

Designing graph filters and graph neural networks in the presence of graph perturbations

> Antonio G. Marques King Juan Carlos University - Madrid (Spain) http://tsc.urjc.es/~amarques

In collaboration with Samuel Rey, Victor Tenorio Grants: PID2019-105032GB-I00, TED2021-130347B-I00, PID2022-136887NB-I00

With Content of the second sec

Coates Workshop - Barbados - Jan. 24, 2024

Universidad Rey Juan Carlos

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
  - $\Rightarrow$  Huge amounts of data are generated and stored
  - $\Rightarrow$  Complexity of contemporary systems and networks is increasing
- Modeling the structure of the data as a graphs is an effective approach ⇒ GSP: harness graph topology to process the data [Shuman13][Ortega18]



Social network



Brain network



#### Home automation network

Designing graph filters and graph neural networks in the presence of graph perturbations

Universidad Rey Juan Carlos

- Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]
  - $\Rightarrow$  Huge amounts of data are generated and stored
  - $\Rightarrow$  Complexity of contemporary systems and networks is increasing
- Modeling the structure of the data as a graphs is an effective approach
   ⇒ GSP: harness graph topology to process the data [Shuman13][Ortega18]
- Problem: data is prone to errors and imperfections
  - $\Rightarrow$  Noise, missing values, or outliers are ubiquitous in data science



Social network



Brain network



#### Home automation network

### Data imperfections in GSP





Perturbations in the observed signals

- At the heart of SP, fairly studied in GSP
- ► GSP main focus: influence of the graph topology
  - $\Rightarrow$  Graph-dependent noise in signals
  - $\Rightarrow$  Node-dependent missing values

## Data imperfections in GSP





#### Perturbations in the observed signals

- At the heart of SP, fairly studied in GSP
- GSP main focus: influence of the graph topology
  - $\Rightarrow$  Graph-dependent noise in signals
  - $\Rightarrow$  Node-dependent missing values

Noisy signal

### Perturbations in the graph topology

- Critical for most GSP tools and methods
- Inherent to graph learning approach
- Even small perturbations lead to challenging problems
- Barely studied in the GSP literature!
  - $\Rightarrow$  Uncertainty in the edges [Miettinen19],[Ceci20]
  - $\Rightarrow$  Presence of hidden nodes



## Fundamentals of GSP



▶ Graph G = (V, E) with N nodes and adjacency A ⇒ A<sub>ij</sub> = Proximity between i and j

► Define a signal  $\mathbf{x} \in \mathbb{R}^N$  on top of the graph  $\Rightarrow x_i =$ Signal value at node i



► Associated with  $\mathcal{G}$  is the graph-shift operator  $\mathbf{S} \in \mathbb{R}^{N \times N}$  (e.g.  $\mathbf{A}$ ,  $\mathbf{L}$ )  $\Rightarrow S_{ij} \neq 0$  if i = j or  $(i, j) \in \mathcal{E}$  (local structure in  $\mathcal{G}$ ) [Shuman12][Sandryhaila13]



► GSP: Exploit structure encoded in S = VAV<sup>-1</sup> to process x ⇒ Key to that end: a) eigenvecs. of S and b) polynomials on S

- ► Focus today: learn filter coefficients of GFs and GNNs when errors in S ⇒ Let us spend more time with these two convolutional architectures
- Graph filter: mapping between graph signals written as polynomial on S

$$\mathbf{y} = \mathbf{H}\mathbf{x} = \sum_{k=0}^{K-1} h_k \mathbf{S}^k \mathbf{x} = h_0 \mathbf{S}^0 \mathbf{x} + h_1 \mathbf{S}^1 \mathbf{x} + h_2 \mathbf{S}^2 \mathbf{x} + \ldots + h_{K-1} \mathbf{S}^{K-1} \mathbf{x}$$

- $\Rightarrow$  Sx local operation (# hops)  $\Rightarrow$  local and efficient computation
- $\Rightarrow$  Well understood in the spectral domain  $\ \Rightarrow$  H and S same eigenvecs.
- $\Rightarrow$  Reduces to time invariant filter if  $[Sx]_n = [x]_{n+1}$



## Graph filters and GNNs

Universidad Rey Juan Carlos

NNs stack layers composing pointwise nonlinearities with linear transforms

$$\mathbf{x}_1 = \sigma_1 \Big( \mathbf{W}_1 \mathbf{x}_0 \Big), \ \dots, \ \mathbf{x}_\ell = \sigma_\ell \Big( \mathbf{W}_\ell \mathbf{x}_{\ell-1} \Big), \ \dots, \ \mathbf{x}_L = \sigma_L \Big( \mathbf{W}_L \mathbf{x}_{L-1} \Big)$$

 $\Rightarrow \mathsf{NN} \text{ is } \textbf{y} = f_{\Theta}(\textbf{x}) \text{ with } \textbf{y} = \textbf{x}_L, \ \textbf{x}_0 = \textbf{x}, \ \Theta = \{\textbf{W}_\ell\} \text{ overparam}$ 

► GNNs incorporate  $\mathcal{G}$  (S) into the NN  $\Rightarrow$  y = f<sub> $\Theta$ </sub>(x | $\mathcal{G}$ )



- Graph-aware linear operators
- Parsimonious parametrization via GF
- Reduce to CNN if time convolution adopted
- Can be modified to deal with multi-feature

# Fitting GFs and GNN to data



- ► Given training set  $\mathcal{T} = \{(\mathbf{x}_m, \mathbf{y}_m)\}_{m=1}^M$  with input-output pairs over  $\mathcal{G}$  $\Rightarrow \mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M], \mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$
- GOAL: Use  $\mathcal{T}$  to learn graph-aware mapping from  $\mathcal{X}$  to  $\mathcal{Y}$ 
  - Key: postulate a mapping meaningful and easy to learn  $\Rightarrow$  GFs and GNNs
  - Useful for: (1) Estimating output ŷ associated with input x ∉ T and (2) Identifying some network dynamics represented by filter coefficients

# Fitting GFs and GNN to data



- ► Given training set  $\mathcal{T} = \{(\mathbf{x}_m, \mathbf{y}_m)\}_{m=1}^M$  with input-output pairs over  $\mathcal{G}$  $\Rightarrow \mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M], \mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$
- GOAL: Use  $\mathcal{T}$  to learn graph-aware mapping from  $\mathcal{X}$  to  $\mathcal{Y}$ 
  - Key: postulate a mapping meaningful and easy to learn ⇒ GFs and GNNs
     Useful for: (1) Estimating output ŷ associated with input x ∉ T and (2) Identifying some network dynamics represented by filter coefficients

► If **S** is perfectly known, optimal GF fitting  

$$\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} \qquad \min_{\mathbf{h}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_{k}\mathbf{S}^{k}\mathbf{X}\|_{F}^{2} \qquad \min_{\tilde{\mathbf{h}}} \|\mathbf{Y} - \mathbf{V}\operatorname{diag}(\tilde{\mathbf{h}})\mathbf{V}^{\top}\mathbf{X}\|_{F}^{2}$$

# Fitting GFs and GNN to data



- ► Given training set  $\mathcal{T} = \{(\mathbf{x}_m, \mathbf{y}_m)\}_{m=1}^M$  with input-output pairs over  $\mathcal{G}$  $\Rightarrow \mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M], \mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$
- GOAL: Use  $\mathcal{T}$  to learn graph-aware mapping from  $\mathcal{X}$  to  $\mathcal{Y}$ 
  - Key: postulate a mapping meaningful and easy to learn ⇒ GFs and GNNs
     Useful for: (1) Estimating output ŷ associated with input x ∉ T and (2) Identifying some network dynamics represented by filter coefficients
- ► If **S** is perfectly known, optimal GF fitting  $\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} \qquad \min_{\mathbf{h}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_{k}\mathbf{S}^{k}\mathbf{X}\|_{F}^{2} \qquad \min_{\tilde{\mathbf{h}}} \|\mathbf{Y} - \mathbf{V}\operatorname{diag}(\tilde{\mathbf{h}})\mathbf{V}^{\top}\mathbf{X}\|_{F}^{2}$

If S is perfectly known, optimal GNN fitting

$$\min_{\Theta} \sum_{m=1}^{M} \|\mathbf{y}_m - f_{\Theta}(\mathbf{x}_m \,|\, \mathbf{S})\|_2^2 \quad \text{with} \ \Theta = \{\mathbf{h}_\ell\}_{\ell=1}^L$$

 $\Rightarrow \mathsf{SGD} \text{ (via backpropagation) over } \{\mathbf{h}_{\ell}\}_{\ell=1}^{L} \Rightarrow \mathbf{h}_{\ell}^{(t+1)} = \mathbf{h}_{\ell}^{(t)} + \mu...$ 

# Perturbed topology in graph filter ID



- ▶ When fitting GFs and GNN to data ⇒ Key that linear operators are polynomials of S
- Assume access only to perturbed S
   S ∈ ℝ<sup>N×N</sup> ⇒ S
   S ≠ S

   ⇒ The true S is unknown
- ► What if we estimate the filter as  $\mathbf{H} = \sum_{r=0}^{R-1} h_r \mathbf{\bar{S}}^r$ ? ⇒ Error between  $\mathbf{S}^r$  and  $\mathbf{\bar{S}}^r$  grows with r





# Perturbed topology in graph filter ID



- ► Assume access only to perturbed  $\bar{\mathbf{S}} \in \mathbb{R}^{N \times N} \Rightarrow \bar{\mathbf{S}} \neq \mathbf{S}$  $\Rightarrow$  The true **S** is unknown
- What if we estimate the filter as  $\mathbf{H} = \sum_{r=0}^{R-1} h_r \bar{\mathbf{S}}^r$ ?  $\Rightarrow$  Error between **S**<sup>r</sup> and **S**<sup>r</sup> grows with r



**Challenge:** learning H as polynomial of  $\overline{S}$  entails high estimation error





#### Modeling graph perturbations

- Additive perturbation models are pervasive in SP  $\Rightarrow$  In graphs  $\overline{S} = S + \Delta$ 
  - $\Rightarrow$  Structure of  $\Delta \in \mathbb{R}^{\textit{N} \times \textit{N}}$  depends on the type of perturbation
  - $\Rightarrow$  **S** and  $\bar{S}$  are close according to some metric  $d(S, \bar{S})$

## Graph perturbations



#### Modeling graph perturbations

- Additive perturbation models are pervasive in SP  $\Rightarrow$  In graphs  $\overline{S} = S + \Delta$ 
  - $\Rightarrow$  Structure of  $\Delta \in \mathbb{R}^{N \times N}$  depends on the type of perturbation
  - $\Rightarrow$  **S** and  $\bar{S}$  are close according to some metric  $d(S, \bar{S})$

#### Examples of topology perturbations

• When perturbations create/destroy edges  $\implies d(\mathbf{S}, \overline{\mathbf{S}}) = \|\mathbf{S} - \overline{\mathbf{S}}\|_0$ 

$$\Rightarrow \Delta_{ij} = 1$$
 if  $S_{ij} = 0$  and  $\Delta_{ij} = -1$  if  $S_{ij} = 1$ 

► When perturbations represent noisy edges  $\implies d(\mathbf{S}, \bar{\mathbf{S}}) = \|\mathbf{S}_{\mathcal{E}} - \bar{\mathbf{S}}_{\mathcal{E}}\|_2^2$  $\Rightarrow \Delta_{ij} = 0 \text{ if } S_{ij} = 0 \text{ and } \Delta_{ij} \sim \mathcal{N}(0, \sigma^2) \text{ if } S_{ij} \neq 0$ 

#### Challenges of additive graph perturbation models

- Analyzing / translating the effect on either S<sup>r</sup> or V very difficult [Ceci20]
- Worst case bounds, AR/FIR filters of degree one, ER perturbations... [Miettinen19]



# ► Given $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$ , $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$ and perturbed $\mathbf{\bar{S}} \Rightarrow$ Find GF/GNN to: $\Rightarrow$ (1) Estimate output $\hat{\mathbf{y}}$ associated $\mathbf{x} \notin \mathcal{T}$

 $\Rightarrow$  (2) Identify true network dynamics represented by filter coefficients



- ► Given  $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$ ,  $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$  and perturbed  $\mathbf{\overline{S}} \Rightarrow$  Find GF/GNN to:  $\Rightarrow$  (1) Estimate output  $\hat{\mathbf{y}}$  associated  $\mathbf{x} \notin \mathcal{T}$ 
  - $\Rightarrow$  (2) Identify true network dynamics represented by filter coefficients
- ► Key in our approach: postulate true **S** as an optimization variable
  - $\Rightarrow$  OK: Enhanced (denoised) estimate of GSO is obtained
  - $\Rightarrow$  OK: Additive model can be leveraged / We work on vertex domain
  - $\Rightarrow$  KO: Optimization non-convex



- ► Given  $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$ ,  $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$  and perturbed  $\mathbf{\bar{S}} \Rightarrow$  Find GF/GNN to:  $\Rightarrow$  (1) Estimate output  $\hat{\mathbf{y}}$  associated  $\mathbf{x} \notin \mathcal{T}$ 
  - $\Rightarrow$  (2) Identify true network dynamics represented by filter coefficients
- ► Key in our approach: postulate true **S** as an optimization variable
  - $\Rightarrow$  OK: Enhanced (denoised) estimate of GSO is obtained
  - $\Rightarrow$  OK: Additive model can be leveraged / We work on vertex domain
  - $\Rightarrow$  KO: Optimization non-convex

#### Outline of the talk

- ► Formulation for a single GF
  - $\Rightarrow$  Relaxations and algorithmic alternatives
- Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work

## Robust Filter Identification (RFI): single filter case

► Since dealing with **V** is challenging, a straightforward vertex-based approach is  $\min_{\mathbf{h},\mathbf{S}\in\mathcal{S}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X}\|_F^2 + \lambda d(\mathbf{S}, \mathbf{\bar{S}}) + \beta \|\mathbf{S}\|_0$ 

 $\Rightarrow$  OK: Second term promotes closeness between  $\bar{\textbf{S}}$  and S

 $\Rightarrow$  KO: High order polynomials: highly non-convex and numerically unstable

#### Proposed RFI formulation

# Robust Filter Identification (RFI): single filter case

- ► Since dealing with **V** is challenging, a straightforward vertex-based approach is  $\min_{\mathbf{h},\mathbf{S}\in\mathcal{S}} \|\mathbf{Y} - \sum_{k=0}^{N-1} h_k \mathbf{S}^k \mathbf{X}\|_F^2 + \lambda \mathbf{d}(\mathbf{S}, \mathbf{\bar{S}}) + \beta \|\mathbf{S}\|_0$ 
  - $\Rightarrow$  OK: Second term promotes closeness between  $\bar{\textbf{S}}$  and S
  - $\Rightarrow$  KO: High order polynomials: highly non-convex and numerically unstable

#### **Proposed RFI formulation**

- ► Define full **H** as optimization variable
- Leverage that if GF is a polynomial of GSO, then H and S commute

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_F^2 + \lambda d(\mathbf{S}, \bar{\mathbf{S}}) + \beta \|\mathbf{S}\|_0 \quad \text{s. t. } \mathbf{S}\mathbf{H} = \mathbf{H}\mathbf{S}$ 

- $\Rightarrow$  Constraint: **H** is a polynomial of **S**.
- $\Rightarrow$  Regularizers: sparsity and closeness between  $\bar{\textbf{S}}$  and S
- Operates fully in vertex domain, avoids computation of high-order polynomials
- Bilinear terms and  $\ell_0$  render the problem non-convex

### Towards a convex formulation

#### Dealing with $\ell_0$ norm

• We employ the  $\ell_1$  reweighted norm based on logarithmic penalty [Candes08]

$$\|\mathbf{Z}\|_0 \approx r_{\delta}(\mathbf{Z}) := \sum_{i=1}^{I} \sum_{j=1}^{J} \log(|Z_{ij}| + \delta)$$

- $\Rightarrow$  Produces sparser solutions than  $\ell_1$  norm
- $\Rightarrow$  Majorization-Minimization approach based on linear approximation

### Towards a convex formulation

#### Dealing with $\ell_0$ norm

• We employ the  $\ell_1$  reweighted norm based on logarithmic penalty [Candes08]

$$\|\mathbf{Z}\|_0 \approx r_{\delta}(\mathbf{Z}) := \sum_{i=1}^{I} \sum_{j=1}^{J} \log(|Z_{ij}| + \delta)$$

- $\Rightarrow$  Produces sparser solutions than  $\ell_1$  norm
- $\Rightarrow$  Majorization-Minimization approach based on linear approximation

#### Dealing with bilinear term

- Adopt an alternating-minimization approach to break the non-linearity
  - $\Rightarrow$  H and S are estimated in two separate iterative steps
  - $\Rightarrow$  Each step requires solving a convex optimization problem

#### Dealing with $\ell_0$ norm

• We employ the  $\ell_1$  reweighted norm based on logarithmic penalty [Candes08]

$$\|\mathbf{Z}\|_0 \approx r_{\delta}(\mathbf{Z}) := \sum_{i=1}^{I} \sum_{j=1}^{J} \log(|Z_{ij}| + \delta)$$

- $\Rightarrow$  Produces sparser solutions than  $\ell_1$  norm
- $\Rightarrow$  Majorization-Minimization approach based on linear approximation

#### Dealing with bilinear term

- Adopt an alternating-minimization approach to break the non-linearity
  - $\Rightarrow$  H and S are estimated in two separate iterative steps
  - $\Rightarrow$  Each step requires solving a convex optimization problem
- Rewrite optimization problem as

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \lambda r_{\delta_{1}}(\mathbf{S} - \bar{\mathbf{S}}) + \beta r_{\delta_{2}}(\mathbf{S}) + \gamma \|\mathbf{S}\mathbf{H} - \mathbf{H}\mathbf{S}\|_{F}^{2}$ 

 $\Rightarrow$  Constraint  $\mathbf{SH} = \mathbf{HS}$  relaxed as a regularizer

Universidad Rey Juan Carlos

► Step 1 - GF Identification: estimate  $\mathbf{H}^{(t+1)}$  with  $\mathbf{S}^{(t)}$  fixed  $\mathbf{H}^{(t+1)} = \arg\min_{\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \gamma \|\mathbf{S}^{(t)}\mathbf{H} - \mathbf{H}\mathbf{S}^{(t)}\|_{F}^{2}$ 

 $\Rightarrow$  LS problem with closed-form solution inverting an  $\mathit{N}^2\times \mathit{N}^2$  matrix

► Step 2 - Graph Denoising: estimate  $\mathbf{S}^{(t+1)}$  with  $\mathbf{H}^{(t+1)}$  fixed  $\mathbf{S}^{(t+1)} = \arg\min_{\mathbf{S}\in\mathcal{S}} \sum_{i,j=1}^{N} \left(\lambda \bar{\Omega}_{ij}^{(t)} | S_{ij} - \bar{S}_{ij} | + \beta \Omega_{ij}^{(t)} | S_{ij} | \right) + \gamma \|\mathbf{S}\mathbf{H}^{(t+1)} - \mathbf{H}^{(t+1)}\mathbf{S}\|_{F}^{2}$  $\Rightarrow$  With  $\ell_{1}$  weights  $\Omega_{ij}^{(t)}, \bar{\Omega}_{ij}^{(t)}$  computed from previous GSO  $\mathbf{S}^{(t)}$ 

Steps 1 and 2 repeated for  $t = 0, ..., t_{max} - 1$  iterations

Universidad Rey Juan Carlos

► Step 1 - GF Identification: estimate  $\mathbf{H}^{(t+1)}$  with  $\mathbf{S}^{(t)}$  fixed  $\mathbf{H}^{(t+1)} = \arg\min \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \gamma \|\mathbf{S}^{(t)}\mathbf{H} - \mathbf{H}\mathbf{S}^{(t)}\|_{F}^{2}$ 

 $\Rightarrow$  LS problem with closed-form solution inverting an  $\mathit{N}^2\times \mathit{N}^2$  matrix

► Step 2 - Graph Denoising: estimate  $\mathbf{S}^{(t+1)}$  with  $\mathbf{H}^{(t+1)}$  fixed  $\mathbf{S}^{(t+1)} = \arg\min_{\mathbf{S}\in\mathcal{S}} \sum_{i,j=1}^{N} \left(\lambda \bar{\Omega}_{ij}^{(t)} | S_{ij} - \bar{S}_{ij} | + \beta \Omega_{ij}^{(t)} | S_{ij} | \right) + \gamma \|\mathbf{S}\mathbf{H}^{(t+1)} - \mathbf{H}^{(t+1)}\mathbf{S}\|_{F}^{2}$  $\Rightarrow$  With  $\ell_{1}$  weights  $\Omega_{ij}^{(t)}, \bar{\Omega}_{ij}^{(t)}$  computed from previous GSO  $\mathbf{S}^{(t)}$ 

Steps 1 and 2 repeated for  $t = 0, ..., t_{max} - 1$  iterations

#### Theorem

The RFI algorithm converges to an stationary point if **S** does not have repeated eigenvalues and every row of  $\tilde{\mathbf{X}} = \mathbf{V}^{-1}\mathbf{X}$  is nonzero



► Additional constraints: If data is graph-stationary  $\Rightarrow \|\mathbf{C}_{\mathbf{X}}\mathbf{S} - \mathbf{S}\mathbf{C}_{\mathbf{X}}\| \le \epsilon_{\mathbf{X}} \text{ and } \|\mathbf{C}_{\mathbf{Y}}\mathbf{S} - \mathbf{S}\mathbf{C}_{\mathbf{Y}}\| \le \epsilon_{\mathbf{Y}}$ 



- ► Additional constraints: If data is graph-stationary  $\Rightarrow \|\mathbf{C}_{\mathbf{X}}\mathbf{S} - \mathbf{S}\mathbf{C}_{\mathbf{X}}\| \le \epsilon_{\mathbf{X}} \text{ and } \|\mathbf{C}_{\mathbf{Y}}\mathbf{S} - \mathbf{S}\mathbf{C}_{\mathbf{Y}}\| \le \epsilon_{\mathbf{Y}}$
- **Efficient implementation**: Computational complexity RFI alg.  $O(N^7)$

 $\Rightarrow$  Prohibitive for large graphs  $\Rightarrow$  Steps 1 and 2 via an iterative process



- ► Additional constraints: If data is graph-stationary  $\Rightarrow \|\mathbf{C}_{\mathbf{X}}\mathbf{S} - \mathbf{S}\mathbf{C}_{\mathbf{X}}\| \le \epsilon_{\mathbf{X}} \text{ and } \|\mathbf{C}_{\mathbf{Y}}\mathbf{S} - \mathbf{S}\mathbf{C}_{\mathbf{Y}}\| \le \epsilon_{\mathbf{Y}}$
- Efficient implementation: Computational complexity RFI alg.  $\mathcal{O}(N^7)$ 
  - $\Rightarrow$  Prohibitive for large graphs  $\ \Rightarrow$  Steps 1 and 2 via an iterative process
  - Step 1 Efficient GF Identification
    - $\Rightarrow$  Estimate  $\mathbf{H}^{(t+1)}$  performing  $\tau_{max_1}$  iterations of gradient descent

 $\Rightarrow$  Involves multiplications of  $N \times N$  matrices

- Step 2 Efficient Graph Denoising
  - $\Rightarrow$  Estimate **S**<sup>(t+1)</sup> via alternating optimization for  $\tau_{max_2}$
  - $\Rightarrow$  Solve  $N^2$  scalar problems
  - $\Rightarrow$  Closed-form solution based on projected soft-thresholding

• Computational complexity reduced to  $\mathcal{O}(N^3)$ 

## Numerical Evaluation: Single Graph

- $\blacktriangleright$  Test the estimates  $\hat{H}$  and  $\hat{S}$  with and without robust approach
  - $\Rightarrow$  Graphs are sampled from the small-world random graph model
  - $\Rightarrow$  We consider different types of perturbations



- RFI consistently outperforms classical FI
  - $\Rightarrow$  Clear improvement in estimation of  $\boldsymbol{S}$  with respect to  $\bar{\boldsymbol{S}}$
- Only destroying links is the most damaging perturbation



- ▶ Given  $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$ ,  $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$  and perturbed  $\overline{\mathbf{S}} \Rightarrow$  Find GF/GNN
  - $\Rightarrow$  Key to our approach: postulate true S as an optimization variable
  - ⇒ Perform joint optimization
  - $\Rightarrow$  Operate on the vertex domain

#### Outline of the talk

- ► Formulation for a single GF
  - $\Rightarrow$  Relaxations and algorithmic alternatives
- ► Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work

## Robust joint graph filter ID



- Now the goal is to estimate K GFs  $\{\mathbf{H}_k\}_{k=1}^{K}$ 
  - $\Rightarrow$  Are polynomials of the unknown  ${\bm S}$  but only  $\bar{\bm S}$  is observed
  - $\Rightarrow$  For each  $\mathbf{H}_k$  we have  $M_k$  input/output signals  $\mathbf{X}_k/\mathbf{Y}_k$
- Several GFs show up in relevant settings [Segarra17][Liu18]
  - $\Rightarrow$  Different network processes on a graph  $\mathbf{Y}_k = \mathbf{H}_k \mathbf{X}_k + \mathbf{W}_k$
  - $\Rightarrow$  Graph-based multivariate time series  $\mathbf{Y}_{\kappa} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} + \mathbf{X}_{\kappa} + \mathbf{W}_{k}$

## Robust joint graph filter ID



- Now the goal is to estimate K GFs  $\{\mathbf{H}_k\}_{k=1}^{K}$ 
  - $\Rightarrow$  Are polynomials of the unknown  ${\bm S}$  but only  $\bar{\bm S}$  is observed
  - $\Rightarrow$  For each  $\mathbf{H}_k$  we have  $M_k$  input/output signals  $\mathbf{X}_k/\mathbf{Y}_k$

Several GFs show up in relevant settings [Segarra17][Liu18]

- $\Rightarrow$  Different network processes on a graph  $\mathbf{Y}_k = \mathbf{H}_k \mathbf{X}_k + \mathbf{W}_k$
- $\Rightarrow$  Graph-based multivariate time series  $\mathbf{Y}_{\kappa} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} + \mathbf{X}_{\kappa} + \mathbf{W}_{k}$
- ► Joint identification exploits each  $\mathbf{H}_k$  being a polynomial on  $\mathbf{S}$  $\min_{\mathbf{S}\in\mathcal{S},\{\mathbf{H}_k\}_{k=1}^{K}} \sum_{k=1}^{K} \alpha_k \|\mathbf{Y}_k - \mathbf{H}_k \mathbf{X}_k\|_F^2 + \lambda d(\mathbf{S}, \mathbf{\bar{S}}) + \beta \|\mathbf{S}\|_0 + \sum_{k=1}^{K} \gamma \|\mathbf{S}\mathbf{H}_k - \mathbf{H}_k \mathbf{S}\|_F^2$ 
  - $\Rightarrow$  K commutativity constraints improve estimation of  ${\bf S}$
  - $\Rightarrow$  A better estimate of **S** leads to better estimates of **H**<sub>k</sub>

Solved via 2-step alternating optimization

## Robust joint graph filter ID: AR order K

• Consider an AR graph signal  $\mathbf{Y}_{\kappa}$  of order K with exogenous input  $\mathbf{X}_{\kappa}$ 

$$\mathbf{Y}_{\kappa} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} + \mathbf{X}_{\kappa}, \text{ with } \mathbf{H}_{k} = \sum_{r=0}^{N-1} h_{r,k} \mathbf{S}^{r},$$

Having access to S and observations, we aim to solve

$$\min_{\mathbf{S}\in\mathcal{S},\{\mathbf{H}_k\}_{k=1}^{K}}\sum_{\kappa=K+1}^{\kappa_{max}} \left\|\mathbf{Y}_{\kappa}-\mathbf{X}_{\kappa}-\sum_{k=1}^{K}\mathbf{H}_k\mathbf{Y}_{\kappa-k}\right\|_{F}^{2} + \lambda d(\mathbf{S},\bar{\mathbf{S}}) + \beta \|\mathbf{S}\|_{0} + \sum_{k=1}^{K} \gamma \|\mathbf{S}\mathbf{H}_{k}-\mathbf{H}_k\mathbf{S}\|_{F}^{2}$$

 $\Rightarrow$  If exogenous input  ${\bf X}_\kappa$  not know, use covariance norm

Solved via block-coordinate algorithm, new GF-id step is

## Robust joint graph filter ID: AR order K

• Consider an AR graph signal  $\mathbf{Y}_{\kappa}$  of order K with exogenous input  $\mathbf{X}_{\kappa}$ 

$$\mathbf{Y}_{\kappa} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} + \mathbf{X}_{\kappa}, \text{ with } \mathbf{H}_{k} = \sum_{r=0}^{N-1} h_{r,k} \mathbf{S}^{r},$$

Having access to S and observations, we aim to solve

$$\min_{\mathbf{S}\in\mathcal{S},\{\mathbf{H}_k\}_{k=1}^{K}}\sum_{\kappa=K+1}^{\kappa_{max}} \left\|\mathbf{Y}_{\kappa}-\mathbf{X}_{\kappa}-\sum_{k=1}^{K}\mathbf{H}_k\mathbf{Y}_{\kappa-k}\right\|_{F}^{2} + \lambda d(\mathbf{S},\bar{\mathbf{S}}) + \beta \|\mathbf{S}\|_{0} + \sum_{k=1}^{K} \gamma \|\mathbf{S}\mathbf{H}_{k}-\mathbf{H}_k\mathbf{S}\|_{F}^{2}$$

 $\Rightarrow$  If exogenous input  ${\bf X}_\kappa$  not know, use covariance norm

Solved via block-coordinate algorithm, new GF-id step is

$$\mathbf{H}_{k}^{(t+1)} = \underset{\mathbf{H}_{k}}{\operatorname{argmin}} \sum_{\kappa=K+1}^{\kappa_{max}} \left\| \mathbf{Y}_{\kappa} - \mathbf{X}_{\kappa} - \mathbf{H}_{k} \mathbf{Y}_{\kappa-k} - \sum_{k' < k} \mathbf{H}_{k'}^{(t+1)} \mathbf{Y}_{\kappa-k'} - \sum_{k' < k} \mathbf{H}_{k'}^{(t)} \mathbf{Y}_{\kappa-k'} \right\|_{F}^{2} + \sum_{k=1}^{K} \gamma \left\| \mathbf{S}^{(t)} \mathbf{H}_{k} - \mathbf{H}_{k} \mathbf{S}^{(t)} \right\|_{F}^{2},$$

## Selected dataset





#### Weather station network

- Nodes are weather stations in California
- Signals are temperature measurements at each station
- 5-nearest neighbor graph from geographical distance between stations

Predict temperature 1 or 3 days in the future

 $\Rightarrow$  Estimate H using 25% or 50% of the available data

Consider LS as a naive solution and TLS-SEM as a robust baseline

| Models    | 1-Step              |                                     | 3-Step              |                     |
|-----------|---------------------|-------------------------------------|---------------------|---------------------|
|           | TTS=0.25            | TTS = 0.5                           | TTS=0.25            | TTS = 0.5           |
| LS        | $6.9 \cdot 10^{-3}$ | $3.1 \cdot 10^{-3}$                 | $2.1 \cdot 10^{-2}$ | $9.1 \cdot 10^{-3}$ |
| LS-GF     | $3.3 \cdot 10^{-3}$ | $3.3 \cdot 10^{-3}$                 | $8.4 \cdot 10^{-3}$ | $8.5 \cdot 10^{-3}$ |
| TLS-SEM   | $4.0 \cdot 10^{1}$  | $3.7 \cdot 10^{-2}$                 | $6.8\cdot10^{-1}$   | $5.5 \cdot 10^{-2}$ |
| RFI       | $3.4 \cdot 10^{-3}$ | $3.1 \cdot 10^{-3}$                 | $8.5 \cdot 10^{-3}$ | $7.5 \cdot 10^{-3}$ |
| AR(3)-RFI | $3.2\cdot10^{-3}$   | $\textbf{2.8}\cdot\textbf{10^{-3}}$ | $7.8\cdot10^{-3}$   | $6.9\cdot10^{-3}$   |

Best performance achieved by joint inference assuming AR model of order 3
 ⇒ Follow up closely by the (separate) RFI algorithm



- ▶ Given  $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$ ,  $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$  and perturbed  $\overline{\mathbf{S}} \Rightarrow$  Find GF/GNN
  - $\Rightarrow$  Key to our approach: postulate true S as an optimization variable
  - ⇒ Perform joint optimization
  - $\Rightarrow$  Operate on the vertex domain

### Outline of the talk

- ► Formulation for a single GF
  - $\Rightarrow$  Relaxations and algorithmic alternatives
- ► Formulation for multiple GFs
- ► Formulation for GNNs
- Generalizations to adversarial setups and future work

# Robust GNN design for perturbed GSOs

GNNs stack layers composing pointwise nonlinearities with linear GFs

$$\mathbf{x}_1 = \sigma_1 \Big( \mathbf{H}(\mathbf{h}_1 | \mathbf{S}) \mathbf{x} \Big), \ \dots, \ \mathbf{x}_\ell = \sigma_\ell \Big( \mathbf{H}(\mathbf{h}_\ell | \mathbf{S}) \mathbf{x}_{\ell-1} \Big), \ \dots, \ \mathbf{y} = \sigma_L \Big( \mathbf{H}(\mathbf{h}_L | \mathbf{S}) \mathbf{x}_{L-1} \Big)$$

 $\Rightarrow$  In practice, GNNs allow for multiple hidden features

$$\mathbf{X}_{\ell} = \sigma_{\ell} \Big( \mathbf{H}(\mathbf{h}_{\ell} \,| \mathbf{S}) \mathbf{X}_{\ell-1} \mathbf{\Xi}_{\ell}^{T} \Big)$$

 $\Rightarrow$  Mapping GNN:  $\mathbf{y} = f_{\Theta}(\mathbf{x} | \mathbf{S})$ , with  $\Theta = {\mathbf{h}_{\ell}, \Xi_{\ell}}_{\ell=1}^{L}$ 

• Our goal is to use  $\mathcal{T}$  and perturbed  $\bar{\mathbf{S}}$  to estimate

- ⇒ Robust GNN parameters [Jin20],[Kenlay21]
- $\Rightarrow$  Enhanced GSO

Challenges: GNN highly nonconvex, error nonlinear in h / H

 $\Rightarrow$  Optimization typically addressed via SGD

## Robust GNN design for perturbed GSOs



Hence, we can approach the robust GNN design as

$$\min_{\mathbf{h}, \boldsymbol{\Xi}, \boldsymbol{S} \in \mathcal{S}} \sum_{m=1}^{M} \|\mathbf{y}_m - f_{[\mathbf{h}, \boldsymbol{\Xi}]}(\mathbf{x}_m \, | \boldsymbol{S}) \|^2 + \alpha d(\boldsymbol{S}, \bar{\boldsymbol{S}}) + \lambda \| \boldsymbol{S} \|_1$$

 $\Rightarrow$  As before, we could declare variables  $\{H_\ell\}$  and use commutativity  $\Rightarrow$  However, in GNNs the polynomials are of low degree (2, 3...)

$$\mathbf{X}_{\ell} = \sigma_{\ell} \Big( \mathbf{H}(\mathbf{h}_{\ell}) \mathbf{X}_{\ell-1} \mathbf{\Xi}_{\ell}^{\mathsf{T}} \Big)$$
, with  $\mathbf{H}(\mathbf{h}_{\ell} | \mathbf{S}) = h_{0,\ell} \mathbf{I} + h_{1,\ell} \mathbf{S} + h_{2,\ell} \mathbf{S}^2$ 

## Robust GNN design for perturbed GSOs



Hence, we can approach the robust GNN design as

$$\min_{\mathbf{h}, \boldsymbol{\Xi}, \boldsymbol{S} \in \mathcal{S}} \sum_{m=1}^{M} \|\mathbf{y}_m - f_{[\mathbf{h}, \boldsymbol{\Xi}]}(\mathbf{x}_m \, | \boldsymbol{S}) \|^2 + \alpha d(\mathbf{S}, \bar{\mathbf{S}}) + \lambda \| \mathbf{S} \|_1$$

 $\Rightarrow \text{ As before, we could declare variables } \{\mathbf{H}_{\ell}\} \text{ and use commutativity} \\\Rightarrow \text{ However, in GNNs the polynomials are of low degree (2, 3...)} \\ \mathbf{X}_{\ell} = \sigma_{\ell} \Big( \mathbf{H}(\mathbf{h}_{\ell}) \mathbf{X}_{\ell-1} \mathbf{\Xi}_{\ell}^{T} \Big), \text{ with } \mathbf{H}(\mathbf{h}_{\ell} | \mathbf{S}) = h_{0,\ell} \mathbf{I} + h_{1,\ell} \mathbf{S} + h_{2,\ell} \mathbf{S}^{2}$ 

► Optimizing over  $\{h_{k,\ell}\}$  can be a possibility, the algorithm proceeds in 3 steps  $\Rightarrow$  Step 1:  $\mathbf{h}^{(t+1)} = \arg\min_{\mathbf{h}} \sum_{m=1}^{M} \|\mathbf{y}_m - f_{[\mathbf{h}, \Xi^{(t)}]}(\mathbf{x}_m | \mathbf{S}^{(t)}) \|^2$  $\Rightarrow$  Step 2:  $\Xi^{(t+1)} = \arg\min_{\Xi} \sum_{m=1}^{M} \|\mathbf{y}_m - f_{[\mathbf{h}^{(t+1)}, \Xi]}(\mathbf{x}_m | \mathbf{S}^{(t)}) \|^2$ 

$$\Rightarrow \mathbf{Step 3: } \mathbf{S}^{(t+1)} = \arg\min_{\mathbf{S} \in \mathcal{S}} \sum_{m=1}^{M} \|\mathbf{y}_m - f_{[\mathbf{h}^{(t+1)}, \mathbf{\Xi}^{(t+1)}]}(\mathbf{x}_m | \mathbf{S}) \|^2 \\ + \alpha d(\mathbf{S}, \mathbf{\bar{S}}) + \lambda \|\mathbf{S}\|_1$$

SGD needs to be used, Steps 1-2 standard via backpropagation

### Selected datasets



- We test our approach on 2 citation nets and 3 webpage nets
  - $\Rightarrow$  Nodes are scientific papers and edges citations among them
  - $\Rightarrow$  Nodes are webpages and edges hyperlinks
  - $\Rightarrow$  Node features indicate the presence of words from a fixed dictionary
- Cora dataset<sup>a</sup>: N = 2708 and E = 10556
  - $\Rightarrow$  1433 node features, 7 classes of nodes
- **Citeseer dataset**<sup>*b*</sup>: N = 3327 and E = 9228 edges
  - $\Rightarrow$  3703 node features, 6 classes of nodes
- WebKB1 dataset<sup>*c*</sup>: N = 183/251 and E = 295/499

 $\Rightarrow$  1703 node features, 5 classes of webs (course, faculty...)



<sup>b</sup>https://networkrepository.com/citeseer.php

<sup>c</sup>https://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

<sup>&</sup>lt;sup>a</sup>https://networkrepository.com/cora.php

## Numerical Evaluation: GNNs (I)

▶ We test our robust GNN-H relative to other competitors

- $\Rightarrow$  Cora and Citeseer / Classical GCN and GAT
- $\Rightarrow$  A GCN with learnable H (i.e., our model ignoring perturbations)



#### Results:

- $\Rightarrow$  As  $d(\bar{\mathbf{S}}, \mathbf{S})$  increases: accuracy down  $\Rightarrow$  Relevance of robust designs
- $\Rightarrow$  When no errors, GAT outperforms, our robust GNN performs similarly
- $\Rightarrow$  When errors, robust GNN outperforms and degrades less noticeably

### Numerical Evaluation: GNNs (II)

- Effect of perturbation on the graph  $\Rightarrow$  Edge rewiring
- Cornell and Texas datasets (WebKB1)



#### RGCNH even improves the unperturbed case



## Numerical Evaluation: GNNs (III)



Using information about the perturbation

 $\Rightarrow$  Only a subset of nodes with edges perturbed



RGCNH leverages the prior information

Universidad Rey Juan Carlos

- Considering S as an optimization variable offers advantages...
- but it is problematic if powers are higher than 3, 4

Considering S as an optimization variable offers advantages...

- ... but it is problematic if powers are higher than 3, 4
- Alternative formulation

 $\min_{\Theta,\mathsf{H},\mathsf{S}\in\mathcal{S}}\mathcal{L}\left(f_{\Theta}(\mathsf{H},\mathsf{X}),\mathcal{Y}\right) + \alpha d(\mathsf{S},\bar{\mathsf{S}}) + \lambda \gamma(\mathsf{S}) + \delta \|\mathsf{H}\mathsf{S} - \mathsf{S}\mathsf{H}\|_{2}^{2}$ 

 $\Rightarrow$  In this case, the recursion is defined by

$$\mathbf{X}_{\ell} = \sigma_{\ell} \left( \mathbf{H} \mathbf{X}_{\ell-1} \mathbf{\Theta}_{\ell} \right)$$

- $\Rightarrow$  OK: avoids powers of **S**
- $\Rightarrow$  OK: commutativity term promotes H as a polynomial of S  $\,\Rightarrow$  GF
- $\Rightarrow$  OK: less parameters
- $\Rightarrow$  KO: new optimization variable



► Solve in three steps  $\Rightarrow \text{ Step 1: } \Theta^{(t+1)} = \arg \min_{\Theta} \mathcal{L} \left( f_{\Theta}(\mathbf{H}^{(t)}, \mathbf{X}), \mathcal{Y} \right)$   $\Rightarrow \text{ Step 2: } \mathbf{H}^{(t+1)} = \arg \min_{\mathbf{H}} \mathcal{L} \left( f_{\Theta^{(t+1)}}(\mathbf{H}, \mathbf{X}), \mathcal{Y} \right)$   $+ \delta \| \mathbf{H} \mathbf{S}^{(t)} - \mathbf{S}^{(t)} \mathbf{H} \|_{2}^{2}$   $\Rightarrow \text{ Step 3: } \mathbf{S}^{(t+1)} = \arg \min_{\mathbf{S} \in \mathcal{S}} \alpha d(\mathbf{S}, \mathbf{\bar{S}}) + \lambda \gamma(\mathbf{S})$   $+ \delta \| \mathbf{H}^{(t+1)} \mathbf{S} - \mathbf{S} \mathbf{H}^{(t+1)} \|_{2}^{2}$ 

Alternating optimization

 $\Rightarrow$  First two steps via SGD

 $\Rightarrow$  Gradient of commutativity term - linear

 $\Rightarrow$  Step 3 - convex!



- ▶ Given  $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M]$ ,  $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_M]$  and perturbed  $\overline{\mathbf{S}} \Rightarrow$  Find GF/GNN
  - $\Rightarrow$  Key to our approach: postulate true S as an optimization variable
  - ⇒ Perform joint optimization
  - $\Rightarrow$  Operate on the vertex domain

### Outline of the talk

- ► Formulation for a single GF
  - $\Rightarrow$  Relaxations and algorithmic alternatives
- Formulation for multiple GFs
- Formulation for GNNs
- Generalizations to adversarial setups and future work



#### **Considering adversarial setups**

- So far we have considered that perturbations were arbitrary
  - $\Rightarrow$  As a result we focused in finding the best fit for the observations
  - $\Rightarrow$  Mathematically

 $\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y}-\mathbf{H}\mathbf{X}\|_{F}^{2} + \lambda r_{\delta_{1}}(\mathbf{S}-\bar{\mathbf{S}}) + \beta r_{\delta_{2}}(\mathbf{S}) + \gamma \|\mathbf{S}\mathbf{H}-\mathbf{H}\mathbf{S}\|_{F}^{2}$ 



#### **Considering adversarial setups**

- So far we have considered that perturbations were arbitrary
  - $\Rightarrow$  As a result we focused in finding the best fit for the observations
  - $\Rightarrow$  Mathematically

$$\min_{\mathbf{S}\in\mathcal{S},\mathbf{H}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \lambda r_{\delta_{1}}(\mathbf{S} - \bar{\mathbf{S}}) + \beta r_{\delta_{2}}(\mathbf{S}) + \gamma \|\mathbf{S}\mathbf{H} - \mathbf{H}\mathbf{S}\|_{F}^{2}$$

► However, what if perturbations are adversarial or focus on worst-case design ⇒ Min / max formulation

$$\min_{\mathbf{H}} \max_{\mathbf{S} \in \mathcal{S}} \|\mathbf{Y} - \mathbf{H}\mathbf{X}\|_{F}^{2} + \lambda r_{\delta_{1}}(\mathbf{S} - \bar{\mathbf{S}}) + \beta r_{\delta_{2}}(\mathbf{S}) + \gamma \|\mathbf{S}\mathbf{H} - \mathbf{H}\mathbf{S}\|_{F}^{2}$$

• Saddle point optimization  $\Rightarrow$  guarantees if convex / concave

- $\Rightarrow$  Most NN do not satisfy the above
- $\Rightarrow$  Careful reformulations are prudent



#### Considering graph-perturbations for other GSP problems

- ▶ Graph-perturbations are critical in most GSP tasks but not accounted for
  - $\Rightarrow$  S as an optimization variable in other GSP tasks
- Incorporate prior information about the perturbations or the graph
- Instead of first learning the graph and then solving the GSP task...

 $\Rightarrow$  ...jointly learn the graph and solving the GSP task



#### Considering graph-perturbations for other GSP problems

- ► Graph-perturbations are critical in most GSP tasks but not accounted for
  - $\Rightarrow$  S as an optimization variable in other GSP tasks
- Incorporate prior information about the perturbations or the graph
- ► Instead of first learning the graph and then solving the GSP task...
  ⇒ ...jointly learn the graph and solving the GSP task

# Exploiting prior information about the graph topology

- Most applications only use the fact that S is sparse
- Prior information is key to accurately estimating the graph topology
- Assuming graph is a random realization and leverage statistical priors
  - $\Rightarrow$  Efforts should focus on identifying models suited for the task at hand
- Assuming we have access to other related graphs

 $\Rightarrow$  Prior work based on reference graph with a similar density of motifs





#### Related publications:

- ⇒ V. M. Tenorio, S. Rey, F. Gama, S. Segarra, and A. G. Marques, "A robust alternative for graph convolutional neural networks via graph neighborhood filters," in Asilomar Conf. Signals, Syst., Computers, 2021.
- ⇒ S. Rey, V. M. Tenorio, and A. G. Marques, "Robust graph filter identification and graph denoising from signal observations," IEEE Trans. Signal Process. 2023 (arXiv:2210.08488)
- ⇒ V. M. Tenorio, S. Rey, and A. G. Marques, "Robust Graph Neural Network based on graph denoising," in Asilomar Conf. Signals, Syst., Computers, 2023.
- $\Rightarrow$  V. M. Tenorio, S. Rey and A. G. Marques, "Robust blind deconvolution and graph denoising", in IEEE Int. Conf. Acoustics, Speech Signal Process. (ICASSP), 2024.
- Code: https://github.com/reysam93

### Thanks!





- ⇒ [Segarra17] S. Segarra, A. G. Marques, and A. Ribeiro, "Optimal graph-filter design and applications to distributed linear network operators," IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4117–4131, 2017.
- $\Rightarrow [Liu18] J. Liu, E. Isufi, and G. Leus, "Filter design for autoregressive moving average graph filters," IEEE Trans. Signal Process. Inf. Netw., vol. 5, no. 1, pp. 47–60, 2018.$
- ⇒ [Miettinen19] J. Miettinen, S. A. Vorobyov, and E. Ollila, "Modelling graph errors: Towards robust graph signal processing," arXiv preprint arXiv:1903.08398, 2019
- ⇒ [Ceci20] E. Ceci and S. Barbarossa, "Graph signal processing in the presence of topology uncertainties," IEEE Trans. Signal Process., vol. 68, pp. 1558–1573, 2020.
- ⇒ [Nguyen22] H. S. Nguyen, Y. He, and H. T. Wai, "On the stability of low pass graph filter with a large number of edge rewires," in IEEE Intl. Conf. Acoustics, Speech Signal Process. (ICASSP), 2022, pp. 5568–5572.
- $\Rightarrow [Jin20] W. Jin, et al, "Graph structure learning for robust graph neural networks," in Intl. Conf. Knowl. Discovery Data Mining (ACM SIGKDD), 2020, pp. 66–74.$
- ⇒ [Kenlay21] H. Kenlay, D. Thano, and X. Dong, "On the stability of graph convolutional neural networks under edge rewiring," in IEEE Intl. Conf. Acoustics, Speech Signal Process. (ICASSP), 2021, pp. 8513–8517.