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Shared variables described by a graph

@ Nodes i: variables x; and function f;

e Edge (4,7): fi and f; share variables fi(xy, 22, x3) e f 1, T, T3, 2.4)
.. . 2 L1, L2, s L4
@ Optimization program °
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Shared variables described by a graph

@ Nodes i: variables x; and function f;

e Edge (4,7): fi and f; share variables fi(xy, 20, @3) 'e fz 21,9, 3, 4)
. . 1, ) ’
T3

e Optimization program
mi?in}ize > fil{mi i e N}

$1,$2,m3 $2,$4)

Key question: how does solution change as the graph evolves?
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Example: Localization and Pose Estimation

e Estimate poses: x; = (position, orientation) at time ¢
from relative measurements
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@ Naturally posed as a nonconvex least-squares problem on a dynamic graph
Semidefinite relaxation is a convex problem on a dynamic graph



Example: AC optimal power flow

@ Solve for power production that minimizes generation cost while obeying physical
constraints

@ Naturally posed as a nonconvex problem on a graph
Also has a semidefinite relaxation



Streaming optimization (chain graph)

One important special case:

T
minimize th(wt—l,wt)
=1

O R Y Y Y O
_/ _/ _/ _/
fe() fe ()
Ty Ti+1

Streaming solution: at time 7,

@ observe fr; initialize 7

@ update solutions &y, t < T



Streaming optimization (chain graph)

One important special case:

T
minimize th(wt—l,wt)
=1

I,y LT
O () () () () O
-/ —/ —/ -/
fe() Jea ()
L Ti41
Streaming solution: at time T, Key questions:
@ observe fr; initialize 7 © does &, converge as T' — oo?

© update solutions &7, t < T @ if so, how quickly?



Streaming optimization (chain graph)

Streaming least-squares:

T
minimizez |Asz: + Bizi—1 — y, |3
(2 A




Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

= Fixy 1 +d;
Y =P + e

Observe {y,}]_,, estimate {z;}1; ...



Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

= Fixy 1 +d;

Yy =P+ e
Observe {y,}]_,, estimate {z;}1; ...
T
minimizez | @y — y,||3 + M|l — Fy_1xs 1|3

S —



Streaming recon. from non-uniform samples

{"/}t,n (T)}

Sample batch ¢ at locations 7, ..., Ty
One batch overlaps frame bundles t — 1 and ¢

Single sample at 7,,

S(Tm) = Z Tt—1,n ¢t—1,n(7'm) + Z CCt,’nﬂbt,n(Tm)
n n
Collecting all samples into vector y,, we can write



Structured linear system

After collecting batches t =0, 1,...,T, we have the (possibly large) system

[Ag O - 0 o Yo
Bl A1 0 s 0 L1 Y1
0 B, A, 0 - 0| |z Y2
drz=|0 0 Bz A3 O 0 3| ~ | Y3
0 0 0 B4 A4 0 L4 Yy

i 0 . .-~ Brp AT_ E7d Y7




Tri-diagonal structure

At every time T, the least-squares system is block tri-diagonal,
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Factorization: Forward sweep

There is an easy LU factorization,

Q, 0 - 0] 1 U,
E() Q]. 0 O I
0 E, Q, :

: . . 0

(0 - 0 Er, Q|0

where the Q; and U, can be computed recursively
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Factorization: Forward sweep

There is an easy LU factorization,

Q, 0 -- 0] 1 U,
E() Ql 0 0 I
0 E; Q :

: . 0

0 - 0 Er, Q|0

where the Q, and U, can be computed recursively

fort=1,2,....,T—1
Ui = Qt_—11EzreF71
Q,=D,-E._.Q;  E],
v =Q; (g, — Er1vi1)
end
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Solution update: Backward sweep

With estimates after 1" frames in hand

T
{§30|Ta CAcllT, . ,.’i?TlT} = arg min Z ”Atwt + Btmt_l — yt||2

Tt t=1

we introduce a new loss function with (y7, 1, Ar41, Br41)

fr(@r, ®ri1) = ||Arpi@r — Broer — ?JT+1||2

The solutions &1 1741, L1741, - - -, LojT41 Can be computed with a backward sweep



Solution update: Backward sweep

With estimates after T frames in hand
T
~ ~ ~ . 2
{cc0|T, 7, ...,a:T|T} = arg min 2 |Aix: + Bixi—1 — y,|
Tty =1

we introduce a new loss function with (y7, 1, Ar41, Br41)

2
froi(@r, ®ri1) = ||AT+1-’L'T+1 — Brpxr — yT+1||
The solutions & 1741, L1741, - - > LojT41 Can be computed with a backward sweep
_ N1 T T
vry1 = Qi (A1 Y11 + BrYre — Ervr)
LT41T+1 = VT+1

fort=T,T—-1,...,0

Tyry1 = v — U741
end



Block diagonal dominance

Dy, EY o0 0
Ey, D, Ef o 0
0 E, D, E}@ o0 0
$Td,=|0 O E;, D3 Ej 0
0 Er o Dr .y Ep
0 0 E;r_, Dr

The estimates will stabilize very quickly when
K(1 = 06) < Anin(D4t) < Amax(Dt) < k(1496), ||E¢|| < ko, forall ¢

are akin to a kind of block diagonal dominance



Convergence

T
~ ~ ~ . 2
{930|T, Ty, ~--7$T|T} = arg min § |Asxs + Bii—1 — y,||
Ty =1
Theorem: For block diagonally dominant Dy, E;, we have
o limy o &y =: T, exists for all £, and
@ convergence is fast

€
1—c¢

T—t
&y — 2(ll2 < C’( ) ., where € ~ 4.



Example: reconstruction from level crossings

Moral: You can just update 3 frames in the past and still be very accurate ...

|j=4 j=5 j=6 j=7 j=8 j=9 j=10
| k=4 031 — — - - - =
n k=5|-339 032 — @— @— -  —
k=6 | -512 324 -032 —  —  — —
y Y V k=7 | -728 508 -346 -027 — @ —  —
k=8| -927 708 -560 -344 -034 — = —
k=9 |-1084 -865 -7.17 -519 -248 -0.22 —
k=10 |-13.27 -11.08 -9.60 -7.62 -4.90 -3.44 -0.36



Random samples

_ AT T
VAV (RTITIR U T D, = At Ay + Bt+1Bt+1’
A, — B, =Bl A,

B

N = number of basis functions per frame bundle
M = number of samples per batch
For samples selected uniformly at random, we have with probability 1 — €

16 < Amin(D2) < Aain(Dy) < 146, | By <6, for fixed t
with
N
0 < O[5 log(N/e)

so we can take
M Z Nlog(N/e).



Streaming optimization: convex case

We want to solve

T
minimize th(wt—l,wt)
IQ,..., LT i—

where f; are smooth and strongly convex



Streaming optimization: convex case

We want to solve

T
minimize th(mt—l,mt)
ZOs-+ LT =1

where f; are smooth and strongly convex
Streaming solution: at time T, Key questions:

© observe fr; initialize Z|r © does @&, converge as T' — 00?

© update solutions & @ if so, how quickly?



Streaming optimization: convex case

We want to solve

T
minimize th(wt—l,wt) = Jr(z)

ZQy--, LT =1

where f; are smooth and strongly convex

Key piece of structure: gradient in frame ¢ involves only f; and fi41

Vir(z) =

Vo fi(zo, x1)
Vifi(xo, 1) + Vifa(x1, x2)

Vroifr—i(xr—2, 1) + Vo1 fr(xr_1,z7)
Vorfr(zr—i,zr)




Streaming optimization: convex case

We want to solve

ZQy-- LT

T
minimize th(a:t_l,act) = Jr(x)
t=1
where f; are smooth and strongly convex

Key piece of structure: Hessian is block tri-diagonal

‘Hy Ef o ..

Ey, H Ef o ..
0 E, Hy, E}] 0
Vir(z)=|0 O E; Hy Ej

o © oo

Er o Hy, E}_,
o - 0 Er_y Hry |

o "




Convergence: convex case

Let

T
{@ojr, - e} = arg min Y fi(x1, @) = Jr(z)

172 S—

Theorem: If there are {wr} such that
IV fr(&p_1j7—1,wr)| < Const  for all T,

then

o limy o &y =: T, exists for all £, and



Convergence: convex case

Let

T
{@ojr, - e} = arg min Y fi(x1, @) = Jr(z)

172 S—

Theorem: If there are {wr} such that
IV fr(&p_1j7—1,wr)| < Const  for all T,

then
o limy o &y =: T, exists for all £, and

@ convergence is fast

.
lour ~aill < € (57

(L = smoothness parameter, 11 = strong convexity parameter)



Convergence: convex case

Proof sketch: Start from

T

{®or,- - pyry = arg min > fu(@i 1, @) = Jr()
{1} t=1
Add fr.y, initialize
0) :%t|T7 t < T:
wy = .
(something), t=T+1

Use gradient descent to move to the new solution, trace the steps



Tracking the steps of gradient descent

Gradient descent:
w ) = w®) — oV (w?)

(we know this converges linearly)



Tracking the steps of gradient descent

Gradient descent:
wk+tD — w(k) _ Oév‘],prl(w(k))

(we know this converges linearly)

Notice that -

Vs (w®) =




Tracking the steps of gradient descent

Gradient descent:
w(lﬂ-l) — w(k) _ aVJT+1(w(k))

(we know this converges linearly)

Notice that

Vs (w®) = wV =w® —aVir (W) = Vi (w®)




Tracking the steps of gradient descent

Gradient descent:
w(kﬂ) _ Q(k) _ aVJT+1(w(k))

(we know this converges linearly)

Notice that

Viri(w®) = . Vg (wh) = . Vi (w®) =

frame ¢ is not touched until iteration k=T — ¢ ...




Convergence: convex case

Let

T
{®or, -, &} = arg min > fi(a@i1, @) = Jr(z)

{w:} t=1

Theorem: If there are wp such that
IV fr(&p_1j7—1,wr)| < Const  for all T,

then
o limp o &y =: &; exists for all ¢, and

@ convergence is fast

o ~ail < ¢ (355



Convergence: convex case

Let

T
{®or, -, &} = arg min > fi(a@i1, @) = Jr(z)

{w:} t=1

Theorem: If there are w7 such that
IV fr(Zr_1j7-1,wr)|| < Const for all T, 77

then
o limp o &y =: &; exists for all ¢, and

@ convergence is fast

2L—M)T_t

o ~ail < ¢ (355



Convergence: convex case

Theorem: If the local minimizers
(5’t—1|t753t|t) = arg min fi(x1—1, T¢)
are bounded and the Hessian is diagonally dominant, then there are {wr} such that

IV fr(&p_1j7—1,wr)| < Const  for all T.



Example: Non-homogenous Poisson process

Given “spike” observations at 71, ..., T)s, estimate the background intensity A(t)

e

AGiobal 1

* Arrival Times|

Maximum likelihood, discretized, divided into frames

ml?;ﬁlze Xt:f(wt—bwt),

f(xi1, @) = (x4, @) — (211, by) + Zlog(@ta cm,zt)) +log({xi—1,dmy))

m



Example: Non-homogenous Poisson process




Online Newton algorithm

T 0 E, H,; EJ 0
- - _ : 3} 0 E H ET
{Zo|T,..., &7} = arg min E Je(®r—1, ) V2 Ir(z) = 2 3 3
Tt t=1 :
o Ep_o
3} 3}

General approach: solve with Newton method
o sy = — (V2Jr(zy)) " Vir(zr)

@ Ty = T + Sk

The Hessian V2Jr(x ) is again tri-diagonal ...
. so each Newton step looks like a forward-backward least-squares solve



Finite buffering

Theorem: If we only update B frames in the past, we have

2L — pu\ B
2L+

e — &) < c(

where &} are the buffered solutions coming from

t+B

minimize E fi(@r, xrq1)
{wt»-~-7wt+B+1} —t



Dynamic graph topologies

W—»W—»W

@ Nodes i: variables x; and function f; 331

o Edge (4,7): fi and f; share variables fi :1:1,&:2,:1:3) e fz (@1, 19, @5, 4)

e Optimization program e
:733 5134

f3 331,932,w3 CB2,e’B4)

mi?aigrgizeri ({zj: 7 e N(i)})



Dynamic graph topologies

W—W-Wﬂ

m|n|m|ze2:f2 ({x;: 7 e N() Zfl x;)

Key question: when we add the red node, do we have to update all other nodes?



Example: Pose graph optimization

e Estimate poses: x; = (position, orientation) at time ¢
from relative measurements

Ze (Age, Rra) Z5
9:,,‘“"“-“- "’ ------ Q) x4
w

o y 3
_A"‘ &/ K%
o o i

v Ay ) e
*. lézz:..‘_’.!.ﬂ.v--w---.._,s,
. 2 I3
T

Carlone et al, '16

@ Naturally posed as a nonconvex least-squares problem on a dynamic graph
Semidefinite relaxation is a convex problem on a dynamic graph



Dynamic graph topologies
m|n|m|zerZ ({x;: 7€ N() Zf’ ()

Key question: when we add a node, do we have to update all other nodes?

0300

(data from Carlone et al '16)



Dynamic graph topologies
mi?gicrgizez:fi {x;:jeN(@)}) = Zfz(cc[z])

Key question: when we add a node, do we have to update all other nodes?




Collapsing the graph

Key idea: collapse the graph between two nodes

?é%ﬁ OOOO0

O—@—©

Theorem: Difference between solutions at node ¢ before and after node NV + 1 is added
C[(L-u d(i,N+1)
PN — A < - ("
IZ@iv — vl < . (L+M>
where d(i, N + 1) = distance between nodes i and N + 1,
L, i are Lipschitz and strong convexity constants ...



Collapsing the graph

Theorem: Difference between solutions at node 7 before and after node N + 1 is added

C (L o M>d(i,N+l)

P - < =
||5'3[z]|N $[z]|N—1||2 = U \T+a

where d(i, N + 1) = distance between nodes i and N + 1,
L, i are Lipschitz and strong convexity constants ...

The f; have Lipschitz gradient parameter L;, strong convexity parameter ;.
We can take

p = min fi;,
(3

L =K -maxL;, K = chromatic number of graph
(2



Example: multi-task learning

Solutions of multiple optimization programs are encouraged to be close:

ml?lmlze Zfz ;) + A Z wji, d(x;, T))

(J,k)e€
L
Examples: e ¥
o d(xj,xy) = ||z; — @yll3 (diffusion) b Q= g
o d(xzj,xy) = ||xj — xkll2 (network lasso) N S e
°: : ) ze



Example: multi-task learning

House prices example  (Hallac et al. '15)

House prediction clusters: A = 10 B

Y
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Example: multi-task learning

House prices example  (Hallac et al. '15)

F00AG a1t
T | of

What happens to the solution when the cluster on bottom is added?



Example: multi-task learning

House prices example  (Hallac et al. '15)

L0t Lolll} sE0Qa0
T T T T T T 2

L L L L L L
- E o 2 4 5

relative change: , orange — 0.001, blue = 107*



Extension: Constraints

We can accommodate local constraints

mi?irgize > fi{zjjEN()})  subjectto {z;:jeN()} €

This actually gives us a way to decompose huge SDPs...

T

with small PSD constraints (but have to solve a phase-sync problem)



Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...

0.100

0.080

0.060

0.040

Magnitude in Position Change

0.020

0.000




Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...
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Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...
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Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...
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Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...
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Closing thoughts

We looked at a very particular type of structured multi-objective optimization problem

21,05, @ @)
fi(@1, 22, x3) ' f2 (z1, T2, T3, T4)
T3

3(0317932,503 332,-’114)

Question:
Is there some type of statistical leverage we can achieve?



Thank you!
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