Continuous-Discrete Differentiable Particle Filtering

Yunpeng Li

Major contributor: Xiongjie Chen

School of Computer Science and Electronic Engineering University of Surrey, United Kingdom

Bellairs Workshop 2024

Motivating examples: Mars rover¹

- Continuous-time sequential state estimation.
- Missing observations, irregularly distributed time grid.

K9 Mars rover Image source: NASA

¹Ng et al., "Continuous Time Particle Filtering", IJCAI, 2005.

Motivating examples: dental disease detection

- Continuous-time sequential state estimation.
- Missing observations, irregularly distributed time grid.

February 2023

January 2019

Continuous-discrete state-space models

- Dynamic model: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$
- Measurement model: $o_{t_k} = H_{t_k}(s_{t_k}, v_{t_k}, \theta)$

- s_{t_k} the hidden state at time t_k
 - θ model parameters
- $f_{ heta}, \sigma_{ heta}, H_t$ deterministic functions
 - o_{t_k} the observation at time t_k
 - dB_t Brownian motion
 - v_{t_k} measurement noise

Discrete state-space models

- Dynamic model: $s_t = K_t(s_{t-1}, u_t, \theta)$
- Measurement model: $o_t = H_t(s_t, v_t, \theta)$

- s_t the hidden state at time t
- θ model parameters
- $f_{ heta}, K_t, H_t$ deterministic functions
 - o_t the observation at time t
 - u_t, v_t noise terms

Examples of continuous-discrete state-space models

Continuous-discrete stochastic volatility model

- ► Dynamic model: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$ ► $ds_t = (\eta - 1)(s_t - \mu)dt + \beta dB_t$
- $\label{eq:constraint} \begin{array}{l} \bullet \quad \text{Measurement model:} \\ o_{t_k} = H_{t_k}(s_{t_k}, v_{t_k}, \theta) \\ \end{array} \begin{array}{l} \bullet \quad o_{t_k} | s_{t_k} \sim \mathcal{N}(0, \gamma^2 \text{exp}(s_t)) \end{array} \end{array}$

Examples of continuous-discrete state-space models

Discrete stochastic volatility model: evenly spaced time instances.

- Dynamic model: $s_t = K_t(s_{t-1}, u_t, \theta)$
- Measurement model: $o_t = H_t(s_t, v_t, \theta)$

$$\mathbf{b} \quad s_t = \eta(s_{t-1} - \mu) + \mu + u_t, \\ u_t \sim \mathcal{N}(0, \beta^2)$$

•
$$o_t | s_t \sim \mathcal{N}(0, \gamma^2 \exp(s_t))$$

Comparison of discrete and continuous-discrete state-space models

Stochastic volatility model

Discrete

Continuous-discrete

Examples of continuous-discrete state-space models

Noisy pendulum model

Dynamic model:

 ds_t(1) = s_t(2)dt
 ds_t = f_θ(s_t, t)dt + σ_θ(s_t, t)dB_t
 ds_t(2) = -a² sin(s_t(1))dt + b^{1/2} dB_t

 Measurement model:

$$o_{t_k} = H_{t_k}(s_{t_k}, v_{t_k}, \theta) \qquad \qquad \blacktriangleright o_{t_k}|s_{t_k} \sim \mathcal{N}(s_t(1), \sigma^2)$$

Noisy pendulum model

Continuous-discrete filtering problem formulation

Continuous-discrete filtering

- Recursively estimate the posterior distribution of latent states $p(s_{t_{1:k}}|o_{t_{1:k}};\theta)$ in continuous-time.
- We can infer the posterior at arbitrary time instances.

¹Ng et al., "Continuous Time Particle Filtering", IJCAI, 2005.

²Bucy et al., "Filtering for Stochastic Processes with Applications to Guidance", American Mathematical Society, 2005.

Continuous-discrete filtering problem formulation

Continuous-discrete filtering

- Recursively estimate the posterior distribution of latent states p(s_{t1:k}|o_{t1:k}; θ) in continuous-time.
- We can infer the posterior at arbitrary time instances.

Linear Gaussian models: Kalman-Bucy filters².

¹Ng et al., "Continuous Time Particle Filtering", IJCAI, 2005.

²Bucy et al., "Filtering for Stochastic Processes with Applications to Guidance", American Mathematical Society, 2005.

Continuous-discrete filtering problem formulation

Continuous-discrete filtering

- Recursively estimate the posterior distribution of latent states $p(s_{t_{1:k}}|o_{t_{1:k}};\theta)$ in continuous-time.
- We can infer the posterior at arbitrary time instances.

Linear Gaussian models: Kalman-Bucy filters².

Non-linear non-Gaussian models: Continuous-discrete particle filters¹.

¹Ng et al., "Continuous Time Particle Filtering", IJCAI, 2005.

²Bucy et al., "Filtering for Stochastic Processes with Applications to Guidance", American Mathematical Society, 2005.

Components

- System dynamics and proposal process are specified by stochastic differential equations (SDEs).
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are deterministic functions.

Components

- System dynamics and proposal process are specified by stochastic differential equations (SDEs).
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are deterministic functions.
- Measurement model: $p(o_{t_k}|s_{t_k}^i;\theta)$.

Components

- System dynamics and proposal process are specified by stochastic differential equations (SDEs).
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.

 $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are deterministic functions.

- Measurement model: $p(o_{t_k}|s_{t_k}^i;\theta)$.
- $\blacktriangleright \text{ Update particles weights: } w^i_{t_k} = w^i_{t_{k-1}} \frac{p(o_{t_k}|s^i_{t_k};\theta)p(s^i_{t_k}|s^i_{t_{k-1}};\theta)}{q(s^i_{t_k}|s^i_{t_{k-1}},o_{t_k};\phi)}.$

Components

- System dynamics and proposal process are specified by stochastic differential equations (SDEs).
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.

 $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are deterministic functions.

- Measurement model: $p(o_{t_k}|s_{t_k}^i;\theta)$.
- $\blacktriangleright \text{ Update particles weights: } w^i_{t_k} = w^i_{t_{k-1}} \frac{p(o_{t_k}|s^i_{t_k}; \theta)p(s^i_{t_k}|s^i_{t_{k-1}}; \theta)}{q(s^i_{t_k}|s^i_{t_{k-1}}, o_{t_k}; \phi)}.$
- Resampling.

Initialisation: Draw $\{s_{t_0}^i\}_{i=1}^{N_p}$ from $p(s_{t_0})$. Set $\{\tilde{w}_{t_0}^i = \frac{1}{N}\}_{i=1}^{N_p}$. for k = 1 to K: for i=1 to N_n : $s_{t_{k-1}}^{i} = \int_{t_{k-1}}^{t_{k}} g_{\phi}(s_{t}, o_{t}, t) \mathrm{d}t + \int_{t_{k-1}}^{t_{k}} \sigma_{\theta}(s_{t}, t) \mathrm{d}B_{t}$ with $s_{t_{k-1}} = s_{t_{k-1}}^{i}$. $\text{Update weights: } w^i_{t_k} = w^i_{t_{k-1}} \frac{p(o_{t_k}|s^i_{t_k}; \theta)p(s^i_{t_k}|s^i_{t_{k-1}}; \theta)}{q(s^i_{t_k}|s^i_{t_{k-1}}, o_{t_k}; \phi)}.$ end for for i=1 to N_n : Normalise weights: $\tilde{w}_{t_{t_{i}}}^{i} = w_{t_{i}}^{i} / \sum_{i=1}^{N_{p}} w_{t_{i}}^{j}$ end for if ESS < threshold: Resample $\{s_{t_{h}}^{i}, \tilde{w}_{t_{h}}^{i}\}_{i=1}^{N_{p}}$ to obtain $\{s_{t_{h}}^{i}, \frac{1}{N_{p}}\}_{i=1}^{N_{p}}$.

end if

end for

Construct continuous-discrete particle filters (DPFs) with machine learning tools:

- Build system dynamics and proposal processes with neural stochastic differential equations (neural SDEs) ^{3, 4, 5}.
- Build measurement models with neural networks⁶.

³Li et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁴Deng et al., "Continuous Latent Process Flows", NeurIPS, 2021.

⁵Deng et al., "Continuous-time Particle Filtering for Latent Stochastic Differential Equations", arXiv, 2209.00173, 2022.

⁶Chen and Li, "Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow", EUSIPCO, 2022.

Neural ordinary differential equations

Neural ordinary differential equations (Neural ODEs)⁷:

$$\frac{\mathrm{d}s_t}{\mathrm{d}t} = f_\theta(s_t, t) \,, \, s_0 = s(0) \,,$$

model the dynamic function $f_{\theta}(s_t, t)$ with neural networks.

⁷Chen et al., "Neural odinary differential equations", NeurIPS, 2018.

Neural ordinary differential equations

Neural ordinary differential equations (Neural ODEs)⁷:

$$\frac{\mathrm{d}s_t}{\mathrm{d}t} = f_\theta(s_t, t) \,, \, s_0 = s(0) \,,$$

model the dynamic function $f_{\theta}(s_t, t)$ with neural networks.

- How to backpropagate gradients through ODE solvers?
 - Adjoint sensitivity method.
 - Can be trained in the same way as normal neural networks.
- Applications:
 - Irregularly-sampled time series modelling.
 - Continuous normalising flows.

⁷Chen et al., "Neural odinary differential equations", NeurIPS, 2018.

Neural stochastic differential equations (Neural SDEs)⁸:

$$\mathrm{d}s_t = f_\theta(s_t, t)\mathrm{d}t + \sigma_\theta(s_t, t)\mathrm{d}B_t\,,$$

a stochastic variant of neural ODEs.

- Li et al. extended the adjoint sensitivity method developed for neural ODEs to neural SDEs³ - we can backpropagate through SDE solvers.
- A natural choice when dealing with stochastic dynamic systems.

³Li et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁸Tzen and Raginsky, "Neural stochastic differential equations: Deep latent Gaussian models in the diffusion limit", arXiv, 1905.09883, 2019.

Build system dynamics and proposals with neural SDEs

- Dynamic model.
 - Construct with neural SDEs.

$$ds_{t_k} = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t,$$

$$s_{t_k} = \int_{t_{k-1}}^{t_k} f_{\theta}(s_t, t)dt + \int_{t_{k-1}}^{t_k} \sigma_{\theta}(s_t, t)dB_t.$$

Build system dynamics and proposals with neural SDEs

Dynamic model.

Construct with neural SDEs.

$$ds_{t_k} = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t,$$

$$s_{t_k} = \int_{t_{k-1}}^{t_k} f_{\theta}(s_t, t)dt + \int_{t_{k-1}}^{t_k} \sigma_{\theta}(s_t, t)dB_t.$$

Proposal process.

 Construct with neural SDEs, include observations as neural network inputs.

$$ds_{t_k} = g_{\phi}(s_t, \boldsymbol{o_t}, t)dt + \sigma_{\theta}(s_t, t)dB_t,$$

$$s_{t_k} = \int_{t_{k-1}}^{t_k} g_{\phi}(s_t, \boldsymbol{o_t}, t)dt + \int_{t_{k-1}}^{t_k} \sigma_{\theta}(s_t, t)dB_t.$$

► Latent SDEs³, continuous latent process flow (CLPF)⁴.

- Generate variational posterior distributions.
- Model observations as a continuous stochastic process.
- Continuous-time particle filters (CTPF)⁵.
 - Non-differentiable resampling.

 $^{^{3}\}mbox{Li}$ et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁴Deng et al., "Continuous Latent Process Flows", NeurIPS, 2021.

⁵Deng et al., "Continuous-time Particle Filtering for Latent Stochastic Differential Equations", arxiv, 2209.00173, 2022.

Updating particle weights can be difficult:

- 1. Intractable transition densities.
- 2. How to design flexible measurement models?

Recall that when updating particle weights:

$$w_{t_k}^i = w_{t_{k-1}}^i \frac{p(s_{t_k}^i | s_{t_{k-1}}^i) p(o_{t_k} | s_{t_k}^i)}{q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k})}$$

Recall that when updating particle weights:

$$w_{t_k}^i = w_{t_{k-1}}^i \frac{p(s_{t_k}^i | s_{t_{k-1}}^i) p(o_{t_k} | s_{t_k}^i)}{q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k})}$$

Transition density ratio -

$$\frac{p(s_{t_k}^i|s_{t_{k-1}}^i)}{q(s_{t_k}^i|s_{t_{k-1}}^i,o_{t_k})}.$$

▶ Neither $p(s_{t_k}^i|s_{t_{k-1}}^i)$ nor $q(s_{t_k}^i|s_{t_{k-1}}^i, o_{t_k})$ are tractable in continuous-discrete state-space models, because $p(s_{t_k}^i|s_{t_{k-1}}^i)$ and $q(s_{t_k}^i|s_{t_{k-1}}^i, o_{t_k})$ are implicitly defined by neural SDEs.

How to update particle weights?

$$w_{t_k}^i = w_{t_{k-1}}^i \frac{p(s_{t_k}^i | s_{t_{k-1}}^i) p(o_{t_k} | s_{t_k}^i)}{q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k})}$$

▶ Restrict to bootstrap filtering approaches, so that $q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k})$ and $p(s_{t_k}^i | s_{t_{k-1}}^i)$ are cancelled.

How to update particle weights?

$$w_{t_k}^i = w_{t_{k-1}}^i \frac{p(s_{t_k}^i | s_{t_{k-1}}^i) p(o_{t_k} | s_{t_k}^i)}{q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k})}$$

- ▶ Restrict to bootstrap filtering approaches, so that $q(s_{t_k}^i|s_{t_{k-1}}^i, o_{t_k})$ and $p(s_{t_k}^i|s_{t_{k-1}}^i)$ are cancelled.
 - No, this will lead to very low sampling efficiency and high variance estimators.

How to update particle weights?

$$w_{t_k}^i = w_{t_{k-1}}^i \frac{p(s_{t_k}^i | s_{t_{k-1}}^i) p(o_{t_k} | s_{t_k}^i)}{q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k})}$$

- ▶ Restrict to bootstrap filtering approaches, so that $q(s_{t_k}^i|s_{t_{k-1}}^i, o_{t_k})$ and $p(s_{t_k}^i|s_{t_{k-1}}^i)$ are cancelled.
 - No, this will lead to very low sampling efficiency and high variance estimators.
- Random weight approaches.
 - Update particle weights with unbiased estimators of the ratio

$$\frac{p(s_{t_k}^i|s_{t_{k-1}}^i)}{q(s_{t_k}^i|s_{t_{k-1}}^i,o_{t_k})}.$$

- ► Importance sampling: E_p[f(x)] = E_q [p(x)/q(x) f(x)]. How to estimate E_p[f(x)]?
 - Sample from q.
 - Estimate $\mathbb{E}_p[f(x)] \approx \frac{1}{N} \sum_{i=1}^N \frac{p(x_i)}{q(x_i)} f(x_i).$

Random weight importance sampling⁹.

• Unbiased estimator of the ratio: $\mathbb{E}\left[\mathcal{Q}\right] = \frac{p(x)}{q(x)}$.

•
$$\mathbb{E}_p[f(x)] = \mathbb{E}_q\left[\frac{p(x)}{q(x)}f(x)\right] = \mathbb{E}_q\left[\mathbb{E}\left[\mathcal{Q}\right]f(x)\right]$$

How to estimate $\mathbb{E}_p[f(x)]$?

- Sample from q.
- Draw samples of Q.
- Estimate $\mathbb{E}_p[f(x)] \approx \frac{1}{N} \sum_{i=1}^N \frac{1}{M} \sum_{j=1}^M \mathcal{Q}_j f(x_i).$

⁹Chopin and Papaspiliopoulos, "An Introduction to Sequential Monte Carlo", Springer, 2020.

- ► Importance sampling: E_p[f(x)] = E_q [p(x)/q(x) f(x)]. How to estimate E_p[f(x)]?
 - Sample from q.
 - Estimate $\mathbb{E}_p[f(x)] \approx \frac{1}{N} \sum_{i=1}^N \frac{p(x_i)}{q(x_i)} f(x_i).$

Random weight importance sampling⁹.

• Unbiased estimator of the ratio: $\mathbb{E}\left[\mathcal{Q}\right] = \frac{p(x)}{q(x)}$.

•
$$\mathbb{E}_p[f(x)] = \mathbb{E}_q\left[\frac{p(x)}{q(x)}f(x)\right] = \mathbb{E}_q\left[\mathbb{E}\left[\mathcal{Q}\right]f(x)\right]$$

How to estimate $\mathbb{E}_p[f(x)]$?

- Sample from q.
- Draw samples of Q.
- Estimate $\mathbb{E}_p[f(x)] \approx \frac{1}{N} \sum_{i=1}^N \frac{1}{M} \sum_{j=1}^M \mathcal{Q}_j f(x_i).$

⁹Chopin and Papaspiliopoulos, "An Introduction to Sequential Monte Carlo", Springer, 2020.

Random weight particle filtering^{10,11}.

Initialisation: Draw $\{s_{t_0}^i\}_{i=1}^{N_p}$ from $p(s_{t_0})$. Set $\{\tilde{w}_{t_0}^i = \frac{1}{N}\}_{i=1}^{N_p}$. for k = 1 to K: for i=1 to N_n : Draw $s_{t_k}^i$ from $q(s_{t_k}^i | s_{t_{k-1}}^i, o_{t_k}; \phi)$. Draw samples $\{\mathcal{Q}_{t_k}^j\}_{j=1}^M$, with $\mathbb{E}[\mathcal{Q}] = \frac{p(o_{t_k}|s_{t_k}^i;\theta)p(s_{t_k}^i|s_{t_{k-1}}^i;\theta)}{q(s_{t_k}^i|s_{t_{k-1}}^i,o_{t_k};\phi)}$. Update weights: $w_{t_{h}}^{i} = w_{t_{h-1}}^{i} \frac{1}{M} \sum_{i=1}^{M} \mathcal{Q}_{i}$. end for for i=1 to N_n : Normalise weights: $\tilde{w}_{t_k}^i = w_{t_k}^i / \sum_{i=1}^{N_p} w_{t_i}^j$ end for if ESS < threshold: Resample $\{s_{t_k}^i, \tilde{w}_{t_k}^i\}_{i=1}^{N_p}$ to obtain $\{s_{t_k}^i, \frac{1}{N_p}\}_{i=1}^{N_p}$. end if end for

¹⁰Fearnhead et al., "Random-weight particle filtering of continuous time processes", JRSSB, 2010.

¹¹Fearnhead et al., "Particle filters for partially observed diffusions", JRSSB, 2008.

► Dynamic process:
$$ds_t = f_\theta(s_t, t)dt + \sigma_\theta(s_t, t)dB_t$$
.

► Proposal process: $ds_t = g_\phi(s_t, o_t, t)dt + \sigma_\theta(s_t, t)dB_t$.

An unbiased estimator of $\frac{p(s_{t_{k+1}}^i|s_{t_k}^i;\theta)}{q(s_{t_{k+1}}^i|s_{t_k}^i,o_{t_{1:k}};\phi)}$ derived from the Girsanov theorem: $Z(t_k, t_{k+1}; \omega_{k+1}^i)$

$$= \exp\left(\int_{t_{k}}^{t_{k+1}} \left[f_{\theta}(s_{t},t) - g_{\phi}(s_{t},o_{t_{k}},t)\right]^{\top} \left[\sigma_{\theta}^{-1}(s_{t},t)\right]^{\top} \mathrm{d}B_{t_{k+1}-t_{k}}^{i} - \frac{1}{2} \int_{t_{k}}^{t_{k+1}} \left[f_{\theta}(s_{t},t) - g_{\phi}(s_{t},o_{t_{k}},t)\right]^{\top} \left[\sigma_{\theta}(s_{t},t)\sigma_{\theta}^{\top}(s_{t},t)\right]^{-1} \left[f_{\theta}(s_{t},t) - g_{\phi}(s_{t},h_{t_{k}},t)\right] \mathrm{d}t\right),$$
$$= \exp\left(\int_{t_{k}}^{t_{k+1}} F_{\theta,\phi}(s_{t},o_{t_{k}},t) \mathrm{d}t + \int_{t_{k}}^{t_{k+1}} G_{\theta,\phi}(s_{t},o_{t_{k}},t) \mathrm{d}B_{t_{k+1}-t_{k}}^{i}\right)$$

.

How to compute the lto integral $Z(t_k, t_{k+1}; \omega_{k+1}^i)$?

Augment the latent state dimension with an concatenated dimension.

$$dS_t = \begin{bmatrix} ds_t \\ ds'_t \end{bmatrix} = \begin{bmatrix} g_\phi(s_t, o_t, t)dt + \sigma_\theta(s_t, t)dB_t \\ F_{\theta,\phi}(s_t, o_{t_k}, t)dt + G_{\theta,\phi}(s_t, o_{t_k}, t)dB_t \end{bmatrix}$$
(1)

 $^{^{12}}$ Higham, "An algorithmic introduction to numerical simulation of stochastic differential equations", SIAM review, 2001.

How to compute the lto integral $Z(t_k, t_{k+1}; \omega_{k+1}^i)$?

Augment the latent state dimension with an concatenated dimension.

$$dS_t = \begin{bmatrix} ds_t \\ ds'_t \end{bmatrix} = \begin{bmatrix} g_\phi(s_t, o_t, t)dt + \sigma_\theta(s_t, t)dB_t \\ F_{\theta,\phi}(s_t, o_{t_k}, t)dt + G_{\theta,\phi}(s_t, o_{t_k}, t)dB_t \end{bmatrix}$$
(1)

- Solve the concatenated SDE using SDE solvers, e.g. Euler-Maruyama and Runge-Kutta methods¹².
 - Simultaneously draw particles and compute Z(t_k, t_{k+1}; ωⁱ_{k+1}) by solving the concatenated SDE.

¹²Higham, "An algorithmic introduction to numerical simulation of stochastic differential equations", SIAM review, 2001.

Continuous-discrete DPF

```
Initialisation: Draw \{s_{t_0}^i\}_{i=1}^{N_p} from p(s_{t_0}).
Set \{\tilde{w}_{t_0}^i = \frac{1}{N}\}_{i=1}^{N_p}.
for k = 1 to K:
     for i=1 to N_p:
        Draw s_{t_k}^i and estimate Z(t_{k-1}, t_k; \omega_k^i) by solving Equation (1).
        Update weights: w_{t_k}^i = w_{t_{k-1}}^i p(o_{t_k}|s_{t_k}^i;\theta) Z(t_{k-1},t_k;\omega_k^i).
     end for
     for i=1 to N_p:
        Normalise weights: \tilde{w}_{t,i}^i = w_{t,i}^i / \sum_{i=1}^{N_p} w_{t,i}^j
     end for
     if ESS < threshold:
        Resample \{s_{t_k}^i, \tilde{w}_{t_k}^i\}_{i=1}^{N_p} to obtain \{s_{t_k}^i, \frac{1}{N_p}\}_{i=1}^{N_p}.
     end if
end for
```

Theorem

Given $s_{t_{k+1}}^i$, $s_{t_k}^i$, and $\omega_{k+1}^i \in \Omega_{k+1}$ an outcome that generates a standard Brownian motion $B_{t_{k+1}-t_k}^i$ driving $s_{t_k}^i$ to $s_{t_{k+1}}^i$ in the proposal process, $Z(t_k, t_{k+1}; \omega_{k+1}^i)$ is an unbiased estimator of the transition density ratio $\frac{p(s_{t_{k+1}}^i|s_{t_k}^i;\theta)}{q(s_{t_{k+1}}^i|s_{t_k}^i;\sigma_{1:k};\phi)}$.

Continuous-discrete DPFs: model design

Conditional Normalising Flow-based Measurement Model⁶.

1. Map the observation o_t to a variable y_t^i that follows a Gaussian distribution $p_Y(\cdot)$ through the conditional normalising flow $\overline{\mathcal{G}}_{\theta}$.

⁶Chen et al., "Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow", EUSIPCO, 2022.

Continuous-discrete DPFs: model design

Conditional Normalising Flow-based Measurement Model⁶.

- 1. Map the observation o_t to a variable y_t^i that follows a Gaussian distribution $p_Y(\cdot)$ through the conditional normalising flow $\overline{\mathcal{G}}_{\theta}$.
- 2. Compute the likelihood of observations o_t given state s_t using the change of variable formula: $p(o_t|s_t^i;\theta) = p_Y(\bar{\mathcal{G}}_{\theta}(o_t,s_t^i)) \left| \det \frac{\partial \bar{\mathcal{G}}_{\theta}(o_t,s_t^i)}{\partial o_t} \right|.$

⁶Chen et al., "Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow", EUSIPCO, 2022.

Continuous-discrete DPFs: model design

An overview

- Construct dynamic process and proposal process with neural SDEs.
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.

 $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are neural networks.

¹³Corenflos et al. "Differentiable Particle Filtering via Entropy-regularized Optimal Transport." ICML, 2021.

An overview

- Construct dynamic process and proposal process with neural SDEs.
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - ► Proposal process: $ds_t = g_\phi(s_t, o_t, t)dt + \sigma_\theta(s_t, t)dB_t$.

 $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are neural networks.

Conditional normalising flow-based measurement model.

$$> p(o_t|s_t^i;\theta) = p_Y(\bar{\mathcal{G}}_{\theta}(o_t,s_t^i)) \left| \det \frac{\partial \bar{\mathcal{G}}_{\theta}(o_t,s_t^i)}{\partial o_t} \right|.$$

¹³Corenflos et al. "Differentiable Particle Filtering via Entropy-regularized Optimal Transport." ICML, 2021.

An overview

- Construct dynamic process and proposal process with neural SDEs.
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.

 $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are neural networks.

Conditional normalising flow-based measurement model.

$$\blacktriangleright p(o_t|s_t^i;\theta) = p_Y(\bar{\mathcal{G}}_{\theta}(o_t,s_t^i)) \left| \mathsf{det} \frac{\partial \bar{\mathcal{G}}_{\theta}(o_t,s_t^i)}{\partial o_t} \right|$$

▶ Update weights with the unbiased estimator Z(t_k, t_{k+1}; ωⁱ_{k+1}).
 ▶ wⁱ_{tk+1} ∝ wⁱ_{tk} p(o_{tk+1}|sⁱ_{tk+1}; θ)Z(t_k, t_{k+1}; ωⁱ_{k+1}).

¹³Corenflos et al. "Differentiable Particle Filtering via Entropy-regularized Optimal Transport." ICML, 2021.

An overview

- Construct dynamic process and proposal process with neural SDEs.
 - Dynamic process: $ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.
 - Proposal process: $ds_t = g_{\phi}(s_t, o_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$.

 $f_{\theta}\text{, }g_{\phi}\text{, and }\sigma_{\theta}$ are neural networks.

Conditional normalising flow-based measurement model.

$$\blacktriangleright p(o_t|s_t^i;\theta) = p_Y(\bar{\mathcal{G}}_{\theta}(o_t,s_t^i)) \left| \mathsf{det} \frac{\partial \bar{\mathcal{G}}_{\theta}(o_t,s_t^i)}{\partial o_t} \right|$$

- ▶ Update weights with the unbiased estimator Z(t_k, t_{k+1}; ωⁱ_{k+1}).
 ▶ wⁱ_{tk+1} ∝ wⁱ_{tk} p(o_{tk+1}|sⁱ_{tk+1}; θ)Z(t_k, t_{k+1}; ωⁱ_{k+1}).
- Differentiable resampling.
 - Entropy-regularised optimal transport resampling¹³.

¹³Corenflos et al. "Differentiable Particle Filtering via Entropy-regularized Optimal Transport." ICML, 2021.

End-to-End learning by minimising a given loss function:

1. Supervised loss;

The mean squared error (MSE):

$$L_{MSE}(\theta, \phi) = \frac{1}{K} \sum_{k=1}^{K} (s_{t_k}^* - s_{t_k})^T (s_{t_k}^* - s_{t_k})$$
 ,

 $s_{t_k}^*$: ground truth state, s_{t_k} : estimated states.

2. Unsupervised loss.

SMC evidence lower bound:

$$L_{\mathsf{ELBO}}(\theta, \phi) = \mathbb{E}\Big[\log \hat{p}_{N_p}(o_{t_{1:K}}; \theta)\Big]$$
,

 $\hat{p}(o_{1:t};\theta):$ an estimate of the marginal likelihood computed with particle weights.

Continuous-discrete DPF: filtering

A set of observed time instances $\{t_1, \cdots, t_K\}$ with observations $\{o_{t_1}, \cdots, o_{t_K}\}$.

Initialisation: Draw $\{s_{t_0}^i\}_{i=1}^{N_p}$ from $p(s_{t_0})$. Set $\{\tilde{w}_{t_0}^i = \frac{1}{N}\}_{i=1}^{N_p}$. for k = 1 to K: for i=1 to N_p : Draw $s_{t_{i}}^{i}$ and estimate $Z(t_{k-1}, t_{k}; \omega_{k}^{i})$ by solving Equation (1). Update weights: $w_{t_k}^i = w_{t_{k-1}}^i p(o_{t_k}|s_{t_k}^i;\theta) Z(t_{k-1},t_k;\omega_k^i).$ end for for i=1 to N_n : Normalise weights: $\tilde{w}_{t,\iota}^i = w_{t,\iota}^i / \sum_{j=1}^{N_p} w_{t,\iota}^j$ end for if ESS < threshold: Resample $\{s_{t_{i}}^{i}, \tilde{w}_{t_{i}}^{i}\}_{i=1}^{N_{p}}$ to obtain $\{s_{t_{i}}^{i}, \frac{1}{N}\}_{i=1}^{N_{p}}$. end if end for

How to approximate $p(s_{t'}|o_{t_{1:k}}; \theta)$ at an arbitrary time instance t'? Assume $t' = t_k + \Delta t$.

$$p(s_{t_k+\Delta t}|o_{t_{1:k}};\theta) = \int p(s_{t_{1:k}}, s_{t_k+\Delta t}|o_{t_{1:k}};\theta) ds_{t_{1:k}}$$
$$= \int p(s_{t_{1:k}}|o_{t_{1:k}};\theta) p(s_{t_k+\Delta t}|s_{t_k};\theta) ds_{t_{1:k}}.$$

• Draw samples $\{s_{t_k+\Delta t}^i\}_{i=1}^{N_p}$ from the dynamic process:

$$ds_t = f_{\theta}(s_t, t)dt + \sigma_{\theta}(s_t, t)dB_t$$
.

• Approximate $p(s_{t_k+\Delta t}|o_{t_{1:k}};\theta) \approx \frac{1}{N_p} \sum_{i=1}^{N_p} s_{t_k+\Delta t}^i$.

Two sets of experiments:

- Sequential state estimation (supervised training).
 - Benes-Daum filtering problem¹⁴.
 - Angular position prediction in a noisy physical pendulum model¹⁵.
- Observation prediction (unsupervised training).
 - Geometric Brownian motion⁴.
 - Stochastic Lorenz attractor³.

³Li et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁴Deng et al., "Continuous Latent Process Flows", NeurIPS, 2021.

¹⁴Daum "Exact finite-dimensional nonlinear filters", IEEE Trans. Automatic Control, 1986.

¹⁵Sarkka, "Recursive Bayesian inference on stochastic differential equations", PhD thesis, Helsinki University of Technology, 2006.

Benes-Daum filtering problem:

$$\begin{split} \mathrm{d}s_t &= \tanh(s_t)\mathrm{d}t + \mathrm{d}B_t\,,\\ o_t &\sim \mathcal{N}(s_t,\sigma^2)\,. \end{split}$$

- Estimate s_t at time t_k given observations $\{o_{t_0}, o_{t_1}, \cdots, o_{t_k}\}$.
- Time stamps are sampled from a homogeneous Poisson process with intensity $\lambda \in \{0.5, 2\}$ in the interval [0, 10].

Experimental results:

Evaluated methods are compared by computing the RMSEs between their estimation of latent states and the ground-truth latent state.

Method	Poisson intensity		
	$\lambda = 0.5$	$\lambda = 2$	
CD-DPF (ours)	1.33	0.689	
Latent SDE ³	1.48	0.846	
CLPF ⁴	1.51	0.879	
CTPF ⁵	1.46	0.724	
Filtering RMSE			

³Li et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁴Deng et al., "Continuous Latent Process Flows", NeurIPS, 2021

⁵Deng et al., "Continuous-time Particle Filtering for Latent Stochastic Differential Equations", arXiv, 2209.00173.

Noisy pendulum system:

$$ds_t(1) = s_t(2)dt,$$

$$ds_t(2) = -a^2 \sin(s_t(1))dt + b^{\frac{1}{2}}dB_t,$$

$$o_t|s_t \sim \mathcal{N}(s_t(1), \sigma^2).$$

- ▶ Predict the angular position s_{tk+1}(1) of the pendulum at the next time stamp t_{k+1} given observations {o_{t0}, o_{t1}, · · · , o_{tk}}.
- ► Time stamps are sampled from a homogeneous Poisson process with intensity λ ∈ {2.0, 10.0} in the interval [0, 30].

Experiments: angular position prediction

Experimental results:

Shaded areas specify the 95% quantiles of empirical distributions given by the CD-DPF.

³Li et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁴Deng et al., "Continuous Latent Process Flows", NeurIPS, 2021

⁵Deng et al., "Continuous-time Particle Filtering for Latent Stochastic Differential Equations", arXiv, 2209.00173.

Experiments: angular position prediction

Experimental results:

Method	Poisson intensity		
	$\lambda = 2.0$	$\lambda = 10.0$	
CD-DPF (ours)	0.487	0.451	
Latent SDE ³	0.749	0.612	
CLPF ⁴	0.622	0.587	
CTPF ⁵	0.501	0.489	
Filtering RMSE.			

³Li et al., "Scalable gradients for stochastic differential equations", AISTATS, 2020.

⁴Deng et al., "Continuous Latent Process Flows", NeurIPS, 2021

⁵Deng et al., "Continuous-time Particle Filtering for Latent Stochastic Differential Equations", arXiv, 2209.00173.

Experiments: observation prediction and interpolation

Geometric Brownian motion

$$ds_t = \mu s_t dt + \sigma s_t dB_t ,$$

$$s_{t_0} = s_0 ,$$

Stochastic Lorenz Attractor

.

$$ds_t(1) = \eta \Big(s_t(2) - s_t(1) \Big) dt + \alpha(1) dB_t, \quad s_{t_0}(1) = x_0(1) ,$$

$$ds_t(2) = \Big(s_t(1)(\rho - s_t(3)) - s_t(2) \Big) dt + \alpha(2) dB_t, \quad s_{t_0}(2) = x_0(2) ,$$

$$ds_t(3) = \Big(s_t(3)s_t(2) - \beta s_t(3) \Big) dt + \alpha(3) dB_t, \quad s_{t_0}(3) = x_0(3) .$$

Both experiments have Gaussian measurements:

$$o_t \sim \mathcal{N}(s_t, \, \sigma^2)$$

Experiments: observation prediction and interpolation

Geometric Brownian motion experimental results:

 Yellow curve: prediction. Black cross: observations. Purple and blue: training samples.

Experiments: observation prediction and interpolation

Stochastic Lorenz Attractor experimental results:

• We can discover the true system model from corrupted data.

Data

Unclear which one is better in what cases.

- Unclear which one is better in what cases.
- Exact simulation is required.
 - No longer unbiased estimates if approximation or discretisation is needed in simulation.
 - Exact simulation techniques only apply to very limited and simple SDEs.

- Unclear which one is better in what cases.
- Exact simulation is required.
 - No longer unbiased estimates if approximation or discretisation is needed in simulation.
 - Exact simulation techniques only apply to very limited and simple SDEs.
- System identification problem in unsupervised training.
 - Different latent dynamics and measurements can possibly interpret observations equally well but some may produce poor filtering results.

- Unclear which one is better in what cases.
- Exact simulation is required.
 - No longer unbiased estimates if approximation or discretisation is needed in simulation.
 - Exact simulation techniques only apply to very limited and simple SDEs.
- System identification problem in unsupervised training.
 - Different latent dynamics and measurements can possibly interpret observations equally well but some may produce poor filtering results.

Thank you!

Appendix

Definition of normalising flows:

$$y = \mathcal{T}_{\theta}(x),$$

where \mathcal{T}_{θ} is required to be an invertible transformation.

Definition of normalising flows:

$$y = \mathcal{T}_{\theta}(x),$$

where \mathcal{T}_{θ} is required to be an invertible transformation.

Why invertible transformations?

Invertibility allows density estimation (change of variable):

$$p(y) = p(x) \left| \det \frac{dy}{dx} \right|^{-1}$$

An Example of Normalising Flow: Coupling Layer¹⁶

Real-NVP

Coupling layers.

¹⁵Ding et al. "Density Estimation Using Real NVP", ICLR, 2017.

An Example of Normalising Flow: Coupling Layer¹⁶

Real-NVP

Coupling layers.

The special structure of coupling layers leads to triangular Jacobian matrix:

$$y = x$$

$$1:d = 1:d$$

$$y = x$$

$$d+1:D = x \oplus (c(x)) + t(x)$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \mathbb{I} & 0 \\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^T} & \text{diag}(\exp[c(x_{1:d})]) \end{bmatrix}$$

 $^{^{15}\}mathsf{Ding}$ et al. "Density Estimation Using Real NVP", ICLR, 2017.

We use conditional coupling layer to construct conditional Real-NVP:

We use conditional coupling layer to construct conditional Real-NVP:

Conditional coupling layer

Conditional coupling layer:

$$y = x_{1:d} y_{1:d} = x_{1:d} y_{d+1:D} = x_{d+1:D} \odot \exp(c(x_{1:d}, o)) + t(x_{1:d}, o)$$

Standard coupling layer:

$$\begin{array}{c} y = x \\ 1:d \\ y \\ d+1:D \end{array} = x \odot \exp(c(x)) + t(x) \\ 1:d \\ 1:d \end{array}$$

Conditional coupling layer:

$$\begin{array}{c} y = x \\ 1:d \\ y \\ d+1:D \end{array} = x \\ d+1:D \\ 0 \\ exp(c(x, o)) + t(x, o) \\ 1:d \\ 1:d \end{array}$$

Still invertible and lead to triangular Jacobian matrix:

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \mathbb{I} & 0\\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}} & \mathsf{diag}(\exp[c(x_{1:d}, o)]) \end{bmatrix}$$