
Robust Online Deep Learning

Antonios Valkanas, Boris Oreshkin, Mark Coates

Department of Electrical and Computer Engineering
McGill University

Montréal, Québec, Canada

Bellairs Woskhop
January 25, 2024



Motivation

Online Learning (OL): When / Why?

▶ Data generating process is sequential

▶ Learning from massive data streams

▶ Edge device lifelong learning

2 / 28



Real world motivating example: CERN

▶ CERN collects ⩾ 30 petabytes of data per year from LHC experiments
▶ Enough to fill about 1.2 million Blu-ray discs, 250 years of HD video.
▶ Only ∼100 petabytes of data permanently archived.

3 / 28



Example Application Areas

▶ Recommendation systems1

▶ Bandit Algorithms2, Reinforcement learning

▶ Online Clustering (Human-robot interaction)3

1Y. Zheng, L. Siyi, Z. Li, S. Wu. “Cold-start sequential recommendation via meta learner”, in Proc. AAAI, p. 4706-4713, 2021.

2Q. Zhang, Z. Deng, “Online Learning for Non-monotone DR-Submodular Maximization: From Full Information to Bandit Feedback”, in Proc. AI-STATS, p. 3515-3537, 2023

3Y. Wang, J. Shen, S. Petridis, M. Pantic, “A real-time and unsupervised face re-identification system for human-robot interaction”, Pattern Recognition, p. 559-568, 2019.

4 / 28



Problem Setup

A typical Online Learning process resembles this procedure:

▶ A metric is cumulative prediction error: ϵT =
∑T

t=1 ct , for some c(·).
▶ Example 0-1 loss: ϵT =

∑T
t=1 I[ŷt ̸=yt ].

5 / 28



Why is this even a problem?

▶ For many tasks such as (Bayesian) linear regression full batch vs.
recursive solutions are equivalent.

▶ But in general batch size matters.

▶ Small batches provide better accuracy, but can be time consuming.

▶ Large batches lead to faster training.

6 / 28



Why is this even a problem?

Source: https://developer.nvidia.com/blog/production-deep-learning-nvidia-gpu-inference-engine/

7 / 28



A basic approach

Online Gradient Descent4 treats the problem as regular learning via
backpropagation with batch size 1.
Given input xt ∈ R, L hidden layers h(i) the output is defined recursively:

F (xt) = softmax(W(L+1)h(L)) where

h(l) = σ(W(l)h(l−1)) ∀l ∈ {1, . . . , L}
h(0) = xt

and the weights are updated by standard backpropagation:

W
(l)
t+1 = W

(l)
t − η∇

W
(l)
t
L(F (xt), yt)

4M. Zinkevich, “Online convex programming and generalized infinitesimal gradient ascent”, in Proc. ICML p. 928-936, 2003.

8 / 28



Problems with Online Gradient Descent (OGD)

It is unclear which network will do better in an Online task.

On small datasets, deep net overfits, on large ones shallow net underfits.

9 / 28



Goals

1. Architectural robustness

−→ to number of data points
−→ to missing features

2. Make GPUs useful again!

3. Improve performance metrics

10 / 28



Online Deep Learning (ODL)

ODL5 learns the network topology jointly with p(Y |X ).

5D. Sahoo, Q. Pham, J. Lu, S. Hoi, “Online deep learning: learning deep neural networks on the fly”, in Proc. IJCAI, p. 2660–2666, 2018.

11 / 28



Online Deep Learning (ODL)

F (xt) =
L∑

l=0

α(l)f (l)

f (l) = softmax(h(l)Θ(l)) ∀l ∈ {1, . . . , L}
h(l) = σ(W(l)h(l−1)) ∀l ∈ {1, . . . , L}
h(0) = xt

12 / 28



Online Deep Learning (ODL)

Gradient updates for weights, hedge6 update for α.

α
(l)
t+1 = α

(l)
t βL(xt ,yt)

6Y. Freund, R. Schapire, “A decision-theoretic generalization of on-line learn- ing and an application to boosting”, J. Comp. Sys. sciences, 1997

13 / 28



Online Deep Learning (ODL)

Gradient updates for weights, hedge7 update for α.

α
(l)
t+1 = α

(l)
t βL(xt ,yt)

7Y. Freund, R. Schapire, “A decision-theoretic generalization of on-line learn- ing and an application to boosting”, J. Comp. Sys. sciences, 1997

14 / 28



Online Deep Learning (ODL)

Gradient updates for weights, hedge update for α.

Θ
(l)
t+1 = Θ

(l)
t − η∇

Θ
(l)
t
L(xt , yt)

W
(l)
t+1 = W

(l)
t − η

L∑
j=l

α(j)∇
W

(l)
t
L(xt , yt)

15 / 28



Learned Architectures

16 / 28



Computational issues

17 / 28



Computational issues

18 / 28



Computational issues

19 / 28



Robustness to missing inputs

Missing inputs are prevalent in data streams. Existing solutions:

1. Wait and re-acquire

2. Deterministic Dropout (AuxDrop8)

3. We propose treating input as a set.

8R. Agarwal, D. Gupta, A. Horsch, D. Prasad, “Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts”, Trans. Machine Learning Research, 2023

20 / 28



Input features as a set

▶ Consider treating xt as a set Xt of its features.

▶ Suppose we have access to set of indices of xt , It = {ij , ik , . . . , iz}
▶ Define inputs as xij ← concat[xij ,emb(ij)]

▶ Input dimension is (B,M,F + E ), output is (B,D)

▶ f (xij , xik , . . . , xiz ) = ρ
(∑

i∈It ϕ(xi )
)

21 / 28



Some Early results

Table: Comparison between AuxDrop+ODL and our (set + fast backprop
method)

Dataset Aux-Drop(ODL) Ours (HH:min:sec)
german 306.6 ± 9.1 305.9 ± 8.8 0:00:16 vs. 0:00:10
svmguide3 296.8 ± 1.3 296.8 ± 1.3 0:00:20 vs. 0:00:12
magic0 5571.9 ± 249.7 5578.7 ± 253.4 0:05:52 vs. 0:03:42
a8a 6914.2 ± 138.0 6914.35 ± 137.8 0:25:22 vs. 0:20:55
HIGGS p = 0.2 438442.2 ± 324.7 438434.8 ± 140.7 22:29:37 vs. 6:54:04
HIGGS p = 0.5 427484.6 ± 505.6 427443.2 ± 703.5 16:04:59 vs. 4:29:05
HIGGS p = 0.8 412504.2 ± 891.0 411891.2 ± 416.5 15:44:14 vs. 4:16:19
SUSY p = 0.2 274974.4 ± 936.1 274865.6 ± 960.2 12:57:26 vs. 6:50:16
SUSY p = 0.5 256994.8 ± 1220 256684.6 ± 1035.4 13:04:11 vs. 6:54:21
SUSY p = 0.8 237066.6 ± 742 237024.8 ± 736.8 22:28:09 vs. 6:53:59

22 / 28



Current work: Making the GPU useful again

▶ By design we are limited to one training datum at a time.

▶ However, we still enable batch training by considering augmentations.

▶ For input xt , It = {ij , ik , . . . , iz} consider augmentations by sampling
indices from power set of It .

▶ Deterministic dropout approaches cannot do this.

23 / 28



Current work: A better base architecture

▶ Simple dense feed forward layers in ODL are not maximally expressive.

▶ Residual architectures with potential self attention mechanisms
improve gradient flow and expressivity.

24 / 28



Current work: A better base architecture

25 / 28



Conclusion

▶ Architectural robustness ✓

−→ to number of data points ✓
−→ to missing features ✓

▶ Make GPUs useful again! ✓

▶ Improve performance metrics ✗(in progress)

26 / 28



Advertisement

▶ Motion in-filling via transformer models

▶ Presented in this workshop last year (recently accepted in IEEE Trans.
Vis. Comp. Graphics)

Figure: Animation generated from three different models, lines trace the position
of skeletal joints.

27 / 28



Thank you :)

28 / 28


