Mathematically

$$
\min _{\mathbf{S} \in \mathcal{S}, \mathbf{H}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\lambda r_{\delta_{1}}(\mathbf{S}-\overline{\mathbf{S}})+\beta r_{\delta_{2}}(\mathbf{S})+\gamma\|\mathbf{S H}-\mathbf{H S}\|_{F}^{2}
$$

- However, what if perturbations are adversarial or focus on worst-case design
\Rightarrow Min / max formulation

$$
\min _{\mathbf{H}} \max _{\mathbf{S} \in \mathcal{S}}\|\mathbf{Y}-\mathbf{H X}\|_{F}^{2}+\lambda r_{\delta_{1}}(\mathbf{S}-\overline{\mathbf{S}})+\beta r_{\delta_{2}}(\mathbf{S})+\gamma\|\mathbf{S H}-\mathbf{H S}\|_{F}^{2}
$$

- Saddle point optimization \Rightarrow guarantees if convex / concave
\Rightarrow Most NN do not satisfy the above
\Rightarrow Careful reformulations are prudent

Future lines of work

Considering graph-perturbations for other GSP problems

- Graph-perturbations are critical in most GSP tasks but not accounted for
$\Rightarrow \mathbf{S}$ as an optimization variable in other GSP tasks
- Incorporate prior information about the perturbations or the graph
- Instead of first learning the graph and then solving the GSP task...
\Rightarrow...jointly learn the graph and solving the GSP task

Future lines of work

Considering graph-perturbations for other GSP problems

- Graph-perturbations are critical in most GSP tasks but not accounted for
$\Rightarrow \mathbf{S}$ as an optimization variable in other GSP tasks
- Incorporate prior information about the perturbations or the graph
- Instead of first learning the graph and then solving the GSP task...
\Rightarrow...jointly learn the graph and solving the GSP task

Exploiting prior information about the graph topology

- Most applications only use the fact that \mathbf{S} is sparse
- Prior information is key to accurately estimating the graph topology
- Assuming graph is a random realization and leverage statistical priors
\Rightarrow Efforts should focus on identifying models suited for the task at hand
- Assuming we have access to other related graphs
\Rightarrow Prior work based on reference graph with a similar density of motifs

- Related publications:

\Rightarrow V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, "A robust alternative for graph convolutional neural networks via graph neighborhood filters," in Asilomar Conf. Signals, Syst., Computers, 2021.
\Rightarrow S. Rey, V. M. Tenorio, and A. G. Marques, "Robust graph filter identification and graph denoising from signal observations," IEEE Trans. Signal Process. 2023 (arXiv:2210.08488)
\Rightarrow V. M. Tenorio, S. Rey, and A. G. Marques, "Robust Graph Neural Network based on graph denoising," in Asilomar Conf. Signals, Syst., Computers, 2023.
\Rightarrow V. M. Tenorio, S. Rey and A. G. Marques, "Robust blind deconvolution and graph denoising", in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), 2024.

- Code: https://github.com/reysam93

Thanks!

References

$\Rightarrow \quad[S e g a r r a 17]$ S. Segarra, A. G. Marques, and A. Ribeiro, "Optimal graph-filter design and applications to distributed linear network operators," IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4117-4131, 2017.
$\Rightarrow \quad[L i u 18]$ J. Liu, E. Isufi, and G. Leus, "Filter design for autoregressive moving average graph filters," IEEE Trans. Signal Process. Inf. Netw., vol. 5, no. 1, pp. 47-60, 2018.
$\Rightarrow \quad[M i e t t i n e n 19]$ J. Miettinen, S. A. Vorobyov, and E. Ollila, "Modelling graph errors: Towards robust graph signal processing," arXiv preprint arXiv:1903.08398, 2019
$\Rightarrow \quad$ [Ceci20] E. Ceci and S. Barbarossa, "Graph signal processing in the presence of topology uncertainties," IEEE Trans. Signal Process., vol. 68, pp. 1558-1573, 2020.
$\Rightarrow \quad$ [Nguyen22] H. S. Nguyen, Y. He, and H. T. Wai, "On the stability of low pass graph filter with a large number of edge rewires," in IEEE Intl. Conf. Acoustics, Speech Signal Process. (ICASSP), 2022, pp. 5568-5572.
$\Rightarrow \quad$ [Jin20] W. Jin, et al, "Graph structure learning for robust graph neural networks," in Intl. Conf. Knowl. Discovery Data Mining (ACM SIGKDD), 2020, pp. 66-74.
 networks under edge rewiring," in IEEE Intl. Conf. Acoustics, Speech Signal Process. (ICASSP), 2021, pp. 8513-8517.

[^0]: ${ }^{a}$ https://networkrepository.com/cora.php
 $b_{\text {https: //networkrepository.com/citeseer.php }}$
 ${ }^{\text {chttps://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/ }}$

