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Tensor setup and motivation

Order-N tensor X ∈ Cd×d×···×d with entries indexed as X (i1, i2, . . . , iN ).

(Can generalize to dimensions d1 × d2 × · · · × dN .)

Total of dN entries; scales exponentially in N .

Our interest: scenarios with N large, such as quantum state tomography.

Themes: how to efficiently compute, store, and measure such tensors, avoiding
exponential scaling where possible?
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Tensor decompositions

Structured models may allow natural or economical parameterizations.

Canonical Polyadic (CP) decomposition: sum of tensor products of rank-one
factors.

Easy to store: O(N) parameters.

Hard to compute: determining rank and decomposition are NP-hard.

Tucker decomposition: core tensor and set of matrices.

Easy to compute: computed via higher-order SVD (HOSVD).

Hard to store: number of parameters is exponential in N .
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Tensor trains

The tensor train (TT) decomposition of X expresses its entries as

X (i1, i2, . . . , iN ) = X1(:, i1, :)X2(:, i2, :) · · ·XN (:, iN , :)

using a collection of third-order tensors

X1 ∈ C1×d×r, X2,X3, . . . ,XN−1 ∈ Cr×d×r, XN ∈ Cr×d×1.

Equivalently, each entry of X is expressed as a matrix product

𝑑 𝑑 ⋯ 𝑑

1 𝑑 𝑟
𝑟 𝑑 𝑟 𝑟 𝑑 𝑟 𝑟 𝑑 1

Number of tensor entries: dN . Number of TT parameters: O(Ndr2).
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Tensor trains - 2

Applications of tensor trains include:

probabilistic graphical models

compactly representing large-scale linear operators, such as in deep networks

image compression

recommendation systems

language modeling

representing states of quantum many-body systems

Not invariant to dimensional permutation.

Closely related: tensor rings, tensor networks.
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Tensor trains: TT-SVD

A sequential SVD-based algorithm known as tensor train SVD (TT-SVD)
(Oseledets, 2011) yields a quasi-optimal TT decomposition.

However, just as a classical SVD requires access to all of the entries of a matrix,
the TT-SVD method requires access to all of the entries in X .
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Matrix cross approximation

Factor a low-rank matrix using samples from that matrix (Goreinov, 2001):

Select row indices I ⊆ {1, 2, . . . ,m} and column indices J ⊆ {1, 2, . . . , n}.

Define C = A(:, J), U = A(I, J), R = A(I, :).

If rank(U) = rank(A), then A = CU†R.
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Tensor train cross approximation

For a tensor X ∈ Cd1×d2×···×dN , the cross approximation process can be
generalized to (Oseledets, 2010):

…
…

…
…

…

reshape

reshape
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Tensor train cross approximation - 2

General form:

X̂ (i1, . . . , iN ) =

N∏
k=1

X〈k〉(I≤k−1, ik, I
>k)[X〈k〉(I≤k, I>k)]†τk

with samples of k-th unfolding

X〈k〉 ∈ C(d1···dk)×(dk+1···dN )

indexed by interpolation sets {I≤k, I>k}
I≤k selected from {1, 2, . . . , d1 · · · dk}
I>k selected from {1, 2, . . . , dk+1 · · · dN}
I≤0 = I>N = ∅.

Greedy restricted cross interpolation (GRCI) algorithm works well for choosing
interpolation sets.
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Tensor train cross approximation - 3

For a tensor X and its tensor train cross approximation X̂ , an elementwise
approximation guarantee has been established (Savostyanov, 2014; Osinsky, 2019):

max
i1,...,iN

|X (i1, . . . , iN )− X̂ (i1, . . . , iN )| ≤ adlog2Neb,

where a and b are constants.

Notably, the guarantee is not exponential in N .

But naively extending the bound to the entire tensor yields

‖X − X̂‖F ≤
√
d1 · · · dNadlog2Neb,

which does scale exponentially.
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Tensor train cross approximation - 4

Theorem
Suppose X can be approximated by a TT format tensor with rank
r = maxk=1,...,N−1 rk and approximation error

ε := max
k=1,...,N−1

‖X〈k〉 −X〈k〉rk ‖F .

For any interpolation sets {I≤k, I>k} such that rank(X
〈k〉
rk (I≤k, I>k)) = rk,

k = 1, . . . , N − 1, the cross approximation X̂ with appropriate thresholding
parameters τk for the truncated pseudo-inverse satisfies

‖X − X̂‖F . (a2r + a2crε+ a2c2ε2)dlog2Ne−1(a2ε+ a2cε2 + a2c2ε3),

where a and c are constants.

Can extend to noisy samples, absorbing noise level into ε.
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Tensor train cross approximation - 5

Plot of mean square error in dB:

MSE = 10log10 ‖X − X̂‖2F /‖X‖2F
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Parameters: d = 2, r′ = r = 2, noise µ = 10−5, and low-rank error η = 0.
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Quantum state tomography

The state of an N -qubit quantum system is described by a density matrix

ρ ∈ C2N×2N that is PSD and has trace(ρ) = 1.

This matrix has 4N elements and is naturally associated with a high-order tensor.

For example, the Pauli matrices are defined as:

σ0 =

[
1 0
0 1

]
, σ1 = σx =

[
0 1
1 0

]
, σ2 = σy =

[
0 −i
i 0

]
, σ3 = σz =

[
1 0
0 −1

]
.

We can express a density matrix in an orthogonal basis formed by Kronecker
products of Pauli matrices:

ρ =

3∑
i1,i2,...,iN=0

X (i1, i2, . . . , iN ) (σi1 ⊗ σi2 ⊗ · · · ⊗ σiN ) .

The order-N tensor X contains the Pauli coefficients of ρ.
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Quantum state tomography - 2

Each entry of the tensor X (i1, i2, . . . , iN ) can be sampled by “measuring” the
quantum system in an appropriate measurement basis. (More on that soon.)

Reconstructing the quantum state from such measurements is known as quantum
state tomography. However, measuring all 4N entries is prohibitively expensive.

Fortunately, tensor train models also arise in quantum information contexts, where
they are known as matrix product state (MPS) and matrix product operator
(MPO) models. The TT rank r is known as the bond dimension.

MPS/MPO models have been shown to describe most states generated by a
one-dimensional noisy quantum computer. This presents an opportunity for using
TT cross approximation to enable quantum state tomography with a polynomial
(in N) number of measurement bases.
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Quantum state tomography - 3

Distance D = ‖ρ− ρ̂‖2F /‖ρ‖2F ; thermal states of 1D quantum Ising model:

Ignores statistical error in measurements; maximum bond dimension used in
DMRG-cross is 10, which is suitable for high temperature T but insufficient for
low temperature T .

15



Quantum state tomography - 4

Number of measurement bases required:
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Tensor recovery in the TT format

Several works have studied the recovery of tensor train models from incomplete
measurements.

Alternating minimization and gradient descent methods for estimating the TT
factors lack theoretical guarantees.

Other methods such as iterative thresholding and Riemannian gradient descent
require estimating the entire tensor X at each iteration, and may require
additional information or assumptions.
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Tensor recovery in the TT format - 2

We study the recovery of a tensor X ? from linear measurements

y = A(X ?) ∈ Cm.

We consider the nonconvex constrained optimization problem

min
X1, . . . ,XN

1

2m
‖A([X1, . . . ,XN ])− y‖22

such that
dn∑
in=1

X>n (:, in, :)Xn(:, in, :) = Irn , n = 1, 2, . . . , N − 1,

which optimizes the TT model in left canonical form.

We implement a (hybrid) Riemannian gradient descent (RGD) algorithm on the
TT factors X1,X2, . . . ,XN , projecting back onto the Stiefel manifold at each
iteration.
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Tensor recovery in the TT format - 3

Theorem

Consider a tensor X ? with TT ranks r = (r1, . . . , rN−1) and suppose A(·) = I(·).
Suppose that RGD is initialized with {X(0)

n } satisfying

dist2({X(0)
n }, {X?

n}) ≤
σ2(X ?)

72(N2 − 1)(N + 1 +
∑N−1
n=2 rn)

, (1)

and the step size µ ≤ 1
9N−5 . Then, the iterates {X(t)

n }t≥0 generated by RGD will
converge linearly to {X?

n} (up to rotation):

dist2({X(t+1)
n }, {X?

n})

≤
(
1− σ2(X ?)

64(N + 1 +
∑N−1
n=2 rn)‖X ?‖2F

µ

)
dist2({X(t)

n }, {X?
n}).

Note the polynomial dependence on N in the initialization requirement and
convergence rate.
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Tensor recovery in the TT format - 4

We establish a similar bound (and one with noise) for generic linear maps A which
depends on the RIP constant of A. We also establish a suitable “spectral
initialization” using the TT-SVD algorithm:

X (0) = SVDTT
r

(
1

m

m∑
k=1

ykAk

)
,

which is guaranteed to be close to the ground-truth X ? when the operator A
satisfies the RIP.
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Tensor recovery in the TT format - 5

Convergence rates for tensor sensing:

Gaussian measurements.
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Tensor recovery in the TT format - 6

Convergence rates for tensor completion:
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Stable embeddings of tensor trains

We say that a linear measurement operator A : Cd×d×···×d → Cm satisfies the
δr-restricted isometry property (δr-RIP) if

(1− δ)‖X‖2F ≤
1

m
‖A(X )‖2F ≤ (1 + δ)‖X‖2F

for every tensor train X with ranks up to r = (r1, . . . , rN−1).

Extending arguments from Rauhut et al. (2017), we have proved that the δr-RIP
holds with with high probability for i.i.d. complex Gaussian measurements when

m ≥ C 1

δ2r
·Ndr2 log(Nr),

where r = max{r1, . . . , rN−1}.
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Stable embeddings of tensor trains - 2

Our final measurement systems are motivated by quantum state tomography.

Reshaping a 4× 4× · · · × 4 tensor into a 2N × 2N density matrix ρ, our
measurements take the form

〈Ak, ρ〉, k = 1, 2, . . . ,m,

where each Ak ∈ C2N×2N .

We consider rank-one measurements of the form Ak = aka
H
k , where each vector

ak ∈ R2N is i.i.d. Gaussian. With

m ≥ CNdr2 logN

where d = 4 for qubits, we obtain the left-half of the RIP bound for every tensor
train with ranks up to r.
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Stable embeddings of tensor trains - 3

Moving toward more practical measurements, consider a randomly generated
Haar-distributed unitary matrix [φ1 · · ·φ2N ]. With this we can take up to 2N

rank-one measurements with matrices of the form φkφ
H
k . Aggregating

measurements from Q such unitary bases, with

Q ≥ CNdr2 logN

where d = 4 for qubits, we obtain the left-half of the RIP bound for every tensor
train with ranks up to r.
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Quantum measurements of tensor trains

When [φ1 · · ·φ2N ] is unitary, the matrices

φ1φ
H
1 , φ2φ

H
2 , · · · , φ2NφH2N

form a Positive Operator-Valued Measure (POVM).

Quantum measurements involving POVMs are not strictly linear; rather than
returning

pk = 〈φkφHk , ρ〉, k = 1, 2, . . . , 2N ,

we collect observations of a random variable whose probability mass distribution
(pmf) is given by p1, . . . , p2N .

Conducting M total experiments (using M total state copies), we can use the
empirical probabilities p̂k as approximations of the true pk.
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Quantum measurements of tensor trains - 2

Aggregating measurements from Q such Haar-distributed rank-one POVMs, with
M state copies per POVM, any global solution of the constrained least-squares
estimator

ρ̂ = arg min
ρ: TTr

‖A(ρ)− p̂‖22

satisfies
‖ρ̂− ρ∗‖F ≤ ε

with high probability as long as

QM ≥ C · N
3dr2 (log factors)

ε2

where d = 4 for qubits.

This supports the use of low-M measurement schemes.
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Quantum measurements of tensor trains - 3

Rank-one MPS; Q = 1; iterative hard thresholding.

Error increases with r, decreases with M , increases only polynomially with N .
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Conclusions

Tensor trains are a specialized model for representing high-order tensors using a
polynomial number of parameters.

When possible, avoiding exponential complexity (in representation, computation,
and sampling) facilitates “large N” applications such as quantum state
tomography.
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