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Uncertainty in Machine Learning
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Need for Uncertainty-Awareness of ML Systems

Need for uncertainty-awareness of ML systems
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Need for Uncertainty-Awareness of ML SystemsNeed for uncertainty-awareness of ML systems

Regions of interest: right shoulder, right mirror, inner mirror, left
mirror, left shoulder, front, center stack, speedometer.

a) b) c) d) e) 
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Uncertainty-Aware ML Systems

Ideally, when making a prediction, the learner knows what it
knows and, perhaps more importantly, what it does not know
This requires an adequate representation of predictions (e.g.,
in terms of distributions or sets) and quantification (e.g., in
terms of entropy) of their uncertainty, ...

... as well as suitable learning algorithms to produce p-valued
predictors (e.g., conformal learning)

In this regard, a distinction between different sources and
types of uncertainty turns out to be meaningful, notably

aleatoric (inherent randomness, irreducible)
epistemic (lack of knowledge, reducible).
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Aleatoric versus Epistemic Uncertainty
Aleatoric versus epistemic uncertainty
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Aleatoric vs. Epistemic: Two Main Types of Uncertainty

Aleatoric Uncertainty
Uncertainty stemming from inherent variability in the data itself

Examples: Noisy sensor data, variability in human behavior
Modeling aleatoric uncertainty: Incorporating noise models
in the learning process.

Epistemic Uncertainty
Uncertainty arising from a lack of knowledge or information

Bayesian perspective: Treating model parameters as random
variables (computationally expensive in large models)
Quantifying epistemic uncertainty: Through model
ensembles, dropout methods, or Bayesian inference.
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Aleatoric versus Epistemic Uncertainty

Both types of uncertainty also play an important role in ML,
where the learner’s state of knowledge strongly depends on the
amount of data seen so far ...

Aleatoric versus epistemic uncertainty in ML

Both types of uncertainty also play an important role in ML, where the learner’s state
of knowledge strongly depends on the amount of data seen so far ...
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Aleatoric versus Epistemic Uncertainty

... but also on the underlying model assumptions

Aleatoric versus epistemic uncertainty in ML

... but also on the underlying model assumptions:

strong prior (linear model) weaker prior (nonlinear model)
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Aleatoric versus Epistemic UncertaintyUncertainty in statistics

DATA

STATISTICAL 
INFERENCE

aleatoric epistemic

GENERATING PROCESS
STATEMENT ON/ABOUT 
GENERATING PROCESS

In statistics both aletoric and epistemic uncertainty have always played an
important role; often without explicitly using these terms
Concepts from statistical inference are still relevant and further developed in
modern ML approaches

 Solid knowledge of statistical concepts needed to understand modern approaches
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In statistics both aletoric and epistemic uncertainty have
always played an important role; often without explicitly using
these terms
Concepts from statistical inference are still relevant and
further developed in modern ML approaches.
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Methods for Uncertainty Quantification

Bayesian Methods: Modeling uncertainty through
probabilistic approaches (e.g., conformal learning)

Dropout-Based Methods: Using dropout layers during
training for uncertainty estimation

Ensemble Methods: Utilizing multiple models to capture
different aspects of uncertainty.

Challenges and considerations:

Modeling challenges: Balancing complexity and
interpretability

Impact on decisions: Understanding how uncertainty affects
decision-making processes.
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Classification Tasks Using Deep Neural NetworksClassification: representing distributions using deep neural networks

H(p, p̂) = H(p) + DKL(p, p̂)

34 / 101Minimization of a risk using empirical data

p̂θ(y∣x) = arg inf
θ∈Θ

EXY [− log pθ(Y ∣X)]

Ideally, when making a prediction: f(x) = arg maxy p̂θ(y∣x),
the learner knows what it knows and what is does not know.
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Lack of Uncertainty-Awareness of ML Systems
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Neural Networks Do Not Know When They Are Wrong
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But, what causes these models to inadequately capture the
distributions of categories?
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A Probabilistic Model of Learning (1960)

Yi PY |X(y|x) PX(x)
Xi

f(x), f ∈ F

(hidden variables)

Object Nature

Algorithm 

Yi

Ŷi

Y

Ŷ

Y
X

Testing = (X, Y )

Training = {(X1, Y1), . . . , (Xn, Yn)}

Loss

Imitation of the object: try to construct a predictor which
provides the best predictions to the supervisor output
Approximation of the object: try to approximate the object
(nature) itself based on a model (typically ill-posed problem)

Uncertainty of model predictions is related to the
approximation p̂θ(y∣x) of the objet.
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A Probabilistic Model of Imitation Learning (1960 - 1990)

Vapnik–Chervonenkis theory (1960) addresses key questions:

What are the conditions for consistency of a learning rule
based on the empirical risk minimization principle?
How fast is the rate of convergence of the learning process?
How can one control the generalization ability (convergence
rate) of the learning process?

Their ingenious formulation led to the characterization of necessary
and sufficient conditions (e.g., finite VC-dimension) for
distribution-free minimization of a risk R(f) using data.
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Is Distribution-Free Inference Possible for Object Learning?

We study the extension of the distribution-free framework
beyond the imitation task for binary classification Y = {0, 1}

Objective: Provide distribution-free inference on the
conditional label probability πP (x) = Pr(Y = 1∣x). Particularly,
in scenarios where πP (x) is not close to 0 or 1

Research question: Given training samples {xi, yi}ni=1, can we
construct an algorithm from mapping a new data point x ∈ Rd
to an (1 − α)-confidence interval Ĉn(x) ⊆ R such that

Pr
(Xi,Yi) iid∼ P

(πP (Xn+1) ∈ Ĉn(Xn+1)) ≥ 1 − α,

for all probability distributions P on Rd × {0,1} ?
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Is Distribution-Free Inference Possible for Object Learning?

We begin with a few definitions. First, for t ∈ [0, 1
2] and

a ∈ [0,1], we define

`(t, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2(1 − a)t, a ≥ 1
2 ,

t
2a , a ≥ t and 0 < a < 1

2 ,

1 − t
2a , a < t,

0, a = t = 0

and for t ∈ (1
2 ,1] and let `(t, a) = `(1 − t, a)

For any distribution Q on [0,1] and any α ∈ [0,1], define

Lα(Q) = inf
Measurable fns.
a∶[0,1]→[0,1]

{ET∼Q[`(T, a(T ))] ∶ ET∼Q[a(T )] ≤ α}

Next, we will establish lower bounds on the length of a
distribution-free confidence interval for object learning.
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Distribution-Free Object Learning is Not Feasible

Theorem (Object learning is not feasible)

Let Ĉn be any algorithm that provides a (1 − α)-distribution-free
confidence interval for πP (x). Then, for any nonatomic distribution
P on Rd × {0,1}, it holds that

E(Xi,Yi) iid∼ P
[leb(Ĉn(Xn+1))] ≥ Lα(ΠP ),

where ΠP is the (unknown) distribution of the random variable
πP (X) ∈ [0,1]; leb() denotes the Lebesgue measure on R.

Proof follows by using similar arguments to (Donoho 1988)

In the distribution-free setting, parameter estimation is
fundamentally as imprecise as prediction!

Confidence intervals for estimating the label probabilities
πP (x) = Pr(Y = 1∣x) have a lower bound on their length
that does not vanish even with sample size n→∞ /
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Improving Calibration

Ideally, true and estimated probabilities should coincide:

Ideally, true and estimated class probabilities should be identical

Examples: bias toward extreme probabilities (left), systematic overestimation (right)

A (binary) classifier is calibrated if

P
!
y = 1 | P̂(y = 1 | x) = –

"
= – .

35 / 101

bias on extreme probabilities (left), systematic overestimation (right)

We say that a (binary) classifier is calibrated if

Pr(y = 1∣X ∈ {x ∈ X ∶ P̂ (y = 1∣x) = α}) = α, ∀ α ∈ (0,1).
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Conformal Learning

Instead of point predictions, make set-valued predictions
covering the true outcome with higher probability
Conformal prediction (Vovk et al., 2004) is a framework for
reliable prediction that is rooted in classical frequentist statistics
and hypothesis testing
Instead of point predictions, CP makes set-valued predictions
covering the true outcome with high probability

Conformal prediction

Conformal prediction (Balasubramanian et al., 2014) is a framework for reliable
prediction that is rooted in classical frequentist statistics and hypothesis testing.

Instead of point predictions, CP makes set-valued predictions covering the true
outcome with high probability.

Guaranteed validity: probability of an invalid prediction (y ”œ Y ) is (asymptotically)
bounded by ‘ > 0.
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Guaranteed validity: probability of an invalid prediction
(y ∉ Y ) is (asymptotically) bounded by α > 0.
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Information and Diversity Measures
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Shannon Entropy

Entropy H(X) of a discrete random variable (RV) X ∼ p:
1. Measure of uncertainty → “surprise” function s(x),
x ∈ X , and H(X) = E[s(X)]
2. Independent of alphabet → s(x) = s(p(x))
3. Additivity:

s(p(x)q(y)) = s(p(x)) + s(q(y)) → s(x) = log p(x)
Lower probability implies higher surprise → s(x) = − log p(x)

H(X) = − ∑
x∈X

p(x) log p(x)

= −E[log p(X)]
H(X) is nonnegative, continuous, and strictly concave function
of p, and 0 ≤ H(X) ≤ log∣X ∣.
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Mutual Information

Mutual Information for discrete RVs (X,Y) ∼ p is defined as

I(X;Y) ≜ H(X) −H(X∣Y)
= H(Y) −H(Y∣X)
= H(X) +H(Y) −H(XY)

= ∑
(x,y)∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)

Mutual information is a measure of dependency
It is a non-negative function of pXY, concave in pX for fixed
pY∣X, and convex in pY∣X for fixed pX

I(X;Y) ≥ 0 with equality iff X and Y are independent
Entropy and mutual information can be extended to continuous
alphabets, but care must be exercised in applications.

Pablo Piantanida (CNRS Université Paris-Saclay) Bellairs Workshop 26 / 70



Rényi Entropy

Rényi entropy for a discrete r.v. X with probability p(x):

Hα(X) = 1

1 − α log ∑
x∈X

p(x)α

= 1

1 − α logE[p(X)α−1],

for α > 0; Hα(X)→ H(X) as α → 1

Conditional Rényi entropy for discrete RVs (X,Y) ∼ p(x, y):

Hα(X∣Y) = ∑
y∈Y

p(y)( 1

1 − α log ∑
x∈X

p(x∣y)α)

= 1

1 − αE[log ∑
x∈X

p(x∣Y )α]

There are many other information measures.
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Measures of Diversity

Diversity is a fundamental concept found in various scientific
disciplines, including statistics, ecology, and machine learning

Extensive literature on measures of diversity within populations
and dissimilarity or similarity between populations

Examples of applications: in anthropology, genetics,
economics, sociology, and biology

We will show that Rao’s measures of diversity (Rao et al.
1982) are essential tools that provide insights into the
predicted distributions and uncertainty.
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Shannon and Simpson Diversity Index

Shannon Diversity Index quantifies the uncertainty
associated with a random variable representing the distribution
of different categories:

H(Y) = −∑
y∈X

p(y) log p(y)

p(y) is the probability of observing category p(y)
Simpson’s Diversity Index focuses on the probability that two
randomly selected individuals belong to different categories:

sGini = 1 − ∑
y∈Y

p(y)2,

it considers the proportion of individuals of each type p(y)
It is particularly useful in ecology to measure biodiversity
and species dominance.
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Rao’s Diversity Measure (1982)

Proposed by Rao in 1982, Rao’s Diversity Measure introduces a
unique perspective by focusing on the distribution of
distances between pairs of individuals:

sd = ∑
y∈Y
∑
y′∈Y

d(y, y′)p(y)p(y′)

d(⋅, ⋅) ≥ 0 is a distance measure, and p(y) is the probability
measure of a discrete random variable

Note that the Simpson Diversity Index coefficient sGini is a
special case of sd when dij = 1 if i ≠ j and dii = 0. Thus,
sd = sGini when choosing d to be the Hamming distance

Extensions to the continuous random variables are available.
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Fisher-Rao Riemannian Geometry
Definition (Fisher-Rao Distance (FRD))

Given a family of probability distributions:

C = {q(⋅∣θ) ∶ θ ∈ Θ}
Metric tensor (Fisher information):

G(θ) = EY ∼q(⋅∣θ)[∇θ log q(Y ∣θ)∇⊺
θ log q(Y ∣θ)]

is positive definite for any θ ∈ Θ

Infinitesimal squared length element:

ds2 = ⟨dθ, dθ⟩G(θ) = dθ⊺G(θ)dθ

The FRD between qθ(⋅∣θ) and qθ(⋅∣θ′) is:

dR,C(qθ, qθ′) = inf
γ
∫

1

0

√
dγ⊺(t)
dt

G(γ(t))dγ(t)
dt

the inf is over all piecewise smooth curves

FRD is the length of the geodesic between
(θ, θ′) using G(θ) as the metric tensor.

R. Rao and R. Fisher,
1956
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Applications of Diversity Measures

Ecological studies: In ecology, raw diversity measures help in
understanding species distribution and ecosystem health

Statistical analysis: These measures are valuable in statistical
analysis, especially when dealing with categorical data

Image and signal processing: In image and signal processing,
diversity measures aid in pattern recognition and understanding
the distribution of features

Our focus: Rao’s Diversity Measure finds applications in
detecting misclassifications by assessing the distribution of
distances between predicted categories.
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Doctor: A Simple Method for Detecting
Misclassification Errors

Joint work with Federica Granese, Marco Romanelli,
Daniele Gorla and Catuscia Palamidessi

(https://neurips.cc/virtual/2021/spotlight/28017)
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Main Definitions

We use the following notation:

L X ⊆ Rdx be the feature space

L Y = {1, . . . , C} be the label space

L pXY be the underlying p.d.f. over X × Y
L Dn = {(x1, y1), . . . , (xn, yn)} ∼ pXY be a random realization of n

i.i.d. samples according to pXY denoting the training set

L fDn : X → Y be the predictor

fDn(x) = arg max
y∈Y

P̂ (y|x;Dn).

Detecting Misclassification Errors Background 35



Problem Formulation

P̂ (y|x)

γ ∈ R

x0 ∼ PX

DETECTOR
Accept 0 /

Reject 1

Detecting Misclassification Errors Background 36



Ideal (Oracle) Setting

Definition (Error probability per sample)

For a given testing feature x0 ∈ X ,

L E(x0) =∆ 1[Y 6= fDn(x0)] is the error variable corresponding to a
predetermined predictor fDn (based on PY |X)

L Pe(x0) =∆ E[E(x0)|x0] = 1− PY |X(fDn(x0)|x0) is the probability of
error classification w.r.t. PY |X

PY |X

γ ∈ R+

x0 ∼ PX

1 [Pe(x0) > γ · (1− Pe(x0))]
Accept 0 /

Reject 1

PY |X(fDn(x0)|x0)

In practice, Pe(x) : X → [0, 1] is not available, but can we approximate it?
Detecting Misclassification Errors Background 37



Simpson Index of Diversity: Dα

Proposition (Simpson Index of Diversity: Dα)

For a given testing feature x0 ∈ X ,
L 1− g(x0) = 1−∑

y∈Y P̂
2
Y |X(y|x0), which approximates Pe(x)

L (1−
√
g(x0))−∆(x0) ≤ Pe(x0) ≤ (1−

√
g(x0)) + ∆(x0), where

∆(x0) = 2
√

2 KL(PY |X(·|x0)‖P̂Y |X(·|x0))).

P̂Y |X

γ ∈ R+

x0 ∼ PX

1 [1− g(x0) > γ · g(x0)]
Accept 0 /

Reject 1

g(x0) =
∑

y∈Y P̂
2
Y |X(y|x0)

Dα(x0, γ) =∆ 1 [1− g(x0) > γ · g(x0)]
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Self-error Approximation: Dβ

Definition (self-error approximation: Dβ)

For a given testing feature x ∈ X ,

L Ê(x0) =∆ 1[Ŷ 6= fDn(x0)] is the self-error variable corresponding to
fDn (based on the model P̂Y |X)

L P̂e(x0) =∆ E[Ê(x0)|x0] = 1− P̂Y |X(fDn(x0)|x0) is the probability of

error classification w.r.t. P̂Y |X

P̂Y |X

γ ∈ R+

x0 ∼ PX

1
[
P̂e(x0) > γ · (1− P̂e(x0))

]
Accept 0 /

Reject 1

P̂Y |X(fDn(x0)|x0)

Dβ(x0, γ) =∆ 1
[
P̂e(x0) > γ · (1− P̂e(x0))

]

Detecting Misclassification Errors Doctor scores 39



Evaluation Metrics

Definition (FRR versus TRR)

The false rejection rate (FRR) represents the probability that a hit (sample
correctly classified) is rejected, while the true rejection rate (TRR) is the
probability that a miss (sample wrongly classified) is rejected.

Definition (AUROC)

The area under the Receiver Operating Characteristic curve (ROC) depicts
the relationship between TRR and FRR. The perfect detector corresponds
to a score of 100%.

Definition (FRR at 95% TRR)

This is the probability that a hit is rejected when the TRR is at 95%.
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Scenarios: Totally Black Box & Partially Black Box

Definition (Totally Black Box (TBB) Scenario)

In TBB only the output of the last layer of the network is available, hence
gradient-propagation to perform input pre-processing is not allowed.

Definition (Partially Black Box (PBB) Scenario)

In PBB we allow method-specific inputs perturbations and the possibility of
doing temperature scaling.
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Competitors (SOTA Methods) for TBB and PBB

1) ODIN [Liang et al., 2018]

SODIN(x̃) = max
i=[1:C]

exp(fi(x̃)/T )
∑C

j=1 exp(fj(x̃)/T )

ODIN(x̃; δ, T, ε) =

{
out, if SODIN(x̃) ≤ δ
in, if SODIN(x̃) > δ

L f(x̃) the vector of logits

L x̃ represents a magnitude ε perturbation of the original x

L T is the temperature scaling parameter

L δ ∈ [0, 1] is the threshold value

L in indicates the acceptance decision

L out indicates the rejection decision.
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Competitors (SOTA Methods) for PBB

2) Mahalanobis distance [Lee et al., 2018]

M(x̃) = max
c∈Y

−(f(x̃)− µ̂c)>Σ̂−1(f(x̃)− µ̂c)

MHLNB(x̃; ζ, ε) =

{
out, if M(x̃) > ζ

in, if M(x̃) ≤ ζ

L µ̂c is the empirical class mean for each class c (training set)

L Σ̂ is the empirical covariance (trainig set)

L f(x̃) the vector of logits

L x̃ represents a magnitude ε perturbation of the original x

L ζ ∈ R+ is the threshold value

L in indicates the acceptance decision

L out indicates the rejection decision For a given x ∈ X .
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TBB versus PBB

1) Softmax Response
(SR) [Hendrycks and Gimpel, 2017, Geifman and El-Yaniv, 2017]
ODIN with T = 1 and ε = 0.

2) Mahalanobis distance (MHLNB) [Lee et al., 2018]
Mahalanobis distance without input pre-processing and with the softmax
output in place of the logits.

TBB

L Temperature scaling, T = 1

L Input pre-processing, ε = 0

PBB

L Dα, Tα = 1 and εα = 0.00035

L Dβ, Tβ = 1.5 and εβ = 0.00035

L ODIN, TODIN = 1.3 and εODIN = 0

L MHLNB, TMHLNB = 1 and εMHLNB = 0.0002
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Discrimination Performance for TBB

Figure 1. DOCTOR, SR and MHLNB to split data samples in
TinyImageNet under TBB. Histograms for wrongly classified samples and
correctly classified samples.
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Discrimination Performance for PBB

Figure 2. DOCTOR, ODIN and MHLNB to split data samples in
TinyImageNet under PBB. Histograms for wrongly classified samples and
correctly classified samples.
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PBB: ROCs

CIFAR10

CIFAR100

TinyImageNet

SVHN

Figure 3. ROC curves. Comparison between DOCTOR, ODIN and
MHLNB. The red dashed line marks the 95% threshold of TRR.
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Overall Results: TBB & PBB

Table 1. Collection of the results in both TBB and PBB. For all methods,
in TBB, we set T = 1 and ε = 0; in PBB we set : εα = 0.00035 and
Tα = 1, εβ = 0.00035 and Tβ = 1.5, εODIN = 0 and TODIN = 1.3,
εMHLNB = 0.0002 and TMHLNB = 1. In TBB for ODIN we report same
results as in SR, since both methods coincide when T = 1 and ε = 0.

DATASET METHOD
AUROC % FRR % (95 % TRR)

TBB PBB TBB PBB

CIFAR10
Acc. 95%

Dα 94 95.2 17.9 13.9

Dβ 68.5 94.8 18.6 13.4

ODIN 93.8 94.2 18.2 18.4

SR 93.8 - 18.2 -

MHLNB 92.2 84.4 30.8 44.6

CIFAR100
Acc. 78%

Dα 87 88.2 40.6 35.7

Dβ 84.2 87.4 40.6 36.7

ODIN 86.9 87.1 40.5 40.7

SR 86.9 - 40.5 -

MHLNB 82.6 50 66.7 94

Tiny
ImageNet
Acc. 63%

Dα 84.9 86.1 45.8 43.3

Dβ 84.9 85.3 45.8 45.1

ODIN 84.9 84.9 45.8 45.3

SR 84.9 - 45.8 -

MHLNB 78.4 59 82.3 86

DATASET METHOD
AUROC % FRR % (95 % TRR)

TBB PBB TBB PBB

SVHN
Acc. 96%

Dα 92.3 93 38.6 36.6

Dβ 92.2 92.8 39.7 38.4

ODIN 92.3 92.3 38.6 40.7

SR 92.3 - 38.6 -

MHLNB 87.3 88 85.8 54.7

Amazon
Fashion
Acc. 85%

Dα 89.7 - 27.1 -

Dβ 89.7 - 26.3 -

SR 87.4 - 50.1 -

Amazon
Software
Acc. 73%

Dα 68.8 - 73.2 -

Dβ 68.8 - 73.2 -

SR 67.3 - 86.6 -

IMDb
Acc. 90%

Dα 84.4 - 54.2 -

Dβ 84.4 - 54.4 -

SR 83.7 - 61.7 -
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Misclassification Detection in Presence of OOD Samples

L Doctor is not tuned for OOD detection (differently from ODIN).

L We test ODIN and Doctor when one sample to reject out of five
(♣), three (♦), or two (♠) is OOD.

DATASET-
In

DATASET-
Out

AUROC % FRR % (95 % TRR)

Dα Dβ ODIN ENERGY Dα Dβ ODIN ENERGY

CIFAR10
♣

iSUN 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 92.4 / 0 14 / 0.5 13.5 / 0.4 17.2 / 0.3 32.2 / 0.1

Tiny (res) 95.2 / 0.1 94.9 / 0 94.6 / 0.1 92.3 / 0.1 14 / 0.4 14 / 0.5 17.8 / 0.4 32.2 / 0.1

CIFAR10
♦

iSUN 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 92.9 / 0 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 27 / 1

Tiny (res) 95.4 / 0.1 95 / 0.1 94.8 / 0.1 92.8 / 0 15 / 0.1 14.8 / 0.7 17 / 0.5 28.8 / 1.9

CIFAR10
♠

iSUN 95.6 / 0.1 95.6 / 0 95.4 / 0 93.6 / 0.1 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 25.1 / 0.2

Tiny (res) 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.5 / 0 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 25.6 / 0.3

Table 2. Results in terms of mean / standard deviation.
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Takeaways from Doctor

L Doctor provides a very simple tool for detecting
misclassification errors which applies to any pre-trained classifier

L We leverage simple diversity measures to better discriminate between
trusted and untrusted model predictions

L Our method adapts to various scenarios depending on the level of
information access of the DNN, uses only the pre-trained model.

Limitations and open issues:

L Statistical capabilities and limitations are not known

L It does not perform well in presence of a large number of classes

L It cannot incorporate validation samples.
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Misclassification Detection Problem

Misclassification detection is a standard binary classification
problem, where the random binary error event

E = 1[fDn(X) ≠ Y ]
needs to be predicted from a given x

The underlying pdf pX can be expressed as a mixture of two
random variables:

X+ ∼ pX ∣E(x∣0) (positive instances E = 0)

X− ∼ pX ∣E(x∣1) (negative instances E = 1)

Our focus: How can we enhance the performance of Doctor
when provided with both positive and negative examples?
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Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures,
inspired by the measure of diversity investigated in (Rao 1982)

The quantity p̂(x) denotes the posterior distribution output
(p̂(y = 1∣x), . . . , p̂(y = C ∣x)) by the model given the input x

We define an uncertainty measure sd∶X → R that assigns a
score sd(x) to every feature x in the input space X as

sd(x) = E[d(Ŷ , Ŷ ′)∣X = x] = ∑
y∈Y
∑
y′∈Y

d(y, y′)p̂(x)yp̂(x)y′

where d∶Y ×Y → R is a symmetric matrix of positive values
Given a feature x, the random variables Ŷ , Ŷ ′ ∼ p̂(x) are i.i.d.
according to p̂(x).
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Optimization Problem

Definition (Objective function )

Given the hyperparameter λ ∈ [0,1],

L(D) = λ̄E[p̂(X+)D p̂(X+)⊺] − λE[p̂(X−)D p̂(X−)⊺]
For a fixed K ∈ R+, we define our optimization problem as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimizeD∈RC×C L(D)
subject to dii = 0, ∀i ∈ Y

dij ≥ 0, ∀i, j ∈ Y
dij = dji, ∀i, j ∈ Y
T (DD⊺) ≤K
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Closed Form Solution

Proposition (Closed form solution)

The constrained optimization problem defined above admits a
closed form solution

D∗ = 1

Z
(d∗ij),

where

d∗ij =
⎧⎪⎪⎨⎪⎪⎩

ReLU (λE[p̂(X−)⊺i p̂(X−)j] − λ̄E[p̂(X+)⊺i p̂(X+)j]) i ≠ j
0 i = j

The multiplicative constant Z is chosen such that D∗ satisfies
the condition T (D∗(D∗)⊺) =K

The proof is based on a Lagrangian approach.
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Relative Uncertainty Score

Definition (Relative uncertainty)

For a given feature x, the Relative Uncertainty (Rel-U) score as

sRel-U(x) = p̂(x)D∗ p̂(x)⊺

We can derive a misclassification detector g by fixing a
threshold γ ∈ R,

g(x; s, γ) = 1[sRel-U(x) ≤ γ],
where g(x) = 1 implies Ê = 0

Note that the Gini coefficient sgini(x) =H2(Ŷ ∣x) proposed by
Doctor is a special case of sRel-U(x) when dij = 1 if i ≠ j and
dii = 0

Thus, s1−d(x) = sgini(x) when choosing d to be the Hamming
distance.
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Figure 1. Intuitive example illustrating the advantage of Rel-U compared to entropy-based methods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than Doctor [1].

Misclassification Detection Problem

Misclassification detection is a standard binary classification problem, where the error event
E , 1[f (X) 6= Y ]

needs to be estimated from X. The underlying pdf pX can be expressed as a mixture of two random variables:
X+ ∼ pX|E(x|0) (positive instances) and X− ∼ pX|E(x|1) (negative instances)

Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity investigated
in [4]. The quantity p̂(x) is the posterior distribution output by the model given the input x. We define an
uncertainty measure sd : X → R that assigns a score sd(x) to every feature x in the input space X as

sd(x) , E[d(Ŷ , Ŷ ′)|X = x] =
∑

y∈Y

∑

y′∈Y
d(y, y′)p̂(x)yp̂(x)y′,

where d : Y × Y → R is in a distance measure and, given X = x, the random variables Ŷ , Ŷ ′ ∼ p̂(x) are
independently and identically distributed according to p̂(x).

Optimization Problem

Let us introduce our objective function with hyperparameter λ ∈ [0, 1],

L(D) , (1− λ) · E
[
p̂(X+)D p̂(X+)

>
]
− λ · E

[
p̂(X−)D p̂(X−)>

]

and for a fixed K ∈ R+, we define our optimization problem as follows:



minimizeD∈RC×C L(D)

subject to dii = 0, ∀i ∈ Y
dij ≥ 0, ∀i, j ∈ Y
dij = dji, ∀i, j ∈ Y
Tr(DD>) ≤ K

Proposition

The constrained optimization problem defined above admits a closed form solution D∗ = 1
Z (d

∗
ij), where

d∗ij =





ReLU
(
λ · E

[
p̂(X−)>i p̂(X−)j

]
− (1− λ) · E

[
p̂(X+)

>
i p̂(X+)j

])
i 6= j

0 i = j
.

The multiplicative constant Z is chosen such that D∗ satisfies the condition Tr(D∗(D∗)>) = K.

Relative Uncertainty Score

Finally, we define the Relative Uncertainty (Rel-U) score for a given feature x as
sRel-U(x) , p̂(x)D∗ p̂(x)>.

We can derive a misclassification detector g by fixing a threshold γ ∈ R, g(x; s, γ) = 1 [s(x) ≤ γ], where
g(x) = 1 when E = 1.

Remark Note that the Gini coefficient H2(Ŷ |x) = − log
∑

y∈Y
(
p̂(x)y

)2 proposed in [1] is a special case
of ?? when dij = 1 if i 6= j and dii = 0. Thus, s1−d(x) = sgini(x) when choosing d to be the Hamming
distance, which was also pointed out in [4, Note 1].

Misclassification Detection Results

Table 1. Misclassification detection performance in terms of average FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP [2] ODIN [3] Doctor [1] Rel-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)

LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)

OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)

RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)

LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)

OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)

RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Misclassification Detection Results
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Figure 2. Impact of the tuning split size on the misclassification performance on a ResNet-34 model trained with supervised CE loss for
our method and the Doctor. Hyperparameters are set to default values (T = 1.0, ε = 0.0, and λ = 0.5), so that only the impact of
the validation split size is observed.
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Figure 3. Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our method for high TPR regime.
The risk and coverage (RC) curves also looks similar between methods, with a small advantage to our method in terms of AURC.

Beyond i.i.d: Mismatched Data Detection
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Figure 4. CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test split for validation.
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Intuitive example illustrating the advantage of this method
compared to entropy-based methods
This method (left-end side heatmap) captures the real
uncertainty (central heatmap) much better than Doctor.
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Figure 1. Intuitive example illustrating the advantage of Rel-U compared to entropy-based methods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than Doctor [1].

Misclassification Detection Problem

Misclassification detection is a standard binary classification problem, where the error event
E , [f (X) 6= Y ]

needs to be estimated from X. The underlying pdf pX can be expressed as a mixture of two random variables:
X+ ⇠ pX|E(x|0) (positive instances) and X� ⇠ pX|E(x|1) (negative instances)

Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity investigated
in [4]. The quantity p̂(x) is the posterior distribution output by the model given the input x. We define an
uncertainty measure sd : X ! R that assigns a score sd(x) to every feature x in the input space X as

sd(x) , E[d(bY , bY 0)|X = x] =
X

y2Y

X

y02Y
d(y, y0)p̂(x)yp̂(x)y0,

where d : Y ⇥ Y ! R is in a distance measure and, given X = x, the random variables bY , bY 0 ⇠ p̂(x) are
independently and identically distributed according to p̂(x).

Optimization Problem

Let us introduce our objective function with hyperparameter � 2 [0, 1],
L(D) , (1 � �) · E

h
p̂(X+) D p̂(X+)>

i
� � · E

h
p̂(X�) D p̂(X�)>

i

and for a fixed K 2 R+, we define our optimization problem as follows:8
>>>>>><
>>>>>>:

minimizeD2RC⇥C L(D)

subject to dii = 0, 8i 2 Y
dij � 0, 8i, j 2 Y
dij = dji, 8i, j 2 Y
Tr(DD>)  K

Proposition

The constrained optimization problem defined above admits a closed form solution D⇤ = 1
Z (d⇤ij), where

d⇤ij =

8
><
>:

ReLU
✓
� · E

h
p̂(X�)>i p̂(X�)j

i
� (1 � �) · E

h
p̂(X+)>i p̂(X+)j

i◆
i 6= j

0 i = j
.

The multiplicative constant Z is chosen such that D⇤ satisfies the condition Tr(D⇤(D⇤)>) = K.

Relative Uncertainty Score

Finally, we define the Relative Uncertainty (Rel-U) score for a given feature x as
sRel-U(x) , p̂(x) D⇤ p̂(x)>.

We can derive a misclassification detector g by fixing a threshold � 2 R, g(x; s, �) = [s(x)  �], where
g(x) = 1 when E = 1.
Remark Note that the Gini coefficient H2(bY |x) = � log

P
y2Y

�
p̂(x)y

�2 proposed in [1] is a special case
of ?? when dij = 1 if i 6= j and dii = 0. Thus, s1�d(x) = sgini(x) when choosing d to be the Hamming
distance, which was also pointed out in [4, Note 1].

Misclassification Detection Results

Table 1. Misclassification detection performance in terms of average FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP [2] ODIN [3] Doctor [1] Rel-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)
LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)
OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)
RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)
LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)
OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)
RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Misclassification Detection Results

(a) CIFAR-10 (b) CIFAR-100

Figure 2. Impact of the tuning split size on the misclassification performance on a ResNet-34 model trained with supervised CE loss for
our method and the Doctor. Hyperparameters are set to default values (T = 1.0, ✏ = 0.0, and � = 0.5), so that only the impact of
the validation split size is observed.

(a) ResNet-34 ROC curve. (b) ResNet-34 RC curve.

Figure 3. Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our method for high TPR regime.
The risk and coverage (RC) curves also looks similar between methods, with a small advantage to our method in terms of AURC.
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Figure 4. CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test split for validation.
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Figure 1. Intuitive example illustrating the advantage of Rel-U compared to entropy-based methods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than Doctor [1].

Misclassification Detection Problem

Misclassification detection is a standard binary classification problem, where the error event
E , [f (X) 6= Y ]

needs to be estimated from X. The underlying pdf pX can be expressed as a mixture of two random variables:
X+ ⇠ pX|E(x|0) (positive instances) and X� ⇠ pX|E(x|1) (negative instances)

Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity investigated
in [4]. The quantity p̂(x) is the posterior distribution output by the model given the input x. We define an
uncertainty measure sd : X ! R that assigns a score sd(x) to every feature x in the input space X as

sd(x) , E[d(bY , bY 0)|X = x] =
X

y2Y

X

y02Y
d(y, y0)p̂(x)yp̂(x)y0,

where d : Y ⇥ Y ! R is in a distance measure and, given X = x, the random variables bY , bY 0 ⇠ p̂(x) are
independently and identically distributed according to p̂(x).

Optimization Problem

Let us introduce our objective function with hyperparameter � 2 [0, 1],
L(D) , (1 � �) · E

h
p̂(X+) D p̂(X+)>

i
� � · E

h
p̂(X�) D p̂(X�)>

i

and for a fixed K 2 R+, we define our optimization problem as follows:8
>>>>>><
>>>>>>:

minimizeD2RC⇥C L(D)

subject to dii = 0, 8i 2 Y
dij � 0, 8i, j 2 Y
dij = dji, 8i, j 2 Y
Tr(DD>)  K

Proposition

The constrained optimization problem defined above admits a closed form solution D⇤ = 1
Z (d⇤ij), where

d⇤ij =

8
><
>:

ReLU
✓
� · E

h
p̂(X�)>i p̂(X�)j

i
� (1 � �) · E

h
p̂(X+)>i p̂(X+)j

i◆
i 6= j

0 i = j
.

The multiplicative constant Z is chosen such that D⇤ satisfies the condition Tr(D⇤(D⇤)>) = K.

Relative Uncertainty Score

Finally, we define the Relative Uncertainty (Rel-U) score for a given feature x as
sRel-U(x) , p̂(x) D⇤ p̂(x)>.

We can derive a misclassification detector g by fixing a threshold � 2 R, g(x; s, �) = [s(x)  �], where
g(x) = 1 when E = 1.
Remark Note that the Gini coefficient H2(bY |x) = � log

P
y2Y

�
p̂(x)y

�2 proposed in [1] is a special case
of ?? when dij = 1 if i 6= j and dii = 0. Thus, s1�d(x) = sgini(x) when choosing d to be the Hamming
distance, which was also pointed out in [4, Note 1].

Misclassification Detection Results

Table 1. Misclassification detection performance in terms of average FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP [2] ODIN [3] Doctor [1] Rel-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)
LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)
OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)
RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)
LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)
OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)
RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Misclassification Detection Results

(a) CIFAR-10 (b) CIFAR-100

Figure 2. Impact of the tuning split size on the misclassification performance on a ResNet-34 model trained with supervised CE loss for
our method and the Doctor. Hyperparameters are set to default values (T = 1.0, ✏ = 0.0, and � = 0.5), so that only the impact of
the validation split size is observed.

(a) ResNet-34 ROC curve. (b) ResNet-34 RC curve.

Figure 3. Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our method for high TPR regime.
The risk and coverage (RC) curves also looks similar between methods, with a small advantage to our method in terms of AURC.
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Figure 4. CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test split for validation.
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Does Calibration Improve Detection?

Under review as a conference paper at ICLR 2024

Figure 3: Ablation studies for temperature, lambda, and noise magnitude effects. The x-axis represents
the experimental conditions, while the y-axis shows the performance metric.

methods are evaluated collectively. Furthermore, the post-hoc methods are not assessed on these
models. The primary flaw in their analysis stems from evaluating different detectors on distinct mod-
els, leading to comparisons between (models, detectors) tuples that have different misclassification
rates. As a result, such an analysis may fail to determine the most performant detection method in
real-world scenarios.

Does calibration improve detection? There has been growing interest in developing machine
learning algorithms that are not only accurate but also well-calibrated, especially in applications
where reliable probability estimates are desirable. In this section, we investigate whether models
with calibrated probability predictions help improve the detection capabilities of our method or not.
Previous work (?) has shown that calibration does not particularly help or impact misclassification
detection on models with similar accuracies, however, they focused only on calibration methods and
overlooked detection methods.

To assess this problem in the optics of misclassification detectors, we calibrated the soft-probabilities
of the models with a temperature parameter (?). Note that this temperature is not necessarily the same
value as the detection hyperparameter temperature. This calibration method is simple and effective,
achieving performance close to state-of-the-art (?). To measure how calibrated the model is before
and after temperature scaling, we measured the expected calibration error (ECE) (?) before, with
T = 1, and after calibration. We obtained the optimal temperature after a cross-validation procedure
on the tuning set and measured the detection performance of the detection methods over the calibrated
model on the test set. For the detection methods, we use the optimal temperature obtained from
calibration, and no input pre-processing is conducted (✏ = 0), to observe precisely what is the effect
of calibration. We set � = 0.5.

?? shows the detection performance over the calibrated models. We cannot conclude much from the
CIFAR benchmark as the models are already well-calibrated out of the training, with ECE of around
0.03. In general, calibrating the models slightly improved performance on this benchmark. However,
for the ImageNet benchmark, we observe that Doctor gained a lot from the calibration, while REL-U
remained more or less invariant to calibration on ImageNet, suggesting that the performance of
REL-U is robust under the model’s calibration.

Table 2: Impact of model probability calibration on misclassification detection methods. The
uncalibrated and the calibrated performances are in terms of average FPR at 95% TPR (lower is
better) and one standard deviation in parenthesis.

Architecture Dataset ECE1 ECET Uncal. Doctor Cal. Doctor Uncal. REL-U Cal. REL-U

DenseNet-121 CIFAR-10 0.03 0.01 31.1 (2.4) 28.2 (3.8) 32.7 (1.7) 27.7 (2.1)
CIFAR-100 0.03 0.01 44.4 (1.1) 45.9 (0.9) 45.7 (0.9) 46.6 (0.6)

ResNet-34 CIFAR-10 0.03 0.01 24.3 (0.0) 23.0 (1.4) 26.2 (0.0) 24.2 (0.1)
CIFAR-100 0.06 0.04 40.0 (0.3) 38.7 (1.0) 40.6 (0.7) 38.9 (0.9)

ResNet-50 ImageNet 0.41 0.03 76.0 (0.0) 55.4 (0.7) 51.7 (0.0) 53.0 (0.3)

7

Impact of model probability calibration on misclassification
detection methods
The uncalibrated and the calibrated performances are in terms
of average FPR at 95% TPR (lower is better) and one
standard deviation in parenthesis.
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Figure 1. Intuitive example illustrating the advantage of Rel-U compared to entropy-based methods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than Doctor [1].

Misclassification Detection Problem

Misclassification detection is a standard binary classification problem, where the error event
E , [f (X) 6= Y ]

needs to be estimated from X. The underlying pdf pX can be expressed as a mixture of two random variables:
X+ ⇠ pX|E(x|0) (positive instances) and X� ⇠ pX|E(x|1) (negative instances)

Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity investigated
in [4]. The quantity p̂(x) is the posterior distribution output by the model given the input x. We define an
uncertainty measure sd : X ! R that assigns a score sd(x) to every feature x in the input space X as

sd(x) , E[d(bY , bY 0)|X = x] =
X

y2Y

X

y02Y
d(y, y0)p̂(x)yp̂(x)y0,

where d : Y ⇥ Y ! R is in a distance measure and, given X = x, the random variables bY , bY 0 ⇠ p̂(x) are
independently and identically distributed according to p̂(x).

Optimization Problem

Let us introduce our objective function with hyperparameter � 2 [0, 1],
L(D) , (1 � �) · E

h
p̂(X+) D p̂(X+)>

i
� � · E

h
p̂(X�) D p̂(X�)>

i

and for a fixed K 2 R+, we define our optimization problem as follows:8
>>>>>><
>>>>>>:

minimizeD2RC⇥C L(D)

subject to dii = 0, 8i 2 Y
dij � 0, 8i, j 2 Y
dij = dji, 8i, j 2 Y
Tr(DD>)  K

Proposition

The constrained optimization problem defined above admits a closed form solution D⇤ = 1
Z (d⇤ij), where

d⇤ij =

8
><
>:

ReLU
✓
� · E

h
p̂(X�)>i p̂(X�)j

i
� (1 � �) · E

h
p̂(X+)>i p̂(X+)j

i◆
i 6= j

0 i = j
.

The multiplicative constant Z is chosen such that D⇤ satisfies the condition Tr(D⇤(D⇤)>) = K.

Relative Uncertainty Score

Finally, we define the Relative Uncertainty (Rel-U) score for a given feature x as
sRel-U(x) , p̂(x) D⇤ p̂(x)>.

We can derive a misclassification detector g by fixing a threshold � 2 R, g(x; s, �) = [s(x)  �], where
g(x) = 1 when E = 1.
Remark Note that the Gini coefficient H2(bY |x) = � log

P
y2Y

�
p̂(x)y

�2 proposed in [1] is a special case
of ?? when dij = 1 if i 6= j and dii = 0. Thus, s1�d(x) = sgini(x) when choosing d to be the Hamming
distance, which was also pointed out in [4, Note 1].

Misclassification Detection Results

Table 1. Misclassification detection performance in terms of average FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP [2] ODIN [3] Doctor [1] Rel-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)
LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)
OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)
RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)
LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)
OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)
RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Misclassification Detection Results

(a) CIFAR-10 (b) CIFAR-100

Figure 2. Impact of the tuning split size on the misclassification performance on a ResNet-34 model trained with supervised CE loss for
our method and the Doctor. Hyperparameters are set to default values (T = 1.0, ✏ = 0.0, and � = 0.5), so that only the impact of
the validation split size is observed.

(a) ResNet-34 ROC curve. (b) ResNet-34 RC curve.

Figure 3. Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our method for high TPR regime.
The risk and coverage (RC) curves also looks similar between methods, with a small advantage to our method in terms of AURC.
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Figure 4. CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test split for validation.
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Figure 1. Intuitive example illustrating the advantage of Rel-U compared to entropy-based methods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than Doctor [1].

Misclassification Detection Problem

Misclassification detection is a standard binary classification problem, where the error event
E , [f (X) 6= Y ]

needs to be estimated from X. The underlying pdf pX can be expressed as a mixture of two random variables:
X+ ⇠ pX|E(x|0) (positive instances) and X� ⇠ pX|E(x|1) (negative instances)

Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity investigated
in [4]. The quantity p̂(x) is the posterior distribution output by the model given the input x. We define an
uncertainty measure sd : X ! R that assigns a score sd(x) to every feature x in the input space X as

sd(x) , E[d(bY , bY 0)|X = x] =
X

y2Y

X

y02Y
d(y, y0)p̂(x)yp̂(x)y0,

where d : Y ⇥ Y ! R is in a distance measure and, given X = x, the random variables bY , bY 0 ⇠ p̂(x) are
independently and identically distributed according to p̂(x).

Optimization Problem

Let us introduce our objective function with hyperparameter � 2 [0, 1],
L(D) , (1 � �) · E

h
p̂(X+) D p̂(X+)>

i
� � · E

h
p̂(X�) D p̂(X�)>

i

and for a fixed K 2 R+, we define our optimization problem as follows:8
>>>>>><
>>>>>>:

minimizeD2RC⇥C L(D)

subject to dii = 0, 8i 2 Y
dij � 0, 8i, j 2 Y
dij = dji, 8i, j 2 Y
Tr(DD>)  K

Proposition

The constrained optimization problem defined above admits a closed form solution D⇤ = 1
Z (d⇤ij), where

d⇤ij =

8
><
>:

ReLU
✓
� · E

h
p̂(X�)>i p̂(X�)j

i
� (1 � �) · E

h
p̂(X+)>i p̂(X+)j

i◆
i 6= j
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.

The multiplicative constant Z is chosen such that D⇤ satisfies the condition Tr(D⇤(D⇤)>) = K.

Relative Uncertainty Score

Finally, we define the Relative Uncertainty (Rel-U) score for a given feature x as
sRel-U(x) , p̂(x) D⇤ p̂(x)>.

We can derive a misclassification detector g by fixing a threshold � 2 R, g(x; s, �) = [s(x)  �], where
g(x) = 1 when E = 1.
Remark Note that the Gini coefficient H2(bY |x) = � log

P
y2Y

�
p̂(x)y

�2 proposed in [1] is a special case
of ?? when dij = 1 if i 6= j and dii = 0. Thus, s1�d(x) = sgini(x) when choosing d to be the Hamming
distance, which was also pointed out in [4, Note 1].

Misclassification Detection Results

Table 1. Misclassification detection performance in terms of average FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP [2] ODIN [3] Doctor [1] Rel-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)
LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)
OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)
RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)
LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)
OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)
RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Misclassification Detection Results

(a) CIFAR-10 (b) CIFAR-100

Figure 2. Impact of the tuning split size on the misclassification performance on a ResNet-34 model trained with supervised CE loss for
our method and the Doctor. Hyperparameters are set to default values (T = 1.0, ✏ = 0.0, and � = 0.5), so that only the impact of
the validation split size is observed.

(a) ResNet-34 ROC curve. (b) ResNet-34 RC curve.

Figure 3. Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our method for high TPR regime.
The risk and coverage (RC) curves also looks similar between methods, with a small advantage to our method in terms of AURC.
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Figure 4. CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test split for validation.
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Figure 1. Intuitive example illustrating the advantage of Rel-U compared to entropy-based methods: Rel-U (left-end side heatmap) captures the real uncertainty (central heatmap) much better than Doctor [1].

Misclassification Detection Problem

Misclassification detection is a standard binary classification problem, where the error event
E , 1[f (X) 6= Y ]

needs to be estimated from X. The underlying pdf pX can be expressed as a mixture of two random variables:
X+ ∼ pX|E(x|0) (positive instances) and X− ∼ pX|E(x|1) (negative instances)

Rao’s Measure of Diversity

We propose to construct a class of uncertainty measures which is inspired by the measure of diversity investigated
in [4]. The quantity p̂(x) is the posterior distribution output by the model given the input x. We define an
uncertainty measure sd : X → R that assigns a score sd(x) to every feature x in the input space X as

sd(x) , E[d(Ŷ , Ŷ ′)|X = x] =
∑

y∈Y

∑

y′∈Y
d(y, y′)p̂(x)yp̂(x)y′,

where d : Y × Y → R is in a distance measure and, given X = x, the random variables Ŷ , Ŷ ′ ∼ p̂(x) are
independently and identically distributed according to p̂(x).

Optimization Problem

Let us introduce our objective function with hyperparameter λ ∈ [0, 1],

L(D) , (1− λ) · E
[
p̂(X+)D p̂(X+)

>
]
− λ · E

[
p̂(X−)D p̂(X−)>

]

and for a fixed K ∈ R+, we define our optimization problem as follows:



minimizeD∈RC×C L(D)

subject to dii = 0, ∀i ∈ Y
dij ≥ 0, ∀i, j ∈ Y
dij = dji, ∀i, j ∈ Y
Tr(DD>) ≤ K

Proposition

The constrained optimization problem defined above admits a closed form solution D∗ = 1
Z (d

∗
ij), where

d∗ij =





ReLU
(
λ · E

[
p̂(X−)>i p̂(X−)j

]
− (1− λ) · E

[
p̂(X+)

>
i p̂(X+)j

])
i 6= j

0 i = j
.

The multiplicative constant Z is chosen such that D∗ satisfies the condition Tr(D∗(D∗)>) = K.

Relative Uncertainty Score

Finally, we define the Relative Uncertainty (Rel-U) score for a given feature x as
sRel-U(x) , p̂(x)D∗ p̂(x)>.

We can derive a misclassification detector g by fixing a threshold γ ∈ R, g(x; s, γ) = 1 [s(x) ≤ γ], where
g(x) = 1 when E = 1.

Remark Note that the Gini coefficient H2(Ŷ |x) = − log
∑

y∈Y
(
p̂(x)y

)2 proposed in [1] is a special case
of ?? when dij = 1 if i 6= j and dii = 0. Thus, s1−d(x) = sgini(x) when choosing d to be the Hamming
distance, which was also pointed out in [4, Note 1].

Misclassification Detection Results

Table 1. Misclassification detection performance in terms of average FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.

Model Training Accuracy MSP [2] ODIN [3] Doctor [1] Rel-U

ResNet-34
(CIFAR-10)

CrossEntropy 95.4 25.8 (4.8) 19.4 (1.0) 14.3 (0.2) 14.1 (0.1)

LogitNorm 94.3 30.5 (1.6) 26.0 (0.6) 31.5 (0.5) 31.3 (0.6)

Mixup 96.1 60.1 (10.7) 38.2 (2.0) 26.8 (0.6) 19.0 (0.3)

OpenMix 94.0 40.4 (0.0) 39.5 (1.3) 28.3 (0.7) 28.5 (0.2)

RegMixUp 97.1 34.0 (5.2) 26.7 (0.1) 21.8 (0.2) 18.2 (0.2)

ResNet-34
(CIFAR-100)

CrossEntropy 79.0 42.9 (2.5) 38.3 (0.2) 34.9 (0.5) 32.7 (0.3)

LogitNorm 76.7 58.3 (1.0) 55.7 (0.1) 65.5 (0.2) 65.4 (0.2)

Mixup 78.1 53.5 (6.3) 43.5 (1.6) 37.5 (0.4) 37.5 (0.3)

OpenMix 77.2 46.0 (0.0) 43.0 (0.9) 41.6 (0.3) 39.0 (0.2)

RegMixUp 80.8 50.5 (2.8) 45.6 (0.9) 40.9 (0.8) 37.7 (0.4)

Misclassification Detection Results
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Figure 2. Impact of the tuning split size on the misclassification performance on a ResNet-34 model trained with supervised CE loss for
our method and the Doctor. Hyperparameters are set to default values (T = 1.0, ε = 0.0, and λ = 0.5), so that only the impact of
the validation split size is observed.
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Figure 3. Equivalent performance of the detectors in terms of ROC demonstrating lower FPR for our method for high TPR regime.
The risk and coverage (RC) curves also looks similar between methods, with a small advantage to our method in terms of AURC.

Beyond i.i.d: Mismatched Data Detection
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Figure 4. CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test split for validation.
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Concluding Remarks

Understanding the nature of misclassification errors:

Researchers often have a tendency to fixate on model
performance metrics, e.g., accuracy, but metrics only tell
part of the story of a model’s predictive decisions.

It is of paramount importance to understand what drives a
model to take certain decisions.

Rao’s Diversity Measure finds applications in detecting
misclassifications by assessing the distribution of distances
between predicted categories.

Uncertainty and robustness are critical problems: AI models that
demonstrate self-awareness of their errors are highly valuable.
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Open Problems and Extensions

We need a better understanding of many aspects:

Quantifying the link between distribution of distances of
predicted categories and misclassification errors in a
theoretically sound manner.

The acquired distance metric D can be employed to capture
model interpretability and robustness.

We need better benchmark models for natural distribution
drifts and calibration errors, uncertainty-robustness frontier.

Various extensions: regression, segmentation, generalized
settings (e.g., OOD data), evaluation, other forms of
uncertainty, applications, etc.
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Thank you for your attention

Pablo Piantanida (CNRS Université Paris-Saclay) Bellairs Workshop 70 / 70


	Introduction and Background
	Uncertainty in Machine Learning
	Information and Diversity Measures

	A Novel Approach to Misclassification Detection
	Measuring the Diversity of Predicted Categories
	A Data-Driven Approach for Measuring the Diversity of Predicted Categories

	Discussion and Research Perspectives

