

Collaborators

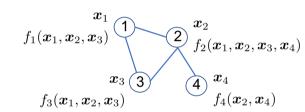
Tomer Hamam Imagry, Haifa, Israel

Joe Driscoll Georgia Tech, ECE

Shared variables described by a graph

- Nodes i: variables x_i and function f_i
- Edge (i, j): f_i and f_j share variables
- Optimization program

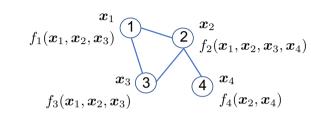
$$\underset{\left\{\boldsymbol{x}_{i}\right\}}{\mathsf{minimize}} \ \sum_{i} f_{i}\left(\left\{\boldsymbol{x}_{j}: j \in \mathcal{N}(i)\right\}\right)$$



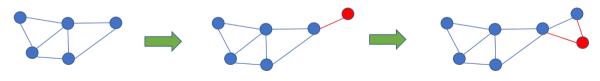
Shared variables described by a graph

- Nodes i: variables x_i and function f_i
- Edge (i, j): f_i and f_j share variables
- Optimization program

$$egin{aligned} \mathsf{minimize} & \sum_i f_i\left(\{oldsymbol{x}_j: j \in \mathcal{N}(i)\}
ight) \end{aligned}$$

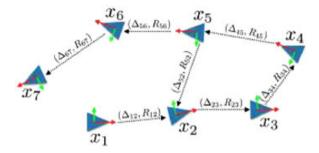


Key question: how does solution change as the graph evolves?



Example: Localization and Pose Estimation

ullet Estimate poses: $oldsymbol{x}_i = (\mathsf{position}, \mathsf{orientation})$ at time i from relative measurements

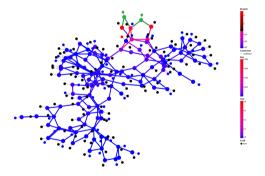


(Carlone et al, '16)

• Naturally posed as a nonconvex least-squares problem on a dynamic graph Semidefinite relaxation is a convex problem on a dynamic graph

Example: AC optimal power flow

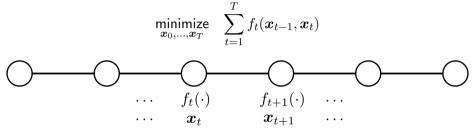
 Solve for power production that minimizes generation cost while obeying physical constraints



 Naturally posed as a nonconvex problem on a graph Also has a semidefinite relaxation

Streaming optimization (chain graph)

One important special case:

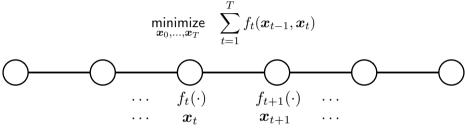


Streaming solution: at time T,

- lacksquare observe f_T ; initialize $\hat{m{x}}_{T|T}$
- 2 update solutions $\hat{x}_{t|T}$, $t \leq T$

Streaming optimization (chain graph)

One important special case:



Streaming solution: at time T,

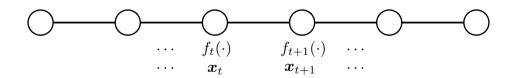
- lacksquare observe f_T ; initialize $\hat{m{x}}_{T|T}$
- ② update solutions $\hat{x}_{t|T}$, $t \leq T$

Key questions:

- does $\hat{\boldsymbol{x}}_{t|T}$ converge as $T \to \infty$?
- if so, how quickly?

Streaming optimization (chain graph)

Streaming least-squares:



Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

$$egin{aligned} oldsymbol{x}_t &= oldsymbol{F}_t oldsymbol{x}_{t-1} + oldsymbol{d}_t \ oldsymbol{y}_t &= oldsymbol{\Phi}_t oldsymbol{x}_t + oldsymbol{e}_t \end{aligned}$$

Observe $\{oldsymbol{y}_t\}_{t=1}^T$, estimate $\{oldsymbol{x}_t\}_{t=1}^T$...

Classical: The Kalman filter

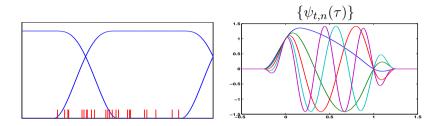
Linear dynamical system for state evolution and measurement:

$$egin{aligned} oldsymbol{x}_t &= oldsymbol{F}_t oldsymbol{x}_{t-1} + oldsymbol{d}_t \ oldsymbol{y}_t &= oldsymbol{\Phi}_t oldsymbol{x}_t + oldsymbol{e}_t \end{aligned}$$

Observe $\{oldsymbol{y}_t\}_{t=1}^T$, estimate $\{oldsymbol{x}_t\}_{t=1}^T$...

$$egin{aligned} \mathsf{minimize} \sum_{\{m{x}_t\}}^T \ \|m{\Phi}_tm{x}_t - m{y}_t\|_2^2 + \lambda_t \|m{x}_t - m{F}_{t-1}m{x}_{t-1}\|_2^2 \end{aligned}$$

Streaming recon. from non-uniform samples



Sample batch t at locations τ_1, \ldots, τ_M One batch overlaps frame bundles t-1 and t

Single sample at au_m

$$s(\tau_m) = \sum_{n} x_{t-1,n} \, \psi_{t-1,n}(\tau_m) + \sum_{n} x_{t,n} \psi_{t,n}(\tau_m)$$

Collecting all samples into vector y_t , we can write

$$oldsymbol{y}_t = egin{bmatrix} oldsymbol{B}_t & oldsymbol{A}_t \end{bmatrix} egin{bmatrix} oldsymbol{x}_{t-1} \ oldsymbol{x}_t \end{bmatrix}$$

Structured linear system

After collecting batches $t = 0, 1, \dots, T$, we have the (possibly large) system

$$oldsymbol{\Phi}_T oldsymbol{x} = egin{bmatrix} oldsymbol{A}_0 & oldsymbol{0} & \cdots & & & & oldsymbol{0} \ oldsymbol{B}_1 & oldsymbol{A}_1 & oldsymbol{0} & \cdots & & & oldsymbol{0} \ oldsymbol{0} & oldsymbol{B}_2 & oldsymbol{A}_2 & oldsymbol{0} & \cdots & & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{B}_3 & oldsymbol{A}_3 & oldsymbol{0} & \cdots & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} & oldsymbol{B}_3 & oldsymbol{A}_3 & oldsymbol{0} & oldsymbol{0} & \cdots & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} \ oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{$$

Tri-diagonal structure

At every time T, the least-squares system is block tri-diagonal,

$$m{\Phi}_{T}^{ ext{T}}m{\Phi}_{T}m{ar{x}} = egin{bmatrix} m{D}_{0} & m{E}_{0}^{ ext{T}} & m{0} & \cdots & & & m{0} \ m{E}_{0} & m{D}_{1} & m{E}_{1}^{ ext{T}} & m{0} & \cdots & & m{0} \ m{0} & m{E}_{1} & m{D}_{2} & m{E}_{2}^{ ext{T}} & m{0} & \cdots & m{0} \ m{0} & m{0} & m{E}_{2} & m{D}_{3} & m{E}_{3}^{ ext{T}} & \cdots & m{0} \ m{\vdots} & & & \ddots & \ddots & \ddots & m{\vdots} \ m{0} & \cdots & & m{E}_{T-2} & m{D}_{T-1} & m{E}_{T-1}^{ ext{T}} \ m{0} & \cdots & m{0} & m{E}_{T-1} & m{D}_{T} \end{bmatrix} egin{bmatrix} m{x}_{0} \\ m{x}_{1} \\ m{x}_{2} \\ m{\vdots} \\ m{x}_{T-1} \\ m{x}_{T} \end{bmatrix} = egin{bmatrix} m{g}_{0} \\ m{g}_{1} \\ m{g}_{2} \\ m{\vdots} \\ m{g}_{T-1} \\ m{g}_{T} \end{bmatrix}$$

Factorization: Forward sweep

There is an easy LU factorization,

$$egin{bmatrix} egin{bmatrix} oldsymbol{Q}_0 & oldsymbol{0} & \cdots & & oldsymbol{0} \ oldsymbol{E}_0 & oldsymbol{Q}_1 & oldsymbol{0} & & & & \ oldsymbol{0} & oldsymbol{E}_1 & oldsymbol{Q}_2 & \ddots & & \ dots & \ddots & \ddots & \ddots & \ oldsymbol{0} & \ddots & \ddots & \ddots & \ oldsymbol{0} & \ddots & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & oldsymbol{0} & oldsymbol{1} \ oldsymbol{z}_1 \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} \ oldsymbol{0} \ oldsymbol{0} & & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} \ oldsymbol$$

where the $oldsymbol{Q}_t$ and $oldsymbol{U}_t$ can be computed $\emph{recursively}$

Factorization: Forward sweep

There is an easy LU factorization,

$$egin{bmatrix} egin{bmatrix} oldsymbol{Q}_0 & oldsymbol{0} & \cdots & & oldsymbol{0} \ oldsymbol{E}_0 & oldsymbol{Q}_1 & oldsymbol{0} & & & & \ oldsymbol{0} & oldsymbol{E}_1 & oldsymbol{Q}_2 & \ddots & & \ dots & \ddots & \ddots & \ddots & \ oldsymbol{0} & \cdots & oldsymbol{0} & oldsymbol{E}_{T-1} & oldsymbol{Q}_T \end{bmatrix} egin{bmatrix} oldsymbol{I} & oldsymbol{U}_0 & oldsymbol{0} & & & \ oldsymbol{0} & oldsymbol{I} & oldsymbol{U}_1 & oldsymbol{0} & & \ oldsymbol{0} & oldsymbol{I} & oldsymbol{U}_{T-1} \ oldsymbol{0} & & & oldsymbol{0} & oldsymbol{I} \end{bmatrix} egin{bmatrix} oldsymbol{x}_0 & oldsymbol{0} & oldsymbol{x}_1 \ oldsymbol{x}_2 \ oldsymbol{0} & & & \ddots & oldsymbol{U}_{T-1} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \end{bmatrix} egin{bmatrix} oldsymbol{x}_0 & oldsymbol{0} & oldsymbol{0} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} &$$

where the $oldsymbol{Q}_t$ and $oldsymbol{U}_t$ can be computed $\emph{recursively}$

$$\begin{aligned} \text{for } t &= 1, 2, \dots, T-1 \\ \boldsymbol{U}_{t-1} &= \boldsymbol{Q}_{t-1}^{-1} \boldsymbol{E}_{t-1}^{\mathrm{T}} \\ \boldsymbol{Q}_{t} &= \boldsymbol{D}_{t} - \boldsymbol{E}_{t-1} \boldsymbol{Q}_{t-1}^{-1} \boldsymbol{E}_{t-1}^{\mathrm{T}} \\ \boldsymbol{v}_{t} &= \boldsymbol{Q}_{t}^{-1} (\boldsymbol{g}_{t} - \boldsymbol{E}_{t-1} \boldsymbol{v}_{t-1}) \end{aligned}$$
 end

Solution update: Backward sweep

With estimates after T frames in hand

$$ig\{\hat{m{x}}_{0|T}, \; \hat{m{x}}_{1|T}, \; \dots, \hat{m{x}}_{T|T}ig\} = rgmin_{\{m{x}_t\}} \sum_{t=1}^{T} \|m{A}_tm{x}_t + m{B}_tm{x}_{t-1} - m{y}_t\|^2$$

we introduce a new loss function with $(\boldsymbol{y}_{T+1}, \boldsymbol{A}_{T+1}, \boldsymbol{B}_{T+1})$

$$ig|f_{T+1}(m{x}_T,m{x}_{T+1}) = ig\|m{A}_{T+1}m{x}_{T+1} - m{B}_{T+1}m{x}_T - m{y}_{T+1}ig\|^2$$

The solutions $\hat{x}_{T+1|T+1}, \hat{x}_{T|T+1}, \dots, \hat{x}_{0|T+1}$ can be computed with a *backward sweep*

Solution update: Backward sweep

With estimates after T frames in hand

$$ig\{\hat{m{x}}_{0|T}, \; \hat{m{x}}_{1|T}, \; \dots, \hat{m{x}}_{T|T}ig\} = rgmin_{\{m{x}_t\}} \sum_{t=1}^{T} \|m{A}_tm{x}_t + m{B}_tm{x}_{t-1} - m{y}_t\|^2$$

we introduce a new loss function with $(\boldsymbol{y}_{T+1}, \boldsymbol{A}_{T+1}, \boldsymbol{B}_{T+1})$

$$ig|f_{T+1}(m{x}_T,m{x}_{T+1}) = ig\|m{A}_{T+1}m{x}_{T+1} - m{B}_{T+1}m{x}_T - m{y}_{T+1}ig\|^2$$

The solutions $\hat{x}_{T+1|T+1}, \hat{x}_{T|T+1}, \dots, \hat{x}_{0|T+1}$ can be computed with a *backward sweep*

$$egin{aligned} m{v}_{T+1} &= m{Q}_{T+1}^{-1}(m{A}_{T+1}^{\mathrm{T}}m{y}_{T+1} + m{B}_{T+1}^{\mathrm{T}}m{y}_{T+1} - m{E}_Tm{v}_T) \ \hat{m{x}}_{T+1|T+1} &= m{v}_{T+1} \end{aligned}$$
 for $t = T, T-1, \ldots, 0$

 $\hat{x}_{t|T+1} = v_t - U_t \hat{x}_{t+1|T+1}$ end

Block diagonal dominance

$$m{\Phi}_{T}^{ ext{T}}m{\Phi}_{T} = egin{bmatrix} m{D}_{0} & m{E}_{0}^{ ext{T}} & m{0} & \cdots & & & & m{0} \ m{E}_{0} & m{D}_{1} & m{E}_{1}^{ ext{T}} & m{0} & \cdots & & & m{0} \ m{0} & m{E}_{1} & m{D}_{2} & m{E}_{2}^{ ext{T}} & m{0} & \cdots & & m{0} \ m{0} & m{0} & m{E}_{2} & m{D}_{3} & m{E}_{3}^{ ext{T}} & \cdots & m{0} \ m{\vdots} & \ddots & \ddots & \ddots & \ddots & \ddots & m{\vdots} \ m{0} & \cdots & & & m{E}_{T-2} & m{D}_{T-1} & m{E}_{T-1}^{ ext{T}} \ m{0} & \cdots & & m{0} & m{E}_{T-1} & m{D}_{T} \ \end{bmatrix}$$

The estimates will stabilize very quickly when

$$\kappa(1-\delta) \le \lambda_{\min}(\boldsymbol{D}_t) \le \lambda_{\max}(\boldsymbol{D}_t) \le \kappa(1+\delta), \quad \|\boldsymbol{E}_t\| \le \kappa\delta, \quad \text{for all } t$$

are akin to a kind of block diagonal dominance

Convergence

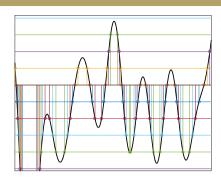
$$ig\{\hat{m{x}}_{0|T}, \; \hat{m{x}}_{1|T}, \; \dots, \hat{m{x}}_{T|T}ig\} = rgmin_{\{m{x}_t\}} \sum_{t=1}^T \|m{A}_tm{x}_t + m{B}_tm{x}_{t-1} - m{y}_t\|^2$$

Theorem: For block diagonally dominant D_t, E_t , we have

- ullet $\lim_{T o\infty}\hat{x}_{t\mid T}=:\hat{x}_t^*$ exists for all t, and
- convergence is fast

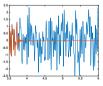
$$\|\hat{\pmb{x}}_{t|T} - \hat{\pmb{x}}_t^*\|_2 \le C \left(rac{\epsilon}{1-\epsilon}
ight)^{T-t}, \quad ext{where } \epsilon pprox \delta.$$

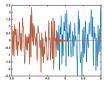
Example: reconstruction from level crossings

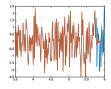


$$\log_{10}\left(\frac{\|\hat{x}_{j|k} - \hat{x}_{j}^{*}\|_{2}}{\|\hat{x}_{j}^{*}\|_{2}}\right)$$

	j = 4			j = 7	j = 8	j = 9	j = 10
k = 4	-0.31	_	_	_	_	_	_
k = 5	-0.31 -3.39	-0.32	_	_	_	_	_
k = 6 $k = 7$ $k = 8$	-5.12	-3.24	-0.32	_	_	_	_
k = 7	-7.28	-5.08	-3.46	-0.27	_	_	_
k = 8	-9.27	-7.08	-5.60	-3.44	-0.34		_
k = 9	-10.84	-8.65	-7.17	-5.19	-2.48	-0.22	_
k = 10	-10.84 -13.27	-11.08	-9.60	-7.62	-4.90	-3.44	-0.36

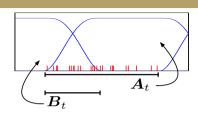






Moral: You can just update 3 frames in the past and still be very accurate ...

Random samples



$$egin{aligned} oldsymbol{D}_t &= oldsymbol{A}_t^{ ext{T}} oldsymbol{A}_t + oldsymbol{B}_{t+1}^{ ext{T}} oldsymbol{B}_{t+1}, \ oldsymbol{E}_{t-1} &= oldsymbol{B}_t^{ ext{T}} oldsymbol{A}_t \end{aligned}$$

N = number of basis functions per frame bundle

M = number of samples per batch

For samples selected uniformly at random, we have with probability $1-\epsilon$

$$1 - \delta \le \lambda_{\min}(\mathbf{D}_t) \le \lambda_{\min}(\mathbf{D}_t) \le 1 + \delta, \quad \|\mathbf{E}_t\| \le \delta, \quad \text{for fixed } t$$

with

$$\delta \leq C \sqrt{\frac{N}{M} \log(N/\epsilon)}$$

so we can take

$$M \gtrsim N \log(N/\epsilon)$$
.

We want to solve

where f_t are smooth and strongly convex

We want to solve

$$egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} f_t(oldsymbol{x}_{t-1},oldsymbol{x}_t) \end{array} \end{array}$$

where f_t are smooth and strongly convex

Streaming solution: at time T,

- observe f_T ; initialize $\hat{x}_{T|T}$
- **2** update solutions $\hat{m{x}}_{t|T}$

Key questions:

- **1** does $\hat{\boldsymbol{x}}_{t|T}$ converge as $T \to \infty$?
- if so, how quickly?

We want to solve

where f_t are smooth and strongly convex

Key piece of structure: gradient in frame t involves only f_t and f_{t+1}

$$abla J_T(oldsymbol{x}) = egin{bmatrix}
abla_0 f_1(oldsymbol{x}_0, oldsymbol{x}_1) \\
abla_1 f_1(oldsymbol{x}_0, oldsymbol{x}_1) +
abla_1 f_2(oldsymbol{x}_1, oldsymbol{x}_2) \\
& dots \\

abla_{T-1} f_{T-1}(oldsymbol{x}_{T-2}, oldsymbol{x}_{T-1}) +
abla_{T-1} f_T(oldsymbol{x}_{T-1}, oldsymbol{x}_T) \\
abla_T f_T(oldsymbol{x}_{T-1}, oldsymbol{x}_{T-1}) +
abla_T f_T(oldsymbol{x}_{T-1}, oldsymbol{x}_T) \\
abla_T f_T(oldsymbol{x}_{T-1}, oldsymbol{x}_{T-1}, oldsymbol{x}_T) \\
abla_T f_T(oldsymbol{x}_{T-1}, oldsymbol{x}_T) \\
abla_T f_T(oldsymbol{x}_T) \\$$

We want to solve

where f_t are smooth and strongly convex

Key piece of structure: Hessian is block tri-diagonal

$$abla^2 J_T(\underline{x}) = egin{bmatrix} m{H}_0 & m{E}_0^{
m T} & m{0} & \cdots & & & & m{0} \ m{E}_0 & m{H}_1 & m{E}_1^{
m T} & m{0} & \cdots & & & m{0} \ m{0} & m{E}_1 & m{H}_2 & m{E}_2^{
m T} & m{0} & \cdots & & m{0} \ m{0} & m{0} & m{E}_2 & m{H}_3 & m{E}_3^{
m T} & \cdots & m{0} \ dots & \ddots & \ddots & \ddots & dots \ m{0} & \cdots & & & m{E}_{T-2} & m{H}_{T-1} & m{E}_{T-1}^{
m T} \ m{0} & \cdots & & m{0} & m{E}_{T-1} & m{H}_T \ \end{bmatrix},$$

Let

$$\{\hat{m{x}}_{0|T},\ldots,\hat{m{x}}_{T|T}\} = \mathop{\mathsf{arg \; min}}_{\{m{x}_t\}} \ \sum_{t=1}^T f_t(m{x}_{t-1},m{x}_t) = J_T(\underline{m{x}})$$

Theorem: If there are $\{ {m w}_T \}$ such that

$$\|\nabla f_T(\hat{\boldsymbol{x}}_{T-1|T-1}, \boldsymbol{w}_T)\| \le \text{Const}$$
 for all T ,

then

ullet $\lim_{T o\infty}\hat{oldsymbol{x}}_{t|T}=:\hat{oldsymbol{x}}_t^*$ exists for all t, and

Let

$$\{\hat{m{x}}_{0|T},\ldots,\hat{m{x}}_{T|T}\}=\mathop{\mathsf{arg\ min}}_{\{m{x}_t\}}\ \sum_{t=1}^T f_t(m{x}_{t-1},m{x}_t)=J_T(m{\underline{x}})$$

Theorem: If there are $\{w_T\}$ such that

$$\|\nabla f_T(\hat{\boldsymbol{x}}_{T-1|T-1}, \boldsymbol{w}_T)\| \le \text{Const}$$
 for all T ,

then

- ullet $\lim_{T o\infty}\hat{m{x}}_{t|T}=:\hat{m{x}}_t^*$ exists for all t, and
- convergence is fast

$$\|\hat{\boldsymbol{x}}_{t|T} - \boldsymbol{x}_t^*\| \le C \left(\frac{2L - \mu}{2L + \mu}\right)^{T - t}$$

(L= smoothness parameter, $\mu=$ strong convexity parameter)

Proof sketch: Start from

$$\{\hat{m{x}}_{0|T},\ldots,\hat{m{x}}_{T|T}\} = \mathop{\mathsf{arg\ min}}_{\{m{x}_t\}} \quad \sum_{t=1}^T f_t(m{x}_{t-1},m{x}_t) = J_T(m{\underline{x}})$$

Add f_{T+1} , initialize

$$m{w}_t^{(0)} = egin{cases} \hat{m{x}}_{t|T}, & t \leq T, \ ext{(something)}, & t = T+1 \end{cases}$$

Use gradient descent to move to the new solution, trace the steps

Gradient descent:

$$\underline{\boldsymbol{w}}^{(k+1)} = \underline{\boldsymbol{w}}^{(k)} - \alpha \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(k)})$$

(we know this converges linearly)

Gradient descent:

$$\underline{\boldsymbol{w}}^{(k+1)} = \underline{\boldsymbol{w}}^{(k)} - \alpha \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(k)})$$

(we know this converges linearly)

Notice that

$$\nabla J_{T+1}(\underline{\boldsymbol{w}}^{(0)}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ * \\ * \end{bmatrix}$$

Gradient descent:

$$\underline{\boldsymbol{w}}^{(k+1)} = \underline{\boldsymbol{w}}^{(k)} - \alpha \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(k)})$$

(we know this converges linearly)

Notice that

$$\nabla J_{T+1}(\underline{\boldsymbol{w}}^{(0)}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ * \\ * \end{bmatrix}, \quad \underline{\boldsymbol{w}}^{(1)} = \underline{\boldsymbol{w}}^{(0)} - \alpha \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(0)}) \quad \Rightarrow \quad \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(1)}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ * \\ * \\ * \end{bmatrix}$$

Gradient descent:

$$\underline{\boldsymbol{w}}^{(k+1)} = \underline{\boldsymbol{w}}^{(k)} - \alpha \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(k)})$$

(we know this converges linearly)

Notice that

$$\nabla J_{T+1}(\underline{\boldsymbol{w}}^{(0)}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ * \\ * \end{bmatrix}, \quad \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(1)}) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ * \\ * \end{bmatrix}, \quad \nabla J_{T+1}(\underline{\boldsymbol{w}}^{(2)}) = \begin{bmatrix} 0 \\ \vdots \\ * \\ * \\ * \end{bmatrix}, \quad \cdots$$

frame t is not touched until iteration k = T - t ...

Let

$$\{\hat{m{x}}_{0|T},\ldots,\hat{m{x}}_{T|T}\} = \mathop{\mathsf{arg\ min}}_{\{m{x}_t\}} \quad \sum_{t=1}^I f_t(m{x}_{t-1},m{x}_t) = J_T(\underline{m{x}})$$

Theorem: If there are w_T such that

$$\|\nabla f_T(\hat{\boldsymbol{x}}_{T-1|T-1}, \boldsymbol{w}_T)\| \le \text{Const}$$
 for all T ,

then

- $\bullet \lim_{T o \infty} \hat{x}_{t|T} =: \hat{x}_t^*$ exists for all t, and
- convergence is fast

$$\|\hat{\boldsymbol{x}}_{t|T} - \boldsymbol{x}_t^*\| \le C \left(\frac{2L - \mu}{2L + \mu}\right)^{T - t}$$

Let

$$\{\hat{m{x}}_{0|T},\ldots,\hat{m{x}}_{T|T}\} = \mathop{\mathsf{arg\ min}}_{\{m{x}_t\}} \quad \sum_{t=1}^I f_t(m{x}_{t-1},m{x}_t) = J_T(\underline{m{x}})$$

Theorem: If there are w_T such that

$$\|\nabla f_T(\hat{\boldsymbol{x}}_{T-1|T-1}, \boldsymbol{w}_T)\| \le \text{Const}$$
 for all T , ??

then

- ullet $\lim_{T o\infty}\hat{x}_{t|T}=:\hat{x}_t^*$ exists for all t, and
- convergence is fast

$$\|\hat{\boldsymbol{x}}_{t|T} - \boldsymbol{x}_t^*\| \le C \left(\frac{2L - \mu}{2L + \mu}\right)^{T - t}$$

Theorem: If the local minimizers

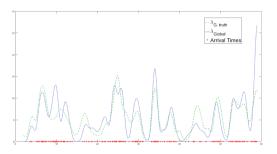
$$(\tilde{oldsymbol{x}}_{t-1|t}, ilde{oldsymbol{x}}_{t|t}) = \operatorname{\mathsf{arg}} \, \min f_t(oldsymbol{x}_{t-1}, oldsymbol{x}_t)$$

are bounded and the Hessian is diagonally dominant, then there are $\{m{w}_T\}$ such that

$$\|\nabla f_T(\hat{\boldsymbol{x}}_{T-1|T-1}, \boldsymbol{w}_T)\| \leq \text{Const}$$
 for all T .

Example: Non-homogenous Poisson process

Given "spike" observations at τ_1, \ldots, τ_M , estimate the background intensity $\lambda(t)$

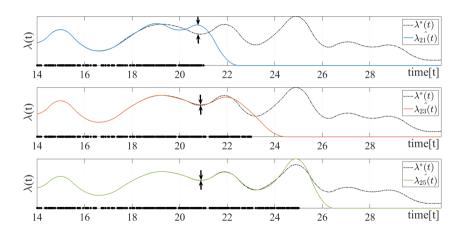


Maximum likelihood, discretized, divided into frames

$$\label{eq:minimize} \underset{\{\boldsymbol{x}_t\}}{\mathsf{minimize}} \ \sum_t f(\boldsymbol{x}_{t-1}, \boldsymbol{x}_t),$$

$$f(\boldsymbol{x}_{t-1}, \boldsymbol{x}_t) = \langle \boldsymbol{x}_t, \boldsymbol{a}_t \rangle - \langle \boldsymbol{x}_{t-1}, \boldsymbol{b}_t \rangle + \sum \log(\langle \boldsymbol{x}_t, \boldsymbol{c}_{m,t} \rangle) + \log(\langle \boldsymbol{x}_{t-1}, \boldsymbol{d}_{m,t} \rangle)$$

Example: Non-homogenous Poisson process



Online Newton algorithm

$$\{\hat{\boldsymbol{x}}_{0|T}, \dots, \hat{\boldsymbol{x}}_{T|T}\} = \underset{\{\boldsymbol{x}_t\}}{\mathsf{arg\,min}} \quad \sum_{t=1}^T f_t(\boldsymbol{x}_{t-1}, \boldsymbol{x}_t) \qquad \nabla^2 J_T(\underline{\boldsymbol{x}}) = \begin{bmatrix} H_0 & E_0^{\mathsf{T}} & \mathbf{0} & \cdots & & & \mathbf{0} \\ E_0 & H_1 & E_1^{\mathsf{T}} & \mathbf{0} & \cdots & & & \mathbf{0} \\ \mathbf{0} & E_1 & H_2 & E_2^{\mathsf{T}} & \mathbf{0} & \cdots & & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & E_2 & H_3 & E_3^{\mathsf{T}} & \cdots & \mathbf{0} \\ \vdots & & & \ddots & \ddots & \ddots & \vdots \\ \mathbf{0} & \cdots & & & E_{T-2} & H_{T-1} & E_{T-1}^{\mathsf{T}} \\ \mathbf{0} & \cdots & & & \mathbf{0} & E_{T-1} & H_T \end{bmatrix}$$

General approach: solve with Newton method

•
$$s_k = -\left(\nabla^2 J_T(\underline{x}_T)\right)^{-1} \nabla J_T(\underline{x}_T)$$

$$\bullet \ \boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{s}_k$$

The Hessian $abla^2 J_T(\underline{x}_T)$ is again tri-diagonal ...

... so each Newton step looks like a forward-backward least-squares solve

Finite buffering

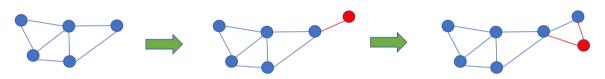
Theorem: If we only update B frames in the past, we have

$$\|\boldsymbol{x}_t^* - \tilde{\boldsymbol{x}}_t^*\| \le C \left(\frac{2L - \mu}{2L + \mu}\right)^B$$

where $ilde{x}_t^*$ are the *buffered solutions* coming from

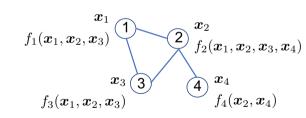
$$\min_{\{oldsymbol{x}_t,...,oldsymbol{x}_{t+B+1}\}} \sum_{ au=t}^{t+B} f_t(oldsymbol{x}_ au,oldsymbol{x}_{ au+1})$$

Dynamic graph topologies

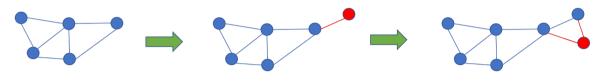


- ullet Nodes i: variables $oldsymbol{x}_i$ and function f_i
- Edge (i, j): f_i and f_j share variables
- Optimization program

$$\underset{\left\{\boldsymbol{x}_{i}\right\} }{\mathsf{minimize}}\sum_{i}f_{i}\left(\left\{\boldsymbol{x}_{j}:j\in\mathcal{N}(i)\right\}\right)$$



Dynamic graph topologies

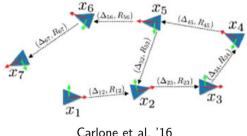


$$\underset{\{\boldsymbol{x}_i\}}{\mathsf{minimize}} \sum_i f_i\left(\{\boldsymbol{x}_j: j \in \mathcal{N}(i)\}\right) = \sum_i f_i(\boldsymbol{x}_{[i]})$$

Key question: when we add the red node, do we have to update all other nodes?

Example: Pose graph optimization

• Estimate poses: $x_i = (position, orientation)$ at time i from relative measurements



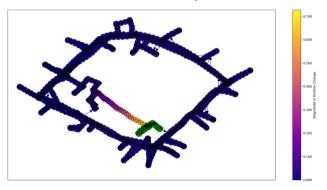
Carlone et al, '16

 Naturally posed as a nonconvex least-squares problem on a dynamic graph Semidefinite relaxation is a convex problem on a dynamic graph

Dynamic graph topologies

$$\underset{\{\boldsymbol{x}_i\}}{\mathsf{minimize}} \sum_i f_i\left(\{\boldsymbol{x}_j: j \in \mathcal{N}(i)\}\right) = \sum_i f_i(\boldsymbol{x}_{[i]})$$

Key question: when we add a node, do we have to update all other nodes?

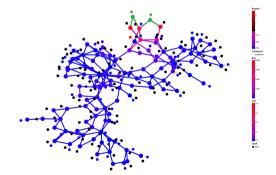


(data from Carlone et al '16)

Dynamic graph topologies

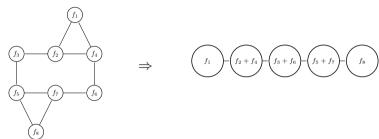
$$\underset{\{\boldsymbol{x}_i\}}{\mathsf{minimize}} \sum_i f_i\left(\{\boldsymbol{x}_j: j \in \mathcal{N}(i)\}\right) = \sum_i f_i(\boldsymbol{x}_{[i]})$$

Key question: when we add a node, do we have to update all other nodes?



Collapsing the graph

Key idea: collapse the graph between two nodes



Theorem: Difference between solutions at node i before and after node N+1 is added

$$\|\hat{\boldsymbol{x}}_{[i]|N} - \hat{\boldsymbol{x}}_{[i]|N+1}\|_{2} \leq \frac{C}{\mu} \left(\frac{L-\mu}{L+\mu}\right)^{d(i,N+1)}$$

where d(i, N + 1) = distance between nodes i and N + 1, L, μ are Lipschitz and strong convexity constants ...

Collapsing the graph

Theorem: Difference between solutions at node i before and after node N+1 is added

$$\|\hat{x}_{[i]|N} - \hat{x}_{[i]|N-1}\|_{2} \leq \frac{C}{\mu} \left(\frac{L-\mu}{L+\mu}\right)^{d(i,N+1)}$$

where d(i,N+1)= distance between nodes i and N+1, L,μ are Lipschitz and strong convexity constants ...

The f_i have Lipschitz gradient parameter L_i , strong convexity parameter μ_i . We can take

$$\mu = \min_i \mu_i,$$

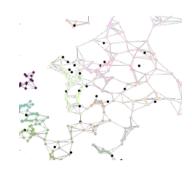
$$L = K \cdot \max_i L_i, \quad K = ext{ chromatic number of graph}$$

Solutions of multiple optimization programs are encouraged to be close:

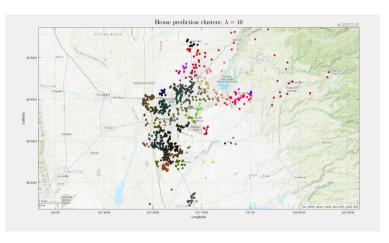
$$\underset{\{\boldsymbol{x}_i\}}{\mathsf{minimize}} \ \sum_i f_i(\boldsymbol{x}_i) + \lambda \sum_{(j,k) \in \mathcal{E}} \ w_{jk} \, d(\boldsymbol{x}_j, \boldsymbol{x}_k)$$

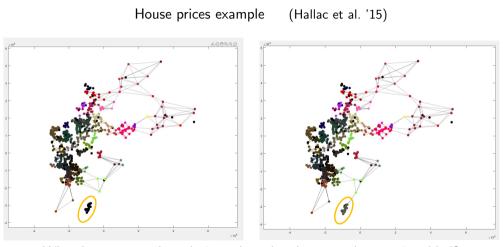
Examples:

- ullet $d(oldsymbol{x}_j, oldsymbol{x}_k) = \|oldsymbol{x}_j oldsymbol{x}_k\|_2^2$ (diffusion)
- ullet $d(oldsymbol{x}_j, oldsymbol{x}_k) = \|oldsymbol{x}_j oldsymbol{x}_k\|_2$ (network lasso)
- •

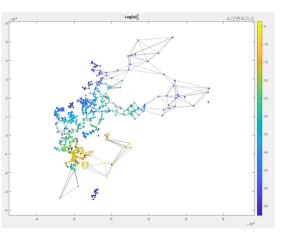


House prices example (Hallac et al. '15)





What happens to the solution when the cluster on bottom is added?



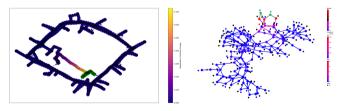
relative change: yellow = .01, orange = 0.001, blue = 10^{-9}

Extension: Constraints

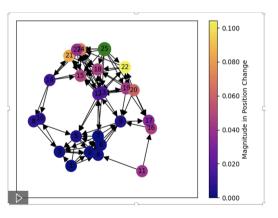
We can accommodate local constraints

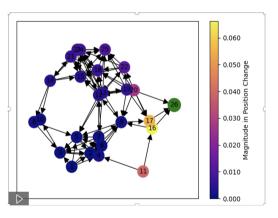
$$\underset{\{\boldsymbol{x}_i\}}{\mathsf{minimize}} \ \sum_i f_i\left(\{\boldsymbol{x}_j: j \in \mathcal{N}(i)\}\right) \quad \mathsf{subject to} \ \left\{\boldsymbol{x}_j: j \in \mathcal{N}(i)\right\} \in \mathcal{C}_i$$

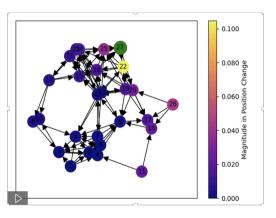
This actually gives us a way to decompose huge SDPs...

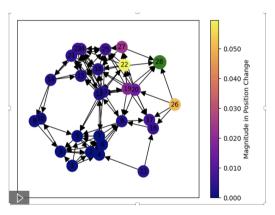


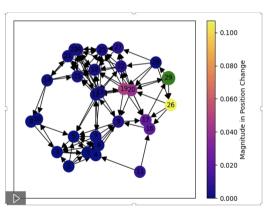
... with small PSD constraints (but have to solve a phase-sync problem)





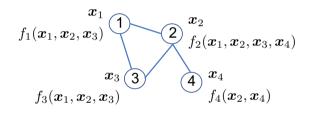






Closing thoughts

We looked at a very particular type of structured multi-objective optimization problem



Question:

Is there some type of *statistical leverage* we can achieve?

Thank you!

References:

- T. Hamam and J. Romberg, "Streaming solutions for time-varying optimization problems," *IEEE Transaction on Signal Processing*, July 2022.
- J. Driscoll, T. Hamam and J. Romberg, "Optimization on dynamic graphs," manuscript under preparation.
- K. Lee, R. S. Srinivasa, M. Junge, and J. Romberg, "Approximately low-rank recovery from noisy and local measurements by convex programming," *Information and Inference*, 12(3):1612–1654, 2023.