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Why a robust GSP framework?

I Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]

⇒ Huge amounts of data are generated and stored

⇒ Complexity of contemporary systems and networks is increasing

I Modeling the structure of the data as a graphs is an effective approach

⇒ GSP: harness graph topology to process the data [Shuman13][Ortega18]

I Problem: data is prone to errors and imperfections

⇒ Noise, missing values, or outliers are ubiquitous in data science

Social network Brain network Home automation network
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Data imperfections in GSP

True signal

Noisy signal

Perturbations in the observed signals

I At the heart of SP, fairly studied in GSP

I GSP main focus: influence of the graph topology

⇒ Graph-dependent noise in signals

⇒ Node-dependent missing values

Perturbations in the graph topology

I Critical for most GSP tools and methods

I Inherent to graph learning approach

I Even small perturbations lead to challenging problems

I Barely studied in the GSP literature!

⇒ Uncertainty in the edges [Miettinen19],[Ceci20]

⇒ Presence of hidden nodes

True graph

Noisy graph
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Fundamentals of GSP

I Graph G = (V, E) with N nodes and adjacency A

⇒ Aij = Proximity between i and j

I Define a signal x ∈ RN on top of the graph

⇒ xi = Signal value at node i

I Associated with G is the graph-shift operator S ∈ RN×N (e.g. A, L)

⇒ Sij 6=0 if i = j or (i , j)∈E (local structure in G) [Shuman12][Sandryhaila13]

I GSP: Exploit structure encoded in S = VΛV−1 to process x

⇒ Key to that end: a) eigenvecs. of S and b) polynomials on S
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Graph filters and GNNs

I Focus today: learn filter coefficients of GFs and GNNs when errors in S

⇒ Let us spend more time with these two convolutional architectures

I Graph filter: mapping between graph signals written as polynomial on S

y = Hx =
K−1∑
k=0

hkSkx = h0S0x + h1S1x + h2S2x + . . .+ hK−1SK−1x

⇒ Sx local operation (# hops) ⇒ local and efficient computation

⇒ Well understood in the spectral domain ⇒ H and S same eigenvecs.

⇒ Reduces to time invariant filter if [Sx]n = [x]n+1
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Graph filters and GNNs

I NNs stack layers composing pointwise nonlinearities with linear transforms

x1 = σ1

(
W1x0

)
, . . . , x` = σ`

(
W`x`−1

)
, . . . , xL = σL

(
WLxL−1

)
⇒ NN is y = fΘ(x) with y = xL, x0 = x, Θ = {W`} overparam

I GNNs incorporate G (S) into the NN ⇒ y = fΘ(x |G)

I Graph-aware linear
operators

I Parsimonious
parametrization via GF

I Reduce to CNN if time
convolution adopted

I Can be modified to deal
with multi-feature
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Fitting GFs and GNN to data

I Given training set T = {(xm, ym)}Mm=1 with input-output pairs over G
⇒ X = [x1, ..., xM ], Y = [y1, ..., yM ]

I GOAL: Use T to learn graph-aware mapping from X to Y
I Key: postulate a mapping meaningful and easy to learn ⇒ GFs and GNNs
I Useful for: (1) Estimating output ŷ associated with input x /∈ T and (2)

Identifying some network dynamics represented by filter coefficients

I If S is perfectly known, optimal GF fitting

min
H
‖Y−HX‖2

F min
h
‖Y−

N−1∑
k=0

hkSkX‖2
F min

h̃
‖Y−Vdiag(h̃)V>X‖2

F

I If S is perfectly known, optimal GNN fitting

min
Θ

M∑
m=1

‖ym − fΘ(xm |S)‖2
2 with Θ = {h`}L`=1

⇒ SGD (via backpropagation) over {h`}L`=1 ⇒ h
(t+1)
` = h

(t)
` + µ...
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Perturbed topology in graph filter ID

I When fitting GFs and GNN to data ⇒ Key that linear
operators are polynomials of S

I Assume access only to perturbed S̄ ∈ RN×N ⇒ S̄ 6= S

⇒ The true S is unknown

I What if we estimate the filter as H =
∑R−1

r=0 hr S̄r ?

⇒ Error between Sr and S̄r grows with r

True G

Observed G

I Challenge: learning H as polynomial of S̄ entails high estimation error
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Graph perturbations

Modeling graph perturbations

I Additive perturbation models are pervasive in SP ⇒ In graphs S̄ = S + ∆

⇒ Structure of ∆ ∈ RN×N depends on the type of perturbation

⇒ S and S̄ are close according to some metric d(S, S̄)

Examples of topology perturbations

I When perturbations create/destroy edges =⇒ d(S, S̄) = ‖S− S̄‖0

⇒ ∆ij = 1 if Sij = 0 and ∆ij = −1 if Sij = 1

I When perturbations represent noisy edges =⇒ d(S, S̄) = ‖SE − S̄E‖2
2

⇒ ∆ij = 0 if Sij = 0 and ∆ij ∼ N (0, σ2) if Sij 6= 0

Challenges of additive graph perturbation models

I Analyzing / translating the effect on either Sr or V very difficult [Ceci20]

I Worst case bounds, AR/FIR filters of degree one, ER perturbations...
[Miettinen19]
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Fitting GFs and GNNs from perturbed GSO

I Given X = [x1, ..., xM ], Y = [y1, ..., yM ] and perturbed S̄ ⇒ Find GF/GNN to:

⇒ (1) Estimate output ŷ associated x /∈ T
⇒ (2) Identify true network dynamics represented by filter coefficients

I Key in our approach: postulate true S as an optimization variable

⇒ OK: Enhanced (denoised) estimate of GSO is obtained

⇒ OK: Additive model can be leveraged / We work on vertex domain

⇒ KO: Optimization non-convex

Outline of the talk

I Formulation for a single GF

⇒ Relaxations and algorithmic alternatives

I Formulation for multiple GFs

I Formulation for GNNs

I Generalizations to adversarial setups and future work
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Robust Filter Identification (RFI): single filter case

I Since dealing with V is challenging, a straightforward vertex-based approach is

minh,S∈S ‖Y−
∑N−1

k=0 hkSkX‖2
F + λd(S, S̄) + β‖S‖0

⇒ OK: Second term promotes closeness between S̄ and S

⇒ KO: High order polynomials: highly non-convex and numerically unstable

Proposed RFI formulation

I Define full H as optimization variable

I Leverage that if GF is a polynomial of GSO, then H and S commute

min
S∈S,H

‖Y−HX‖2
F + λd(S, S̄) + β‖S‖0 s. t. SH = HS

⇒ Constraint: H is a polynomial of S.

⇒ Regularizers: sparsity and closeness between S̄ and S

I Operates fully in vertex domain, avoids computation of high-order polynomials

I Bilinear terms and `0 render the problem non-convex

A. G. Marques Designing graph filters and graph neural networks in the presence of graph perturbations 11 / 34



Robust Filter Identification (RFI): single filter case

I Since dealing with V is challenging, a straightforward vertex-based approach is

minh,S∈S ‖Y−
∑N−1

k=0 hkSkX‖2
F + λd(S, S̄) + β‖S‖0

⇒ OK: Second term promotes closeness between S̄ and S

⇒ KO: High order polynomials: highly non-convex and numerically unstable

Proposed RFI formulation

I Define full H as optimization variable

I Leverage that if GF is a polynomial of GSO, then H and S commute

min
S∈S,H

‖Y−HX‖2
F + λd(S, S̄) + β‖S‖0 s. t. SH = HS

⇒ Constraint: H is a polynomial of S.

⇒ Regularizers: sparsity and closeness between S̄ and S

I Operates fully in vertex domain, avoids computation of high-order polynomials

I Bilinear terms and `0 render the problem non-convex

A. G. Marques Designing graph filters and graph neural networks in the presence of graph perturbations 11 / 34



Towards a convex formulation

Dealing with `0 norm

I We employ the `1 reweighted norm based on logarithmic penalty [Candes08]

‖Z‖0 ≈ rδ(Z) :=
I∑

i=1

J∑
j=1

log(|Zij |+ δ)

⇒ Produces sparser solutions than `1 norm

⇒ Majorization-Minimization approach based on linear approximation

Dealing with bilinear term

I Adopt an alternating-minimization approach to break the non-linearity

⇒ H and S are estimated in two separate iterative steps

⇒ Each step requires solving a convex optimization problem

I Rewrite optimization problem as

min
S∈S,H

‖Y−HX‖2
F +λrδ1(S−S̄)+βrδ2(S)+γ‖SH−HS‖2

F

⇒ Constraint SH = HS relaxed as a regularizer
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Alternating optimization algorithm

I Step 1 - GF Identification: estimate H(t+1) with S(t) fixed

H(t+1) = arg min
H
‖Y−HX‖2

F +γ‖S(t)H−HS(t)‖2
F

⇒ LS problem with closed-form solution inverting an N2 × N2 matrix

I Step 2 - Graph Denoising: estimate S(t+1) with H(t+1) fixed

S(t+1) =arg min
S∈S

N∑
i,j=1

(
λΩ̄ij

(t)|Sij− S̄ij |+βΩij
(t)|Sij |

)
+γ‖SH(t+1)−H(t+1)S‖2

F

⇒ With `1 weights Ω
(t)
ij , Ω̄

(t)
ij computed from previous GSO S(t)

I Steps 1 and 2 repeated for t = 0, ..., tmax − 1 iterations

Theorem

The RFI algorithm converges to an stationary point if S does not have
repeated eigenvalues and every row of X̃ = V−1X is nonzero
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Algorithmic enhancements

I Additional constraints: If data is graph-stationary

⇒ ‖CXS− SCX‖ ≤ εX and ‖CYS− SCY‖ ≤ εY

I Efficient implementation: Computational complexity RFI alg. O(N7)

⇒ Prohibitive for large graphs ⇒ Steps 1 and 2 via an iterative process

I Step 1 - Efficient GF Identification

⇒ Estimate H(t+1) performing τmax1 iterations of gradient descent

⇒ Involves multiplications of N × N matrices

I Step 2 - Efficient Graph Denoising

⇒ Estimate S(t+1) via alternating optimization for τmax2

⇒ Solve N2 scalar problems

⇒ Closed-form solution based on projected soft-thresholding

I Computational complexity reduced to O(N3)
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Numerical Evaluation: Single Graph

I Test the estimates Ĥ and Ŝ with and without robust approach

⇒ Graphs are sampled from the small-world random graph model

⇒ We consider different types of perturbations

I RFI consistently outperforms classical FI

⇒ Clear improvement in estimation of S with respect to S̄

I Only destroying links is the most damaging perturbation
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Outline: Robust multi-GF identification

I Given X = [x1, ..., xM ], Y = [y1, ..., yM ] and perturbed S̄ ⇒ Find GF/GNN

⇒ Key to our approach: postulate true S as an optimization variable

⇒ Perform joint optimization

⇒ Operate on the vertex domain

Outline of the talk

I Formulation for a single GF

⇒ Relaxations and algorithmic alternatives

I Formulation for multiple GFs

I Formulation for GNNs

I Generalizations to adversarial setups and future work
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Robust joint graph filter ID

I Now the goal is to estimate K GFs {Hk}Kk=1

⇒ Are polynomials of the unknown S but only S̄ is observed

⇒ For each Hk we have Mk input/output signals Xk/Yk

I Several GFs show up in relevant settings [Segarra17][Liu18]

⇒ Different network processes on a graph Yk =HkXk +Wk

⇒ Graph-based multivariate time series Yκ=
∑K

k=1HkYκ−k +Xκ + Wk

I Joint identification exploits each Hk being a polynomial on S

min
S∈S,{Hk}Kk=1

K∑
k=1

αk‖Yk −HkXk‖2
F + λd(S, S̄)+β‖S‖0 +

K∑
k=1

γ‖SHk−HkS‖2
F

⇒ K commutativity constraints improve estimation of S

⇒ A better estimate of S leads to better estimates of Hk

I Solved via 2-step alternating optimization
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Robust joint graph filter ID: AR order K

I Consider an AR graph signal Yκ of order K with exogenous input Xκ

Yκ =
K∑

k=1

HkYκ−k + Xκ, with Hk =
N−1∑
r=0

hr ,kSr ,

I Having access to S̄ and observations, we aim to solve

min
S∈S,{Hk}Kk=1

κmax∑
κ=K+1

∥∥Yκ−Xκ−
K∑

k=1

HkYκ−k
∥∥2

F
+λd(S, S̄)+β‖S‖0 +

K∑
k=1

γ‖SHk−HkS‖2
F

⇒ If exogenous input Xκ not know, use covariance norm

I Solved via block-coordinate algorithm, new GF-id step is

H
(t+1)
k =argmin

Hk

κmax∑
κ=K+1

∥∥∥Yκ−Xκ−HkYκ−k−
∑
k′<k

H
(t+1)
k′ Yκ−k′

−
∑
k′>k

H
(t)
k′ Yκ−k′

∥∥∥2
F

+
K∑

k=1

γ
∥∥∥S(t)Hk −HkS(t)

∥∥∥2
F
,
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Selected dataset

Weather station network

I Nodes are weather stations in
California

I Signals are temperature measurements
at each station

I 5-nearest neighbor graph from
geographical distance between stations

A. G. Marques Designing graph filters and graph neural networks in the presence of graph perturbations 19 / 34



Numerical Evaluation: Multiple GFs

I Predict temperature 1 or 3 days in the future

⇒ Estimate H using 25% or 50% of the available data

I Consider LS as a naive solution and TLS-SEM as a robust baseline

Models
1-Step 3-Step

TTS=0.25 TTS = 0.5 TTS=0.25 TTS = 0.5
LS 6.9 · 10−3 3.1 · 10−3 2.1 · 10−2 9.1 · 10−3

LS-GF 3.3 · 10−3 3.3 · 10−3 8.4 · 10−3 8.5 · 10−3

TLS-SEM 4.0 · 101 3.7 · 10−2 6.8 · 10−1 5.5 · 10−2

RFI 3.4 · 10−3 3.1 · 10−3 8.5 · 10−3 7.5 · 10−3

AR(3)-RFI 3.2 · 10−3 2.8 · 10−3 7.8 · 10−3 6.9 · 10−3

I Best performance achieved by joint inference assuming AR model of order 3

⇒ Follow up closely by the (separate) RFI algorithm
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Outline: Robust GNN design

I Given X = [x1, ..., xM ], Y = [y1, ..., yM ] and perturbed S̄ ⇒ Find GF/GNN

⇒ Key to our approach: postulate true S as an optimization variable

⇒ Perform joint optimization

⇒ Operate on the vertex domain

Outline of the talk

I Formulation for a single GF

⇒ Relaxations and algorithmic alternatives

I Formulation for multiple GFs

I Formulation for GNNs

I Generalizations to adversarial setups and future work
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Robust GNN design for perturbed GSOs

I GNNs stack layers composing pointwise nonlinearities with linear GFs

x1 = σ1

(
H(h1 |S)x

)
, . . . , x` = σ`

(
H(h` |S)x`−1

)
, . . . , y = σL

(
H(hL |S)xL−1

)
⇒ In practice, GNNs allow for multiple hidden features

X` = σ`

(
H(h` |S)X`−1Ξ

T
`

)
⇒ Mapping GNN: y = fΘ(x |S), with Θ = {h`,Ξ`}L`=1

I Our goal is to use T and perturbed S̄ to estimate

⇒ Robust GNN parameters [Jin20],[Kenlay21]

⇒ Enhanced GSO

I Challenges: GNN highly nonconvex, error nonlinear in h / H

⇒ Optimization typically addressed via SGD
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Robust GNN design for perturbed GSOs

I Hence, we can approach the robust GNN design as

min
h,Ξ,S∈S

M∑
m=1

‖ym − f[h,Ξ](xm |S)‖2 + αd(S, S̄) + λ‖S‖1

⇒ As before, we could declare variables {H`} and use commutativity

⇒ However, in GNNs the polynomials are of low degree (2, 3...)

X` = σ`

(
H(h`)X`−1Ξ

T
`

)
, with H(h` |S) = h0,`I + h1,`S + h2,`S2

I Optimizing over {hk,`} can be a possibility, the algorithm proceeds in 3 steps

⇒ Step 1: h(t+1) = arg minh
∑M

m=1 ‖ym − f[h,Ξ(t)](xm |S(t))‖2

⇒ Step 2: Ξ(t+1) = arg minΞ

∑M
m=1 ‖ym − f[h(t+1),Ξ](xm |S(t))‖2

⇒ Step 3: S(t+1) = arg minS∈S
∑M

m=1 ‖ym − f[h(t+1),Ξ(t+1)](xm |S)‖2

+αd(S, S̄) + λ‖S‖1

I SGD needs to be used, Steps 1-2 standard via backpropagation

I Step 3 more complex: proximal gradient descent
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Selected datasets

I We test our approach on 2 citation nets and 3 webpage nets

⇒ Nodes are scientific papers and edges citations among them

⇒ Nodes are webpages and edges hyperlinks

⇒ Node features indicate the presence of words from a fixed dictionary

I Cora dataseta: N = 2708 and E = 10556

⇒ 1433 node features, 7 classes of nodes

I Citeseer datasetb: N = 3327 and E = 9228 edges

⇒ 3703 node features, 6 classes of nodes

I WebKB1 datasetc: N = 183/251 and E = 295/499

⇒ 1703 node features, 5 classes of webs (course,
faculty...)

ahttps://networkrepository.com/cora.php
bhttps://networkrepository.com/citeseer.php
chttps://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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Numerical Evaluation: GNNs (I)

I We test our robust GNN-H relative to other competitors

⇒ Cora and Citeseer / Classical GCN and GAT

⇒ A GCN with learnable H (i.e., our model ignoring perturbations)

I Results:

⇒ As d(S̄,S) increases: accuracy down ⇒ Relevance of robust designs

⇒ When no errors, GAT outperforms, our robust GNN performs similarly

⇒ When errors, robust GNN outperforms and degrades less noticeably
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Numerical Evaluation: GNNs (II)

I Effect of perturbation on the graph ⇒ Edge rewiring

I Cornell and Texas datasets (WebKB1)
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I RGCNH even improves the unperturbed case
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Numerical Evaluation: GNNs (III)

I Using information about the perturbation

⇒ Only a subset of nodes with edges perturbed
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I RGCNH leverages the prior information
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Alternative formulation of Robust GNN

I Considering S as an optimization variable offers advantages...

I ... but it is problematic if powers are higher than 3, 4

I Alternative formulation

min
Θ,H,S∈S

L (fΘ(H,X),Y) + αd(S, S̄) + λγ(S) + δ‖HS− SH‖2
2

⇒ In this case, the recursion is defined by

X` = σ` (HX`−1Θ`)

⇒ OK: avoids powers of S

⇒ OK: commutativity term promotes H as a polynomial of S ⇒ GF

⇒ OK: less parameters

⇒ KO: new optimization variable
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Alternative formulation of Robust GNN (II)

I Solve in three steps

⇒ Step 1: Θ(t+1) = arg minΘ L
(
fΘ(H(t),X),Y

)
⇒ Step 2: H(t+1) = arg minH L (fΘ(t+1) (H,X),Y)

+δ‖HS(t) − S(t)H‖2
2

⇒ Step 3: S(t+1) = arg minS∈S αd(S, S̄) + λγ(S)
+δ‖H(t+1)S− SH(t+1)‖2

2

I Alternating optimization

⇒ First two steps via SGD

⇒ Gradient of commutativity term - linear

⇒ Step 3 - convex!
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Outline: Future lines of work

I Given X = [x1, ..., xM ], Y = [y1, ..., yM ] and perturbed S̄ ⇒ Find GF/GNN

⇒ Key to our approach: postulate true S as an optimization variable

⇒ Perform joint optimization

⇒ Operate on the vertex domain

Outline of the talk

I Formulation for a single GF

⇒ Relaxations and algorithmic alternatives

I Formulation for multiple GFs

I Formulation for GNNs

I Generalizations to adversarial setups and future work
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Future lines of work

Considering adversarial setups

I So far we have considered that perturbations were arbitrary

⇒ As a result we focused in finding the best fit for the observations

⇒ Mathematically

min
S∈S,H

‖Y−HX‖2
F +λrδ1(S−S̄)+βrδ2(S)+γ‖SH−HS‖2

F

I However, what if perturbations are adversarial or focus on worst-case design

⇒ Min / max formulation

min
H

max
S∈S
‖Y−HX‖2

F +λrδ1(S−S̄)+βrδ2(S)+γ‖SH−HS‖2
F

I Saddle point optimization ⇒ guarantees if convex / concave

⇒ Most NN do not satisfy the above

⇒ Careful reformulations are prudent
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Future lines of work

Considering graph-perturbations for other GSP problems

I Graph-perturbations are critical in most GSP tasks but not accounted for

⇒ S as an optimization variable in other GSP tasks

I Incorporate prior information about the perturbations or the graph

I Instead of first learning the graph and then solving the GSP task...

⇒ ...jointly learn the graph and solving the GSP task

Exploiting prior information about the graph topology

I Most applications only use the fact that S is sparse

I Prior information is key to accurately estimating the graph topology

I Assuming graph is a random realization and leverage statistical priors

⇒ Efforts should focus on identifying models suited for the task at hand

I Assuming we have access to other related graphs

⇒ Prior work based on reference graph with a similar density of motifs
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Thanks

I Related publications:

⇒ V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, “A robust alternative for graph
convolutional neural networks via graph neighborhood filters,” in Asilomar Conf. Signals, Syst.,
Computers, 2021.

⇒ S. Rey, V. M. Tenorio, and A. G. Marques, “Robust graph filter identification and graph
denoising from signal observations,” IEEE Trans. Signal Process. 2023 (arXiv:2210.08488)

⇒ V. M. Tenorio, S. Rey, and A. G. Marques, “Robust Graph Neural Network based on graph
denoising,” in Asilomar Conf. Signals, Syst., Computers, 2023.

⇒ V. M. Tenorio, S. Rey and A. G. Marques, “Robust blind deconvolution and graph denoising”,
in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), 2024.

I Code: https://github.com/reysam93

Thanks!
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