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Background: Particle Filters

▶ Set of algorithms to perform inference on state-space models.

▶ Goal: estimate E [xt|y0:t]
▶ Forms a particle estimate of P (xt|y0:t) via sequential Monte

Carlo sampling
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Background: Particle Filters Cont.

P (xt|y0:t) =
∫

P (xt−1|y0:t−1) ·
P (xt|xt−1)P (yt|xt)

P (yt)
dxt−1

Algorithm 1 Particle Filter Main Loop

1: for t = 1 to T do
2: Sample xnt from proposal M

(
xnt |xnt−1, yt

)
3: Calculate importance weights wn

t ∝ P (yt|xnt )
P(xn

t |xn
t−1)

M(xn
t |xn

t−1,yt)

4: Auto-normalise Wn
t =

wn
t∑N

m=1 w
m
t

5: Resample xnt with probability Wn
t

6: end for

3 / 16



Background: Differentiable Particle Filters

▶ Parameterise (some part of) the SSM using Neural Networks

▶ Optimised with (autograd) stochastic gradient descent

▶ In a supervised setting1, we directly train the MSE between
our predicted mean and the ground truth

1R. Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, 2018

4 / 16



Background: Regime Switching Particle Filters
▶ Y. El-Laham et al.2 introduced a new framework where the

system of interest consisted of a discrete set of K SSMs that
the system could switch between

▶ The model probabilities were allowed to depend arbitrarily on
the models at all previous time steps

▶ W. Li et al.3 made a simple extension where the individual
SSMs were learned but the switching dynamic was provided

2Y. El-Laham et al. ”Particle Filtering Under General Regime Switching”, 2020
3W. Li et al. ”Differentiable Bootstrap Particle Filters for Regime-Switching Models”, 2023
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Learning the Regime Switching Dynamic

▶ Instead of an arbitrary dependence, we require the previous
model indices be encoded in a R dimensional feature vector
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Regime Switching Network Architecture

▶ It’s important that the Markov process (q, r) forgets its past
in some sense4

▶ This and the recurrent structure of the model led us to take
inspiration from LSTMs

4N. Chopin and S. Papaspiliopoulos, ”An Introduction to Sequential Monte Carlo”, 2020
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Algorithm

▶ To be able to pass gradients through the regime switching
network, the probabilities should not be sampled from

▶ Instead we sample from the models uniformly and
(importance) weight the samples by the model probability

▶ This proposal strategy was proposed by Y. El-Laham et al. to
maintain model diversity

▶ Otherwise use vanilla (bootstrap) particle filtering

▶ Note: The need for the model index to be discreet
necessitates non-differentiable resampling schemes
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Experiment Set-up

▶ We repeat the setting from Y. El-Laham et al. and W. Li et al.

▶ xt|xt−1 ∼ N
(
aq ∗ xt−1 + bq, σ

2
x

)
▶ yt|xt ∼ N

(
cq ∗

√
|xt|+ dq, σ

2
x

)
▶ 1st setting uses a Markov Switching dynamic with a constant

transition matrix, and the 2nd uses a Polya-Urn distribution
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Consequences of Uniform Proposal

▶ In Y. El-Laham et al. it is stated that a uniform proposal
remedies model diversity issues

▶ More precisely it ensures model diversity at the current
time-step

The difference in variance of the weights at the current time-step
between uniform and bootstrap proposals:

Var [wn
t ]uniform − Var [wn

t ]bootstrap

=

K∑
i=1

(Qt (i|rt−1)K − 1)Qt (i|rt−1)Ext

[
(Gt (yt|xt, i))2

]
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Consequences of Uniform Proposal cont.

Assume that the likelihood is informative:

Var [wn
t ]uniform − Var [wn

t ]bootstrap

≈ (Qt (j|rt−1)K − 1)Qt (j|rt−1)Ext

[
(Gt (yt|xt, j))2

]

▶ Then the average difference is

∝
∑K

j=1

(
(Qt (j|rt−1))

3K − (Qt (j|rt−1))
2
)
> 0

▶ So on average using a uniform proposal should increase the
variance at the current time-step

▶ Empirical simulation showed that whilst the variance of the
weights was greatly increased with a uniform proposal, the
variance of the resampled particles was similar to bootstrap
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Markov Results

Mean Best Worst SD

DBPF (baseline) 2.562 1.250 9.6019 1.0834
LSTM (baseline) 0.9756 0.4935 6.289 0.4766
RLDBPF (ours) 0.9997 0.4712 5.977 0.4627

RSDBPF5 (oracle) 1.127 0.5277 7.986 0.6174
RSPF6 (oracle) 0.4701 0.2686 2.5332 0.2041

5W. Li et al. ”Differentiable Bootstrap Particle Filters for Regime-Switching Models”, 2023
6Y. El-Laham et al. ”Particle Filtering Under General Regime Switching”, 2020
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Polya-Urn Results

Mean Best Worst SD

DBPF (baseline) 1.351 0.6444 4.811 0.5264
LSTM (baseline) 1.097 0.5385 3.807 0.3975
RLDBPF (ours) 0.8915 0.3405 4.113 0.4130

RSDBPF7 (oracle) 0.8804 0.4314 3.321 0.3335
RSPF8 (oracle) 0.6514 0.3105 2.3440 0.2106

7W. Li et al. ”Differentiable Bootstrap Particle Filters for Regime-Switching Models”, 2023
8Y. El-Laham et al. ”Particle Filtering Under General Regime Switching”, 2020

13 / 16



A More General Issue

9

▶ In classical PF literature there is much discussion given to
path degeneracy, but little in the current DPF literature

▶ If we simply auto-grad back through the algorithm then the
dependence of late-time results on early-time computation will
only be through a small number of particles

▶ This leads to highly variant gradient estimates

9C. Andrieu, A. Doucet, and V. Tadic, “On-line parameter estimation in general state-space models,” 2006
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Where next?

▶ More complex problems

▶ Real world data (google smartphone tracking)

▶ More constrained scenarios (e.g. allowing the regime to only
switch rarely)

▶ More granular testing

▶ Genealogical diversity in DPFs

▶ Smarter proposals (non-bootstrap)

15 / 16



Where next?

▶ More complex problems

▶ Real world data (google smartphone tracking)

▶ More constrained scenarios (e.g. allowing the regime to only
switch rarely)

▶ More granular testing

▶ Genealogical diversity in DPFs

▶ Smarter proposals (non-bootstrap)

15 / 16



Where next?

▶ More complex problems

▶ Real world data (google smartphone tracking)

▶ More constrained scenarios (e.g. allowing the regime to only
switch rarely)

▶ More granular testing

▶ Genealogical diversity in DPFs

▶ Smarter proposals (non-bootstrap)

15 / 16



Where next?

▶ More complex problems

▶ Real world data (google smartphone tracking)

▶ More constrained scenarios (e.g. allowing the regime to only
switch rarely)

▶ More granular testing

▶ Genealogical diversity in DPFs

▶ Smarter proposals (non-bootstrap)

15 / 16



Where next?

▶ More complex problems

▶ Real world data (google smartphone tracking)

▶ More constrained scenarios (e.g. allowing the regime to only
switch rarely)

▶ More granular testing

▶ Genealogical diversity in DPFs

▶ Smarter proposals (non-bootstrap)

15 / 16



Where next?

▶ More complex problems

▶ Real world data (google smartphone tracking)

▶ More constrained scenarios (e.g. allowing the regime to only
switch rarely)

▶ More granular testing

▶ Genealogical diversity in DPFs

▶ Smarter proposals (non-bootstrap)

15 / 16



References

R. Jonschkowski, D. Rastogi, and O. Brock, “Differentiable
particle filters: End-to-end learning with algorithmic priors,”
CoRR, vol. abs/1805.11122, 2018.

C. Andrieu, A. Doucet, and V. Tadic, “On-line parameter
estimation in general state-space models,” pp. 332 – 337, 01
2006.

N. Chopin and O. Papaspiliopoulos, “An introduction to
sequential monte carlo,” 01 2020.

Y. El-Laham, L. Yang, P. Djuric, and M. Bugallo, “Particle
filtering under general regime switching,” pp. 2378–2382, 01
2021.

W. Li, X. Chen, W. Wang, V. Elvira, and Y. Li, “Differentiable
bootstrap particle filters for regime-switching models,” arxiv,
2023.

16 / 16


