Justin Romberg, Georgia Tech ECE
Bellairs Workshop on ML and SSP for Data on Graphs
Holetown, Barbados
January 23, 2024

Collaborators

Tomer Hamam Joe Driscoll

Imagry, Haifa, Israel Georgia Tech, ECE

Shared variables described by a graph

@ Nodes i: variables x; and function f;

e Edge (4,7): fi and f; share variables fi(xy, 22, x3) e f 1, T, T3, 2.4)
.. . 2 L1, L2, s L4
@ Optimization program °
-’B3
f3

mi?gicrgize Zfi ({z;:jeN(@)})

(T1, 2, x3) 902,904)

Shared variables described by a graph

@ Nodes i: variables x; and function f;

e Edge (4,7): fi and f; share variables fi(xy, 20, @3) 'e fz 21,9, 3, 4)
. . 1,) ’
T3

e Optimization program
mi?in}ize > fil{mi i e N}

$1,$2,m3 $2,$4)

Key question: how does solution change as the graph evolves?

W-W-»Wd

Example: Localization and Pose Estimation

e Estimate poses: x; = (position, orientation) at time ¢
from relative measurements

T
S (s, Mna) =5 (A
P ovoicrct b e L 16, 2
ad ? ‘1‘ ~~~~~~~~) Tq
od 3/ P
P ¥/ o
A q&',' (\?7

.-
v
=
=
'L
o
1
it
"?

ppost AR

(Carlone et al, '16)

@ Naturally posed as a nonconvex least-squares problem on a dynamic graph
Semidefinite relaxation is a convex problem on a dynamic graph

Example: AC optimal power flow

@ Solve for power production that minimizes generation cost while obeying physical
constraints

@ Naturally posed as a nonconvex problem on a graph
Also has a semidefinite relaxation

Streaming optimization (chain graph)

One important special case:

T
minimize th(wt—l,wt)
=1

O R Y Y Y O
_/ _/ _/ _/
fe() fe ()
Ty Ti+1

Streaming solution: at time 7,

@ observe fr; initialize 7

@ update solutions &y, t < T

Streaming optimization (chain graph)

One important special case:

T
minimize th(wt—l,wt)
=1

I,y LT
O () () () () O
-/ —/ —/ -/
fe() Jea ()
L Ti41
Streaming solution: at time T, Key questions:
@ observe fr; initialize 7 © does &, converge as T' — oo?

© update solutions &7, t < T @ if so, how quickly?

Streaming optimization (chain graph)

Streaming least-squares:

T
minimizez |Asz: + Bizi—1 — y, |3
(2 A

Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

= Fixy 1 +d;
Y =P + e

Observe {y,}]_,, estimate {z;}1; ...

Classical: The Kalman filter

Linear dynamical system for state evolution and measurement:

= Fixy 1 +d;

Yy =P+ e
Observe {y,}]_,, estimate {z;}1; ...
T
minimizez | @y — y,||3 + M|l — Fy_1xs 1|3

S —

Streaming recon. from non-uniform samples

{"/}t,n (T)}

Sample batch ¢ at locations 7, ..., Ty
One batch overlaps frame bundles t — 1 and ¢

Single sample at 7,,

S(Tm) = Z Tt—1,n ¢t—1,n(7'm) + Z CCt,’nﬂbt,n(Tm)
n n
Collecting all samples into vector y,, we can write

Structured linear system

After collecting batches t =0, 1,...,T, we have the (possibly large) system

[Ag O - 0 o Yo
Bl A1 0 s 0 L1 Y1
0 B, A, 0 - 0| |z Y2
drz=|0 0 Bz A3 O 0 3| ~ | Y3
0 0 0 B4 A4 0 L4 Yy

i 0 . .-~ Brp AT_ E7d Y7

Tri-diagonal structure

At every time T, the least-squares system is block tri-diagonal,

Dy Ef o - 0 o

Ey D, Ef o - 0 z

0 E, D, E} 0 0 T3
0

$T®rz=|0 0 E; D3 Ej

Er_s Dr_y E7 | |&r
o .- 0 Er_y Dy | xT

O P

90
g1
[P

gr—1
ar |

Factorization: Forward sweep

There is an easy LU factorization,

Q, 0 - 0] 1 U,
E() Q]. 0 O I
0 E, Q, :

: . . 0

(0 - 0 Er, Q|0

where the Q; and U, can be computed recursively

Zo
T
T2

LT]

90
g1
gs

L9

Factorization: Forward sweep

There is an easy LU factorization,

Q, 0 -- 0] 1 U,
E() Ql 0 0 I
0 E; Q :

: . 0

0 - 0 Er, Q|0

where the Q, and U, can be computed recursively

fort=1,2,....,T—1
Ui = Qt_—11EzreF71
Q,=D,-E._.Q; E],
v =Q; (g, — Er1vi1)
end

Ur—

Zo
T
T2

T

90
(51
g2

gr

Solution update: Backward sweep

With estimates after 1" frames in hand

T
{§30|Ta CAcllT, . ,.’i?TlT} = arg min Z ”Atwt + Btmt_l — yt||2

Tt t=1

we introduce a new loss function with (y7, 1, Ar41, Br41)

fr(@r, ®ri1) = ||Arpi@r — Broer — ?JT+1||2

The solutions &1 1741, L1741, - - -, LojT41 Can be computed with a backward sweep

Solution update: Backward sweep

With estimates after T frames in hand
T
~ ~ ~ . 2
{cc0|T, 7, ...,a:T|T} = arg min 2 |Aix: + Bixi—1 — y,|
Tty =1

we introduce a new loss function with (y7, 1, Ar41, Br41)

2
froi(@r, ®ri1) = ||AT+1-’L'T+1 — Brpxr — yT+1||
The solutions & 1741, L1741, - - > LojT41 Can be computed with a backward sweep
_ N1 T T
vry1 = Qi (A1 Y11 + BrYre — Ervr)
LT41T+1 = VT+1

fort=T,T—-1,...,0

Tyry1 = v — U741
end

Block diagonal dominance

Dy, EY o0 0
Ey, D, Ef o 0
0 E, D, E}@ o0 0
$Td,=|0 O E;, D3 Ej 0
0 Er o Dr .y Ep
0 0 E;r_, Dr

The estimates will stabilize very quickly when
K(1 = 06) < Anin(D4t) < Amax(Dt) < k(1496), ||E¢|| < ko, forall ¢

are akin to a kind of block diagonal dominance

Convergence

T
~ ~ ~ . 2
{930|T, Ty, ~--7$T|T} = arg min § |Asxs + Bii—1 — y,||
Ty =1
Theorem: For block diagonally dominant Dy, E;, we have
o limy o &y =: T, exists for all £, and
@ convergence is fast

€
1—c¢

T—t
&y — 2(ll2 < C’() ., where € ~ 4.

Example: reconstruction from level crossings

Moral: You can just update 3 frames in the past and still be very accurate ...

|j=4 j=5 j=6 j=7 j=8 j=9 j=10
| k=4 031 — — - - - =
n k=5|-339 032 — @— @— - —
k=6 | -512 324 -032 — — — —
y Y V k=7 | -728 508 -346 -027 — @ — —
k=8| -927 708 -560 -344 -034 — = —
k=9 |-1084 -865 -7.17 -519 -248 -0.22 —
k=10 |-13.27 -11.08 -9.60 -7.62 -4.90 -3.44 -0.36

Random samples

_ AT T
VAV (RTITIR U T D, = At Ay + Bt+1Bt+1’
A, — B, =Bl A,

B

N = number of basis functions per frame bundle
M = number of samples per batch
For samples selected uniformly at random, we have with probability 1 — €

16 < Amin(D2) < Aain(Dy) < 146, | By <6, for fixed t
with
N
0 < O[5 log(N/e)

so we can take
M Z Nlog(N/e).

Streaming optimization: convex case

We want to solve

T
minimize th(wt—l,wt)
IQ,..., LT i—

where f; are smooth and strongly convex

Streaming optimization: convex case

We want to solve

T
minimize th(mt—l,mt)
ZOs-+ LT =1

where f; are smooth and strongly convex
Streaming solution: at time T, Key questions:

© observe fr; initialize Z|r © does @&, converge as T' — 00?

© update solutions & @ if so, how quickly?

Streaming optimization: convex case

We want to solve

T
minimize th(wt—l,wt) = Jr(z)

ZQy--, LT =1

where f; are smooth and strongly convex

Key piece of structure: gradient in frame ¢ involves only f; and fi41

Vir(z) =

Vo fi(zo, x1)
Vifi(xo, 1) + Vifa(x1, x2)

Vroifr—i(xr—2, 1) + Vo1 fr(xr_1,z7)
Vorfr(zr—i,zr)

Streaming optimization: convex case

We want to solve

ZQy-- LT

T
minimize th(a:t_l,act) = Jr(x)
t=1
where f; are smooth and strongly convex

Key piece of structure: Hessian is block tri-diagonal

‘Hy Ef o ..

Ey, H Ef o ..
0 E, Hy, E}] 0
Vir(z)=|0 O E; Hy Ej

o © oo

Er o Hy, E}_,
o - 0 Er_y Hry |

o "

Convergence: convex case

Let

T
{@ojr, - e} = arg min Y fi(x1, @) = Jr(z)

172 S—

Theorem: If there are {wr} such that
IV fr(&p_1j7—1,wr)| < Const for all T,

then

o limy o &y =: T, exists for all £, and

Convergence: convex case

Let

T
{@ojr, - e} = arg min Y fi(x1, @) = Jr(z)

172 S—

Theorem: If there are {wr} such that
IV fr(&p_1j7—1,wr)| < Const for all T,

then
o limy o &y =: T, exists for all £, and

@ convergence is fast

.
lour ~aill < € (57

(L = smoothness parameter, 11 = strong convexity parameter)

Convergence: convex case

Proof sketch: Start from

T

{®or,- - pyry = arg min > fu(@i 1, @) = Jr()
{1} t=1
Add fr.y, initialize
0) :%t|T7 t < T:
wy = .
(something), t=T+1

Use gradient descent to move to the new solution, trace the steps

Tracking the steps of gradient descent

Gradient descent:
w) = w®) — oV (w?)

(we know this converges linearly)

Tracking the steps of gradient descent

Gradient descent:
wk+tD — w(k) _ Oév‘],prl(w(k))

(we know this converges linearly)

Notice that -

Vs (w®) =

Tracking the steps of gradient descent

Gradient descent:
w(lﬂ-l) — w(k) _ aVJT+1(w(k))

(we know this converges linearly)

Notice that

Vs (w®) = wV =w® —aVir (W) = Vi (w®)

Tracking the steps of gradient descent

Gradient descent:
w(kﬂ) _ Q(k) _ aVJT+1(w(k))

(we know this converges linearly)

Notice that

Viri(w®) = . Vg (wh) = . Vi (w®) =

frame ¢ is not touched until iteration k=T — ¢ ...

Convergence: convex case

Let

T
{®or, -, &} = arg min > fi(a@i1, @) = Jr(z)

{w:} t=1

Theorem: If there are wp such that
IV fr(&p_1j7—1,wr)| < Const for all T,

then
o limp o &y =: &; exists for all ¢, and

@ convergence is fast

o ~ail < ¢ (355

Convergence: convex case

Let

T
{®or, -, &} = arg min > fi(a@i1, @) = Jr(z)

{w:} t=1

Theorem: If there are w7 such that
IV fr(Zr_1j7-1,wr)|| < Const for all T, 77

then
o limp o &y =: &; exists for all ¢, and

@ convergence is fast

2L—M)T_t

o ~ail < ¢ (355

Convergence: convex case

Theorem: If the local minimizers
(5’t—1|t753t|t) = arg min fi(x1—1, T¢)
are bounded and the Hessian is diagonally dominant, then there are {wr} such that

IV fr(&p_1j7—1,wr)| < Const for all T.

Example: Non-homogenous Poisson process

Given “spike” observations at 71, ..., T)s, estimate the background intensity A(t)

e

AGiobal 1

* Arrival Times|

Maximum likelihood, discretized, divided into frames

ml?;ﬁlze Xt:f(wt—bwt),

f(xi1, @) = (x4, @) — (211, by) + Zlog(@ta cm,zt)) +log({xi—1,dmy))

m

Example: Non-homogenous Poisson process

Online Newton algorithm

T 0 E, H,; EJ 0
- - _ : 3} 0 E H ET
{Zo|T,..., &7} = arg min E Je(®r—1,) V2 Ir(z) = 2 3 3
Tt t=1 :
o Ep_o
3} 3}

General approach: solve with Newton method
o sy = — (V2Jr(zy)) " Vir(zr)

@ Ty = T + Sk

The Hessian V2Jr(x) is again tri-diagonal ...
. so each Newton step looks like a forward-backward least-squares solve

Finite buffering

Theorem: If we only update B frames in the past, we have

2L — pu\ B
2L+

e — &) < c(

where &} are the buffered solutions coming from

t+B

minimize E fi(@r, xrq1)
{wt»-~-7wt+B+1} —t

Dynamic graph topologies

W—»W—»W

@ Nodes i: variables x; and function f; 331

o Edge (4,7): fi and f; share variables fi :1:1,&:2,:1:3) e fz (@1, 19, @5, 4)

e Optimization program e
:733 5134

f3 331,932,w3 CB2,e’B4)

mi?aigrgizeri ({zj: 7 e N(i)})

Dynamic graph topologies

W—W-Wﬂ

m|n|m|ze2:f2 ({x;: 7 e N() Zfl x;)

Key question: when we add the red node, do we have to update all other nodes?

Example: Pose graph optimization

e Estimate poses: x; = (position, orientation) at time ¢
from relative measurements

Ze (Age, Rra) Z5
9:,,‘“"“-“- "’ ------ Q) x4
w

o y 3
_A"‘ &/ K%
o o i

v Ay) e
*. lézz:..‘_’.!.ﬂ.v--w---.._,s,
. 2 I3
T

Carlone et al, '16

@ Naturally posed as a nonconvex least-squares problem on a dynamic graph
Semidefinite relaxation is a convex problem on a dynamic graph

Dynamic graph topologies
m|n|m|zerZ ({x;: 7€ N() Zf’ ()

Key question: when we add a node, do we have to update all other nodes?

0300

(data from Carlone et al '16)

Dynamic graph topologies
mi?gicrgizez:fi {x;:jeN(@)}) = Zfz(cc[z])

Key question: when we add a node, do we have to update all other nodes?

Collapsing the graph

Key idea: collapse the graph between two nodes

?é%ﬁ OOOO0

O—@—©

Theorem: Difference between solutions at node ¢ before and after node NV + 1 is added
C[(L-u d(i,N+1)
PN — A < - ("
IZ@iv — vl < . (L+M>
where d(i, N + 1) = distance between nodes i and N + 1,
L, i are Lipschitz and strong convexity constants ...

Collapsing the graph

Theorem: Difference between solutions at node 7 before and after node N + 1 is added

C (L o M>d(i,N+l)

P - < =
||5'3[z]|N $[z]|N—1||2 = U \T+a

where d(i, N + 1) = distance between nodes i and N + 1,
L, i are Lipschitz and strong convexity constants ...

The f; have Lipschitz gradient parameter L;, strong convexity parameter ;.
We can take

p = min fi;,
(3

L =K -maxL;, K = chromatic number of graph
(2

Example: multi-task learning

Solutions of multiple optimization programs are encouraged to be close:

ml?lmlze Zfz ;) + A Z wji, d(x;, T))

(J,k)e€
L
Examples: e ¥
o d(xj,xy) = ||z; — @yll3 (diffusion) b Q= g
o d(xzj,xy) = ||xj — xkll2 (network lasso) N S e
°: :) ze

Example: multi-task learning

House prices example (Hallac et al. '15)

House prediction clusters: A = 10 B

Y

suTTER BASIN O §

o -

Laliude

Example: multi-task learning

House prices example (Hallac et al. '15)

F00AG a1t
T | of

What happens to the solution when the cluster on bottom is added?

Example: multi-task learning

House prices example (Hallac et al. '15)

L0t Lolll} sE0Qa0
T T T T T T 2

L L L L L L
- E o 2 4 5

relative change: , orange — 0.001, blue = 107*

Extension: Constraints

We can accommodate local constraints

mi?irgize > fi{zjjEN()}) subjectto {z;:jeN()} €

This actually gives us a way to decompose huge SDPs...

T

with small PSD constraints (but have to solve a phase-sync problem)

Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...

0.100

0.080

0.060

0.040

Magnitude in Position Change

0.020

0.000

Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...

0.060
—-‘J,
L 1,

: \t‘\?";n%‘ 0.050 &
AN 5
— \\y\q' E
N o
0.040 §
=
w
o
a
0.030 ¢
[
o
2
0.020 §
©
=

0.010

| o000

Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...

0.100

0.080

tion Change

0.060 -

0.040

Magnitude in Posi

0.020

0.000

Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...

0.050

0.040

0.030

o
o
N
o
Magnitude in Position Change

0.010

0.000

Extension: Growth model

We can get geometric convergence in time if we have a growth model for the graph ...

0.100

0.080

0.060

0.040

Magnitude in Position Change

0.020

0.000

Closing thoughts

We looked at a very particular type of structured multi-objective optimization problem

21,05, @ @)
fi(@1, 22, x3) ' f2 (z1, T2, T3, T4)
T3

3(0317932,503 332,-’114)

Question:
Is there some type of statistical leverage we can achieve?

Thank you!

References:

T. Hamam and J. Romberg, “Streaming solutions for time-varying optimization problems,” IEEE
Transaction on Signal Processing, July 2022.

J. Driscoll, T. Hamam and J. Romberg, “Optimization on dynamic graphs,” manuscript under
preparation.

K. Lee, R. S. Srinivasa, M. Junge, and J. Romberg, “Approximately low-rank recovery from noisy and
local measurements by convex programming,” Information and Inference, 12(3):1612-1654, 2023.

