Robust Online Deep Learning

Antonios Valkanas, Boris Oreshkin, Mark Coates

Department of Electrical and Computer Engineering McGill University Montréal, Québec, Canada

> Bellairs Woskhop January 25, 2024

Motivation

Online Learning (OL): When / Why?

- Data generating process is sequential
- Learning from massive data streams
- Edge device lifelong learning

Real world motivating example: CERN

- CERN collects \ge 30 petabytes of data per year from LHC experiments
- Enough to fill about 1.2 million Blu-ray discs, 250 years of HD video.
- \blacktriangleright Only ${\sim}100$ petabytes of data permanently archived.

- Recommendation systems¹
- Bandit Algorithms², Reinforcement learning
- Online Clustering (Human-robot interaction)³

¹Y. Zheng, L. Siyi, Z. Li, S. Wu. "Cold-start sequential recommendation via meta learner", in Proc. AAAI, p. 4706-4713, 2021.

²Q. Zhang, Z. Deng, "Online Learning for Non-monotone DR-Submodular Maximization: From Full Information to Bandit Feedback", in Proc. AI-STATS, p. 3515-3537, 2023

³Y. Wang, J. Shen, S. Petridis, M. Pantic, "A real-time and unsupervised face re-identification system for human-robot interaction", Pattern Recognition, p. 559-568, 2019.

A typical Online Learning process resembles this procedure:

Algorithm 1: Online Binary Classification process. Initialize the prediction function as \mathbf{w}_1 ; for t = 1, 2, ..., T do Receive instance: $\mathbf{x}_t \in \mathbb{R}^d$; Predict $\hat{y}_t = \operatorname{sign}(\mathbf{w}_t^\top \mathbf{x}_t)$ as the label of \mathbf{x}_t ; Receive the true class label: $y_t \in \{-1, +1\}$; Suffer loss: $\ell_t(\mathbf{w}_t)$ which is a convex loss function on both $\mathbf{w}_t^\top \mathbf{x}_t$ and y_t ; Update the prediction model \mathbf{w}_t to \mathbf{w}_{t+1} ; end for

A metric is cumulative prediction error: e_T = ∑^T_{t=1} c_t, for some c(·).
Example 0-1 loss: e_T = ∑^T_{t=1} I_[ŷt≠yt].

- ► For many tasks such as (Bayesian) linear regression full batch vs. recursive solutions are equivalent.
- But in general batch size matters.
- Small batches provide better accuracy, but can be time consuming.
- Large batches lead to faster training.

Source: https://developer.nvidia.com/blog/production-deep-learning-nvidia-gpu-inference-engine/

Online Gradient Descent⁴ treats the problem as regular learning via backpropagation with batch size 1.

Given input $\mathbf{x}_t \in \mathbb{R}$, *L* hidden layers $\mathbf{h}^{(i)}$ the output is defined recursively:

$$F(\mathbf{x}_t) = \text{SOFTMAX}(\mathbf{W}^{(L+1)}\mathbf{h}^{(L)}) \text{ where}$$
$$h^{(l)} = \sigma(\mathbf{W}^{(l)}\mathbf{h}^{(l-1)}) \quad \forall l \in \{1, \dots, L\}$$
$$h^{(0)} = \mathbf{x}_t$$

and the weights are updated by standard backpropagation:

$$\mathbf{W}_{t+1}^{(l)} = \mathbf{W}_t^{(l)} - \eta \nabla_{W_t^{(l)}} \mathcal{L}(F(\mathbf{x}_t), y_t)$$

⁴M. Zinkevich, "Online convex programming and generalized infinitesimal gradient ascent", in Proc. ICML p. 928-936, 2003.

Problems with Online Gradient Descent (OGD)

It is unclear which network will do better in an Online task.

On small datasets, deep net overfits, on large ones shallow net underfits.

- 1. Architectural robustness
 - $\longrightarrow\,$ to number of data points
 - \longrightarrow to missing features
- 2. Make GPUs useful again!
- 3. Improve performance metrics

ODL⁵ learns the network topology jointly with p(Y|X).

⁵D. Sahoo, Q. Pham, J. Lu, S. Hoi, "Online deep learning: learning deep neural networks on the fly", in Proc. IJCAI, p. 2660–2666, 2018.

$$F(\mathbf{x}_t) = \sum_{l=0}^{L} \alpha^{(l)} f^{(l)}$$
$$f^{(l)} = \text{SOFTMAX}(\mathbf{h}^{(l)} \mathbf{\Theta}^{(l)}) \quad \forall l \in \{1, \dots, L\}$$
$$h^{(l)} = \sigma(\mathbf{W}^{(l)} \mathbf{h}^{(l-1)}) \quad \forall l \in \{1, \dots, L\}$$
$$h^{(0)} = \mathbf{x}_t$$

Gradient updates for weights, hedge⁶ update for α .

$$\alpha_{t+1}^{(l)} = \alpha_t^{(l)} \beta^{\mathcal{L}(\mathbf{x}_t, \mathbf{y}_t)}$$

⁶Y. Freund, R. Schapire, "A decision-theoretic generalization of on-line learn- ing and an application to boosting", J. Comp. Sys. sciences, 1997

Gradient updates for weights, hedge⁷ update for α .

$$\alpha_{t+1}^{(l)} = \alpha_t^{(l)} \beta^{\mathcal{L}(\mathbf{x}_t, \mathbf{y}_t)}$$

⁷Y. Freund, R. Schapire, "A decision-theoretic generalization of on-line learn- ing and an application to boosting", J. Comp. Sys. sciences, 1997

Gradient updates for weights, hedge update for α .

$$\Theta_{t+1}^{(l)} = \Theta_t^{(l)} - \eta \nabla_{\Theta_t^{(l)}} \mathcal{L}(\mathbf{x}_t, \mathbf{y}_t)$$
$$W_{t+1}^{(l)} = W_t^{(l)} - \eta \sum_{j=l}^{L} \alpha^{(j)} \nabla_{W_t^{(l)}} \mathcal{L}(\mathbf{x}_t, \mathbf{y}_t)$$

Learned Architectures

Computational issues

Computational issues

18 / 28

Computational issues

19 / 28

Robustness to missing inputs

Missing inputs are prevalent in data streams. Existing solutions:

- 1. Wait and re-acquire
- 2. Deterministic Dropout (AuxDrop⁸)
- 3. We propose treating input as a set.

⁸R. Agarwal, D. Gupta, A. Horsch, D. Prasad, "Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts", Trans. Machine Learning Research, 2023

Input features as a set

- Consider treating x_t as a set X_t of its features.
- Suppose we have access to set of indices of \mathbf{x}_t , $\mathcal{I}_t = \{i_j, i_k, \dots, i_z\}$
- ▶ Define inputs as $\mathbf{x}_{i_j} \leftarrow \text{CONCAT}[\mathbf{x}_{i_j}, \text{EMB}(i_j)]$
- ▶ Input dimension is (B, M, F + E), output is (B, D)

$$\blacktriangleright f(\mathbf{x}_{i_j}, \mathbf{x}_{i_k}, \dots, \mathbf{x}_{i_z}) = \rho\left(\sum_{i \in \mathcal{I}_t} \phi(\mathbf{x}_i)\right)$$

Table: Comparison between AuxDrop+ODL and our (set + fast backprop method)

Dataset	Aux-Drop(ODL)	Ours	(HH:min:sec)
german	306.6 ± 9.1	305.9 ± 8.8	0:00:16 vs. 0:00:10
svmguide3	296.8 ± 1.3	296.8 ± 1.3	0:00:20 vs. 0:00:12
magic0	5571.9 ± 249.7	5578.7 ± 253.4	0:05:52 vs. 0:03:42
a8a	6914.2 ± 138.0	6914.35 ± 137.8	0:25:22 vs. 0:20:55
HIGGS $p = 0.2$	438442.2 ± 324.7	438434.8 ± 140.7	22:29:37 vs. 6:54:04
HIGGS $p = 0.5$	427484.6 ± 505.6	427443.2 ± 703.5	16:04:59 vs. 4:29:05
HIGGS $p = 0.8$	412504.2 ± 891.0	411891.2 ± 416.5	15:44:14 vs. 4:16:19
SUSY $p = 0.2$	274974.4 ± 936.1	274865.6 ± 960.2	12:57:26 vs. 6:50:16
SUSY $p = 0.5$	256994.8 ± 1220	256684.6 ± 1035.4	13:04:11 vs. 6:54:21
SUSY <i>p</i> = 0.8	237066.6 ± 742	237024.8 ± 736.8	22:28:09 vs. 6:53:59

- By design we are limited to one training datum at a time.
- ► However, we still enable batch training by considering augmentations.
- For input x_t, I_t = {i_j, i_k,..., i_z} consider augmentations by sampling indices from power set of I_t.
- Deterministic dropout approaches cannot do this.

- Simple dense feed forward layers in ODL are not maximally expressive.
- Residual architectures with potential self attention mechanisms improve gradient flow and expressivity.

Current work: A better base architecture

- Architectural robustness
 - \longrightarrow to number of data points \checkmark
 - \longrightarrow to missing features \checkmark
- ▶ Make GPUs useful again! 🗸
- ► Improve performance metrics X(in progress)

Advertisement

- ▶ Motion in-filling via transformer models
- Presented in this workshop last year (recently accepted in IEEE Trans. Vis. Comp. Graphics)

Figure: Animation generated from three different models, lines trace the position of skeletal joints.

Thank you :)