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Motivating examples: Mars rover1

▶ Continuous-time sequential state estimation.

▶ Missing observations, irregularly distributed time grid.

K9 Mars rover
Image source: NASA

1Ng et al., “Continuous Time Particle Filtering”, IJCAI, 2005.
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Motivating examples: dental disease detection

▶ Continuous-time sequential state estimation.

▶ Missing observations, irregularly distributed time grid.

January 2019 February 2023
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Continuous-discrete state-space models

▶ Dynamic model:
dst = fθ(st, t)dt+σθ(st, t)dBt

▶ Measurement model:
otk = Htk(stk , vtk , θ)

stk the hidden state at time tk

θ model parameters

fθ, σθ, Ht deterministic functions

otk the observation at time tk

dBt Brownian motion

vtk measurement noise
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Discrete state-space models

▶ Dynamic model:
st = Kt(st−1, ut, θ)

▶ Measurement model:
ot = Ht(st, vt, θ)

st the hidden state at time t

θ model parameters

fθ,Kt, Ht deterministic functions

ot the observation at time t

ut, vt noise terms
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Examples of continuous-discrete state-space models

Continuous-discrete stochastic volatility model

▶ Dynamic model:
dst = fθ(st, t)dt+σθ(st, t)dBt

▶ Measurement model:
otk = Htk(stk , vtk , θ)

▶ dst = (η − 1)(st − µ)dt+ βdBt

1

▶ otk |stk ∼ N (0, γ2exp(st))
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Examples of continuous-discrete state-space models

Discrete stochastic volatility model: evenly spaced time instances.

▶ Dynamic model:
st = Kt(st−1, ut, θ)

▶ Measurement model:
ot = Ht(st, vt, θ)

▶ st = η(st−1 − µ) + µ+ ut,
ut ∼ N (0, β2)

▶ ot|st ∼ N (0, γ2exp(st))
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Examples of state-space models

Comparison of discrete and continuous-discrete state-space models

Stochastic volatility model

Discrete Continuous-discrete
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Examples of continuous-discrete state-space models

Noisy pendulum model

▶ Dynamic model:
dst = fθ(st, t)dt+σθ(st, t)dBt

▶ Measurement model:
otk = Htk(stk , vtk , θ)

▶ dst(1) = st(2)dt

dst(2) = −a2 sin(st(1))dt+ b
1
2dBt

▶ otk |stk ∼ N (st(1), σ
2)
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Examples of state-space models

Noisy pendulum model
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Continuous-discrete filtering problem formulation

Continuous-discrete filtering

▶ Recursively estimate the posterior distribution of latent states
p(st1:k |ot1:k ; θ) in continuous-time.

▶ We can infer the posterior at arbitrary time instances.

1Ng et al., “Continuous Time Particle Filtering”, IJCAI, 2005.
2Bucy et al., ”Filtering for Stochastic Processes with Applications to Guidance”, American Mathematical Society, 2005.
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Continuous-discrete filtering problem formulation

Continuous-discrete filtering

▶ Recursively estimate the posterior distribution of latent states
p(st1:k |ot1:k ; θ) in continuous-time.

▶ We can infer the posterior at arbitrary time instances.

Linear Gaussian models: Kalman-Bucy filters2.

Non-linear non-Gaussian models: Continuous-discrete particle filters1.

1Ng et al., “Continuous Time Particle Filtering”, IJCAI, 2005.
2Bucy et al., ”Filtering for Stochastic Processes with Applications to Guidance”, American Mathematical Society, 2005.

12 / 42



Continuous-discrete particle filtering

Components

▶ System dynamics and proposal process are specified by stochastic
differential equations (SDEs).
▶ Dynamic process: dst = fθ(st, t)dt+ σθ(st, t)dBt.
▶ Proposal process: dst = gϕ(st, ot, t)dt+ σθ(st, t)dBt.

fθ, gϕ, and σθ are deterministic functions.
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▶ Resampling.
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Continuous-discrete particle filtering

Initialisation: Draw {sit0}
Np

i=1 from p(st0).

Set {w̃i
t0 = 1

Np
}Np

i=1.

for k = 1 to K:
for i= 1 to Np:

sitk =
∫ tk
tk−1

gϕ(st, ot, t)dt+
∫ tk
tk−1

σθ(st, t)dBt with stk−1
= sitk−1

.

Update weights: wi
tk

= wi
tk−1

p(otk |s
i
tk
;θ)p(sitk

|sitk−1
;θ)

q(sitk
|sitk−1

,otk ;ϕ)
.

end for
for i= 1 to Np:

Normalise weights: w̃i
tk

= wi
tk
/
∑Np

j=1w
j
tk
.

end for
if ESS < threshold:
Resample {sitk , w̃

i
tk
}Np

i=1 to obtain {sitk ,
1
Np

}Np

i=1.
end if

end for
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Data-adaptive continuous-discrete particle filtering

Construct continuous-discrete particle filters (DPFs) with machine learning
tools:

▶ Build system dynamics and proposal processes with neural stochastic
differential equations (neural SDEs) 3, 4, 5.

▶ Build measurement models with neural networks6.

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
4Deng et al., “Continuous Latent Process Flows”, NeurIPS, 2021.
5Deng et al., “Continuous-time Particle Filtering for Latent Stochastic Differential Equations”, arXiv, 2209.00173, 2022.
6Chen and Li, “Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalizing Flow”, EUSIPCO,

2022.
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Neural ordinary differential equations

Neural ordinary differential equations (Neural ODEs)7:

dst
dt

= fθ(st, t) , s0 = s(0) ,

model the dynamic function fθ(st, t) with neural networks.

7Chen et al., “Neural odinary differential equations”, NeurIPS, 2018.
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Neural ordinary differential equations

Neural ordinary differential equations (Neural ODEs)7:

dst
dt

= fθ(st, t) , s0 = s(0) ,

model the dynamic function fθ(st, t) with neural networks.

▶ How to backpropagate gradients through ODE solvers?
▶ Adjoint sensitivity method.
▶ Can be trained in the same way as normal neural networks.

▶ Applications:
▶ Irregularly-sampled time series modelling.
▶ Continuous normalising flows.

7Chen et al., “Neural odinary differential equations”, NeurIPS, 2018.
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Neural stochastic differential equations

Neural stochastic differential equations (Neural SDEs)8:

dst = fθ(st, t)dt+ σθ(st, t)dBt ,

a stochastic variant of neural ODEs.

▶ Li et al. extended the adjoint sensitivity method developed for neural
ODEs to neural SDEs3 - we can backpropagate through SDE solvers.

▶ A natural choice when dealing with stochastic dynamic systems.

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
8Tzen and Raginsky, “Neural stochastic differential equations: Deep latent Gaussian models in the diffusion limit”, arXiv,

1905.09883, 2019.
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Build system dynamics and proposals with neural SDEs

▶ Dynamic model.
▶ Construct with neural SDEs.

dstk = fθ(st, t)dt+ σθ(st, t)dBt ,

stk =

∫ tk

tk−1

fθ(st, t)dt+

∫ tk

tk−1

σθ(st, t)dBt .
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stk =

∫ tk

tk−1

fθ(st, t)dt+

∫ tk

tk−1

σθ(st, t)dBt .

▶ Proposal process.
▶ Construct with neural SDEs, include observations as neural network

inputs.

dstk = gϕ(st, ot, t)dt+ σθ(st, t)dBt ,

stk =

∫ tk

tk−1

gϕ(st, ot, t)dt+

∫ tk

tk−1

σθ(st, t)dBt .
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Existing methods

▶ Latent SDEs3, continuous latent process flow (CLPF)4.
▶ Generate variational posterior distributions.
▶ Model observations as a continuous stochastic process.

▶ Continuous-time particle filters (CTPF)5.
▶ Non-differentiable resampling.

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
4Deng et al., “Continuous Latent Process Flows”, NeurIPS, 2021.
5Deng et al., “Continuous-time Particle Filtering for Latent Stochastic Differential Equations”, arxiv, 2209.00173, 2022.
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Challenges

Updating particle weights can be difficult:

1. Intractable transition densities.

2. How to design flexible measurement models?
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Continuous-discrete DPF: weights update

Recall that when updating particle weights:

wi
tk

= wi
tk−1

p(sitk |s
i
tk−1)p(otk |sitk)

q(sitk |s
i
tk−1

, otk)
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wi
tk

= wi
tk−1

p(sitk |s
i
tk−1)p(otk |sitk)

q(sitk |s
i
tk−1

, otk)

Transition density ratio
p(sitk |s

i
tk−1

)

q(sitk |s
i
tk−1

, otk)
.

▶ Neither p(sitk |s
i
tk−1

) nor q(sitk |s
i
tk−1

, otk) are tractable in

continuous-discrete state-space models, because p(sitk |s
i
tk−1

) and

q(sitk |s
i
tk−1

, otk) are implicitly defined by neural SDEs.
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Continuous-discrete DPF: weights update

How to update particle weights?

wi
tk

= wi
tk−1

p(sitk |s
i
tk−1)p(otk |sitk)

q(sitk |s
i
tk−1

, otk)

▶ Restrict to bootstrap filtering approaches, so that q(sitk |s
i
tk−1

, otk)

and p(sitk |s
i
tk−1

) are cancelled.
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i
tk−1

, otk)

and p(sitk |s
i
tk−1

) are cancelled.
▶ No, this will lead to very low sampling efficiency and high variance

estimators.

▶ Random weight approaches.
▶ Update particle weights with unbiased estimators of the ratio

p(sitk |s
i
tk−1

)

q(sitk |s
i
tk−1

, otk)
.
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Continuous-discrete DPF: weights update

▶ Importance sampling: Ep[f(x)] = Eq

[
p(x)
q(x)f(x)

]
.

How to estimate Ep[f(x)]?
▶ Sample from q.
▶ Estimate Ep[f(x)] ≈ 1

N

∑N
i=1

p(xi)
q(xi)

f(xi).

▶ Random weight importance sampling9.

▶ Unbiased estimator of the ratio: E
[
Q
]
= p(x)

q(x) .

▶ Ep[f(x)] = Eq

[
p(x)
q(x)f(x)

]
= Eq

[
E
[
Q
]
f(x)

]
.

How to estimate Ep[f(x)]?
▶ Sample from q.
▶ Draw samples of Q.
▶ Estimate Ep[f(x)] ≈ 1

N

∑N
i=1

1
M

∑M
j=1 Qjf(xi).

9Chopin and Papaspiliopoulos, ”An Introduction to Sequential Monte Carlo”, Springer, 2020.
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Continuous-discrete DPF: weights update
Random weight particle filtering10,11.

Initialisation: Draw {sit0}
Np

i=1 from p(st0).

Set {w̃i
t0 = 1

Np
}Np

i=1.

for k = 1 to K:
for i= 1 to Np:

Draw sitk from q(sitk |s
i
tk−1

, otk ;ϕ).

Draw samples {Qj
tk
}Mj=1, with E[Q] =

p(otk |sitk ;θ)p(sitk
|sitk−1

;θ)

q(sitk
|sitk−1

,otk ;ϕ)
.

Update weights: wi
tk = wi

tk−1

1
M

∑M
j=1 Qj .

end for
for i= 1 to Np:

Normalise weights: w̃i
tk = wi

tk/
∑Np

j=1 w
j
tk
.

end for
if ESS < threshold:

Resample {sitk , w̃
i
tk}

Np

i=1 to obtain {sitk ,
1

Np
}Np

i=1.

end if
end for

10Fearnhead et al., “Random-weight particle filtering of continuous time processes”, JRSSB, 2010.
11Fearnhead et al., “Particle filters for partially observed diffusions”, JRSSB, 2008.
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Continuous-discrete DPFs: weights update

▶ Dynamic process: dst = fθ(st, t)dt+ σθ(st, t)dBt.
▶ Proposal process: dst = gϕ(st, ot, t)dt+ σθ(st, t)dBt.

An unbiased estimator of
p(sitk+1

|sitk ;θ)
q(sitk+1

|sitk ,ot1:k ;ϕ)
derived from the Girsanov

theorem:
Z(tk, tk+1;ω

i
k+1)

= exp

(∫ tk+1

tk

[
fθ(st, t)− gϕ(st, otk , t)

]⊤[
σ−1
θ (st, t)

]⊤
dBi

tk+1−tk

−1

2

∫ tk+1

tk

[
fθ(st, t)− gϕ(st, otk , t)

]⊤[
σθ(st, t)σ

⊤
θ (st, t)

]−1

[
fθ(st, t)− gϕ(st, htk , t)

]
dt

)
,

= exp

(∫ tk+1

tk

Fθ,ϕ(st, otk , t)dt+

∫ tk+1

tk

Gθ,ϕ(st, otk , t)dB
i
tk+1−tk

)
.
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Continuous-discrete DPFs: weights update

How to compute the Ito integral Z(tk, tk+1;ω
i
k+1)?

▶ Augment the latent state dimension with an concatenated dimension.

dSt =

[
dst
ds′t

]
=

[
gϕ(st, ot, t)dt+ σθ(st, t)dBt

Fθ,ϕ(st, otk , t)dt+Gθ,ϕ(st, otk , t)dBt

]
(1)

12Higham, ”An algorithmic introduction to numerical simulation of stochastic differential equations”, SIAM review, 2001.
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[
dst
ds′t

]
=

[
gϕ(st, ot, t)dt+ σθ(st, t)dBt

Fθ,ϕ(st, otk , t)dt+Gθ,ϕ(st, otk , t)dBt

]
(1)

▶ Solve the concatenated SDE using SDE solvers, e.g. Euler-Maruyama
and Runge-Kutta methods12.
▶ Simultaneously draw particles and compute Z(tk, tk+1;ω

i
k+1) by

solving the concatenated SDE.

12Higham, ”An algorithmic introduction to numerical simulation of stochastic differential equations”, SIAM review, 2001.
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Continuous-discrete DPF: weights update

Continuous-discrete DPF

Initialisation: Draw {sit0}
Np

i=1 from p(st0).

Set {w̃i
t0 = 1

Np
}Np

i=1.

for k = 1 to K:
for i= 1 to Np:

Draw sitk and estimate Z(tk−1, tk;ω
i
k) by solving Equation (1).

Update weights: wi
tk

= wi
tk−1

p(otk |sitk ; θ)Z(tk−1, tk;ω
i
k).

end for
for i= 1 to Np:

Normalise weights: w̃i
tk

= wi
tk
/
∑Np

j=1 w
j
tk
.

end for
if ESS < threshold:
Resample {sitk , w̃

i
tk
}Np

i=1 to obtain {sitk ,
1
Np

}Np

i=1.

end if
end for
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Continuous-discrete DPFs: weights update

Theorem

Given sitk+1
, sitk , and ωi

k+1 ∈ Ωk+1 an outcome that generates a standard

Brownian motion Bi
tk+1−tk

driving sitk to sitk+1
in the proposal process,

Z(tk, tk+1;ω
i
k+1) is an unbiased estimator of the transition density ratio

p(sitk+1
|sitk ;θ)

q(sitk+1
|sitk ,ot1:k ;ϕ)

.
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Continuous-discrete DPFs: model design

Conditional Normalising Flow-based Measurement Model6.

1. Map the observation ot to a variable yit that follows a Gaussian
distribution pY (·) through the conditional normalising flow Ḡθ.

6Chen et al., “Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow”, EUSIPCO,
2022.
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Continuous-discrete DPFs: model design

Conditional Normalising Flow-based Measurement Model6.

1. Map the observation ot to a variable yit that follows a Gaussian
distribution pY (·) through the conditional normalising flow Ḡθ.

2. Compute the likelihood of observations ot given state st using the

change of variable formula:p(ot|sit; θ) = pY (Ḡθ(ot, s
i
t))

∣∣∣∣det∂Ḡθ(ot,s
i
t)

∂ot

∣∣∣∣.
6Chen et al., “Conditional Measurement Density Estimation in Sequential Monte Carlo via Normalising Flow”, EUSIPCO,

2022.
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Continuous-discrete DPFs: model design

An overview

▶ Construct dynamic process and proposal process with neural SDEs.
▶ Dynamic process: dst = fθ(st, t)dt+ σθ(st, t)dBt.
▶ Proposal process: dst = gϕ(st, ot, t)dt+ σθ(st, t)dBt.

fθ, gϕ, and σθ are neural networks.

13Corenflos et al. ”Differentiable Particle Filtering via Entropy-regularized Optimal Transport.” ICML, 2021.
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∣∣∣∣.
▶ Update weights with the unbiased estimator Z(tk, tk+1;ω

i
k+1).

▶ wi
tk+1

∝ wi
tk
p(otk+1

|sitk+1
; θ)Z(tk, tk+1;ω

i
k+1).

▶ Differentiable resampling.
▶ Entropy-regularised optimal transport resampling13.

13Corenflos et al. ”Differentiable Particle Filtering via Entropy-regularized Optimal Transport.” ICML, 2021.
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Continuous-discrete DPF: training objective

End-to-End learning by minimising a given loss function:

1. Supervised loss;
▶ The mean squared error (MSE):

LMSE(θ, ϕ) =
1
K

∑K
k=1(s

∗
tk

− stk)
T (s∗tk − stk) ,

s∗tk : ground truth state, stk : estimated states.

2. Unsupervised loss.
▶ SMC evidence lower bound:

LELBO(θ, ϕ) = E
[
log p̂Np

(ot1:K ; θ)
]
,

p̂(o1:t; θ): an estimate of the marginal likelihood computed with
particle weights.
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Continuous-discrete DPF: filtering

A set of observed time instances {t1, · · · , tK} with observations
{ot1 , · · · , otK}.

Initialisation: Draw {sit0}
Np

i=1 from p(st0).

Set {w̃i
t0 = 1

Np
}Np

i=1.

for k = 1 to K:
for i= 1 to Np:

Draw sitk and estimate Z(tk−1, tk;ω
i
k) by solving Equation (1).

Update weights: wi
tk

= wi
tk−1

p(otk |sitk ; θ)Z(tk−1, tk;ω
i
k).

end for
for i= 1 to Np:

Normalise weights: w̃i
tk

= wi
tk
/
∑Np

j=1 w
j
tk
.

end for
if ESS < threshold:
Resample {sitk , w̃

i
tk
}Np

i=1 to obtain {sitk ,
1
Np

}Np

i=1.

end if
end for
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Continuous-discrete DPF: prediction

How to approximate p(st′ |ot1:k ; θ) at an arbitrary time instance t′?

▶ Assume t′ = tk +∆t.

p(stk+∆t|ot1:k ; θ) =
∫

p(st1:k , stk+∆t|ot1:k ; θ)dst1:k

=

∫
p(st1:k |ot1:k ; θ)p(stk+∆t|stk ; θ)dst1:k .

▶ Draw samples {sitk+∆t}
Np

i=1 from the dynamic process:

dst = fθ(st, t)dt+ σθ(st, t)dBt .

▶ Approximate p(stk+∆t|ot1:k ; θ) ≈ 1
Np

∑Np

i=1 s
i
tk+∆t.
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Experiments

Two sets of experiments:

▶ Sequential state estimation (supervised training).
▶ Benes-Daum filtering problem14.
▶ Angular position prediction in a noisy physical pendulum model15.

▶ Observation prediction (unsupervised training).
▶ Geometric Brownian motion4.
▶ Stochastic Lorenz attractor3.

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
4Deng et al., “Continuous Latent Process Flows”, NeurIPS, 2021.

14Daum ”Exact finite-dimensional nonlinear filters”, IEEE Trans. Automatic Control, 1986.
15Sarkka, ”Recursive Bayesian inference on stochastic differential equations”, PhD thesis, Helsinki University of Technology,

2006.
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Experiments: Benes-Daum filtering problem

Benes-Daum filtering problem:

dst = tanh(st)dt+ dBt ,

ot ∼ N (st, σ
2) .

▶ Estimate st at time tk given observations {ot0 , ot1 , · · · , otk}.
▶ Time stamps are sampled from a homogeneous Poisson process with

intensity λ ∈ {0.5 , 2} in the interval [0, 10].
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Experiments: Benes-Daum filtering problem

Experimental results:

▶ Evaluated methods are compared by computing the RMSEs between
their estimation of latent states and the ground-truth latent state.

Method
Poisson intensity
λ=0.5 λ=2

CD-DPF (ours) 1.33 0.689
Latent SDE3 1.48 0.846

CLPF4 1.51 0.879

CTPF5 1.46 0.724
Filtering RMSE.

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
4Deng et al., “Continuous Latent Process Flows”, NeurIPS, 2021
5Deng et al., “Continuous-time Particle Filtering for Latent Stochastic Differential Equations”, arXiv, 2209.00173.
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Experiments: angular position prediction

Noisy pendulum system:

dst(1) = st(2)dt ,

dst(2) = −a2 sin(st(1))dt+ b
1
2dBt ,

ot|st ∼ N (st(1), σ
2) .

▶ Predict the angular position stk+1
(1) of the pendulum at the next

time stamp tk+1 given observations {ot0 , ot1 , · · · , otk}.
▶ Time stamps are sampled from a homogeneous Poisson process with

intensity λ ∈ {2.0 , 10.0} in the interval [0, 30].
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Experiments: angular position prediction

Experimental results:

▶ Shaded areas specify the 95% quantiles of empirical distributions
given by the CD-DPF.

0 5 10 15 20 25 30
Time

3

2

1

0

1

2

3

4

An
gu

la
r p

os
iti

on

Ground-truth Estimate Observation

0 5 10 15 20 25 30
Time

3

2

1

0

1

2

3

4

An
gu

la
r p

os
iti

on

Ground-truth Estimate Observation

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
4Deng et al., “Continuous Latent Process Flows”, NeurIPS, 2021
5Deng et al., “Continuous-time Particle Filtering for Latent Stochastic Differential Equations”, arXiv, 2209.00173.
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Experiments: angular position prediction

Experimental results:

Method
Poisson intensity
λ=2.0 λ=10.0

CD-DPF (ours) 0.487 0.451
Latent SDE3 0.749 0.612

CLPF4 0.622 0.587

CTPF 5 0.501 0.489
Filtering RMSE.

3Li et al., “Scalable gradients for stochastic differential equations”, AISTATS, 2020.
4Deng et al., “Continuous Latent Process Flows”, NeurIPS, 2021
5Deng et al., “Continuous-time Particle Filtering for Latent Stochastic Differential Equations”, arXiv, 2209.00173.
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Experiments: observation prediction and interpolation

▶ Geometric Brownian motion

dst = µstdt+ σstdBt ,

st0 = s0 ,

▶ Stochastic Lorenz Attractor

dst(1) = η
(
st(2)− st(1)

)
dt+ α(1)dBt, st0(1) = x0(1) ,

dst(2) =
(
st(1)(ρ− st(3))− st(2)

)
dt+ α(2)dBt, st0(2) = x0(2) ,

dst(3) =
(
st(3)st(2)− βst(3)

)
dt+ α(3)dBt, st0(3) = x0(3) .

Both experiments have Gaussian measurements:

ot ∼ N (st, σ
2)

.
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Experiments: observation prediction and interpolation

Geometric Brownian motion experimental results:

▶ Yellow curve: prediction. Black cross: observations. Purple and blue:
training samples.
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Experiments: observation prediction and interpolation

Stochastic Lorenz Attractor experimental results:

▶ We can discover the true system model from corrupted data.
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Some unresolved problems

▶ There are a number of unbiased estimators of the weights.
▶ Unclear which one is better in what cases.
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Some unresolved problems

▶ There are a number of unbiased estimators of the weights.
▶ Unclear which one is better in what cases.

▶ Exact simulation is required.
▶ No longer unbiased estimates if approximation or discretisation is

needed in simulation.
▶ Exact simulation techniques only apply to very limited and simple

SDEs.

▶ System identification problem in unsupervised training.
▶ Different latent dynamics and measurements can possibly interpret

observations equally well but some may produce poor filtering results.

Thank you!
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Normalising Flows

Definition of normalising flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.
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Normalising Flows

Definition of normalising flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.

Why invertible transformations?

▶ Invertibility allows density estimation (change of variable):

p(y) = p(x)

∣∣∣∣detdydx
∣∣∣∣−1
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An Example of Normalising Flow: Coupling Layer16

Real-NVP

▶ Coupling layers.

15Ding et al. “Density Estimation Using Real NVP”, ICLR, 2017.
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An Example of Normalising Flow: Coupling Layer16

Real-NVP

▶ Coupling layers.

The special structure of coupling layers leads to triangular Jacobian matrix:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d

)) + t( x
1:d

)

∂y

∂x
=

[
I 0

∂yd+1:D

∂xT
1:d

diag(exp[c(x1:d)])

]

15Ding et al. “Density Estimation Using Real NVP”, ICLR, 2017.
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Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

Standard coupling layer
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Conditional Coupling Layer

▶ Conditional coupling layer:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d

, o)) + t( x
1:d

, o)

▶ Standard coupling layer:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d

)) + t( x
1:d

)
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Conditional Coupling Layer

▶ Conditional coupling layer:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

⊙ exp(c( x
1:d

, o)) + t( x
1:d

, o)

Still invertible and lead to triangular Jacobian matrix:

∂y

∂x
=

[
I 0

∂yd+1:D

∂x1:d
diag(exp[c(x1:d, o)])

]
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