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Uncertainty in Machine Learning

Input layer Hidden layer Output layer
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Need for Uncertainty-Awareness of ML Systems
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Need for Uncertainty-Awareness of ML Systems

Regions of interest: right shoulder, right mirror, inner mirror, left
mirror, left shoulder, front, center stack, speedometer.
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Uncertainty-Aware ML Systems

o lIdeally, when making a prediction, the learner knows what it
knows and, perhaps more importantly, what it does not know

@ This requires an adequate representation of predictions (e.g.,
in terms of distributions or sets) and quantification (e.g., in
terms of entropy) of their uncertainty, ...

@ ... as well as suitable learning algorithms to produce p-valued
predictors (e.g., conformal learning)

@ In this regard, a distinction between different sources and
types of uncertainty turns out to be meaningful, notably

o aleatoric (inherent randomness, irreducible)
o epistemic (lack of knowledge, reducible).
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Aleatoric versus Epistemic Uncertainty

“kichwa”
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“Not knowing the chance of mutually exclusive events and knowing the
chance to be equal are two quite different states of knowledge"

Ronald Fisher (1890-1962)
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Aleatoric vs. Epistemic: Two Main Types of Uncertainty

Aleatoric Uncertainty

Uncertainty stemming from inherent variability in the data itself

o Examples: Noisy sensor data, variability in human behavior

@ Modeling aleatoric uncertainty: Incorporating noise models
in the learning process.

Epistemic Uncertainty
Uncertainty arising from a lack of knowledge or information

o Bayesian perspective: Treating model parameters as random
variables (computationally expensive in large models)

e Quantifying epistemic uncertainty: Through model
ensembles, dropout methods, or Bayesian inference.
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Aleatoric versus Epistemic Uncertainty

@ Both types of uncertainty also play an important role in ML,
where the learner's state of knowledge strongly depends on the
amount of data seen so far ...
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Aleatoric versus Epistemic Uncertainty

@ ... but also on the underlying model assumptions
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strong prior (linear model) weaker prior (nonlinear model)
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Aleatoric versus Epistemic Uncertainty

STATISTICAL
DATA INFERENCE
1 !

@ In statistics both aletoric and epistemic uncertainty have
always played an important role; often without explicitly using

these terms
o Concepts from statistical inference are still relevant and
further developed in modern ML approaches.

Bellairs Workshop
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Methods for Uncertainty Quantification

e Bayesian Methods: Modeling uncertainty through
probabilistic approaches (e.g., conformal learning)

e Dropout-Based Methods: Using dropout layers during
training for uncertainty estimation

o Ensemble Methods: Utilizing multiple models to capture
different aspects of uncertainty.

Challenges and considerations:

@ Modeling challenges: Balancing complexity and
interpretability

e Impact on decisions: Understanding how uncertainty affects
decision-making processes.

Pablo Piantanida (CNRS Université Paris-Saclay) Bellairs Workshop



Classification Tasks Using Deep Neural Networks

P(Y|x) P(Y|x)
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Error
H(p, p) = H(p) + Dki(p. b)

@ Minimization of a risk using empirical data
Po(ylx) = arg inf Exy [~ log ps(Y]X)]

o ldeally, when making a prediction: f(x) = argmax, ps(y|x),
the learner knows what it knows and what is does not know.
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Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift?, Ovadia et al. 2019
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Neural Networks Do Not Know When They Are Wrong

Clean Severity = 1 Severity = 2 Severity = 3 Severity = 4 Severity = 5
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But, what causes these models to inadequately capture the
distributions of categories?
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A Probabilistic Model of Learning (1960)

Object

- Nature
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\ o . _uTraining ={(X1,"),..., (X, Ya)}
- Algorithm -
~.. (hidden variables) .-

o Imitation of the object: try to construct a predictor which
provides the best predictions to the supervisor output

e Approximation of the object: try to approximate the object
(nature) itself based on a model (typically ill-posed problem)

Uncertainty of model predictions is related to the
approximation py(y|x) of the objet.
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A Probabilistic Model of Imitation Learning (1960 - 1990)

P (511p (R, (f) — R(f)| > 5) < SS(}',n}e_"tJ-"w
feF

E {Sup B.(f) - Rm@ < 2\/ log S(7,m) + log2
feF

"

Vapnik—Chervonenkis theory (1960) addresses key questions:

@ What are the conditions for consistency of a learning rule
based on the empirical risk minimization principle?

@ How fast is the rate of convergence of the learning process?

@ How can one control the generalization ability (convergence
rate) of the learning process?

Their ingenious formulation led to the characterization of necessary
and sufficient conditions (e.g., finite VC-dimension) for
distribution-free minimization of a risk R(f) using data.
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Is Distribution-Free Inference Possible for Object Learning?

@ We study the extension of the distribution-free framework
beyond the imitation task for binary classification ) = {0,1}

@ Objective: Provide distribution-free inference on the
conditional label probability 7p(x) = Pr(Y = 1]x). Particularly,
in scenarios where mp(x) is not close to 0 or 1

@ Research question: Given training samples {x;,y;}",, can we
construct an algorithm from mapping a new data point x € R¢
to an (1 — a)-confidence interval C,(x) € R such that

P X,i1) € Cr(X, >1-a,
(Xi,Yi])ri@P(WP( ) € CaXnin) “

for all probability distributions P on R? x {0,1} ?
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Is Distribution-Free Inference Possible for Object Learning?

@ We begin with a few definitions. First, for ¢ € [0, %] and
a€[0,1], we define

2(1-a)t, a>3,
! a>tand 0<a<i

U(t,a)={%" 2’
1—%, a<t,
0, a=t=0

and for t € (%, 1] and let £(t,a) = £(1 - t,a)
e For any distribution @ on [0,1] and any « € [0, 1], define

La(Q) B Measulrglf;le fns. {ETNQ[K(T’ a(T))] : ETNQ[CL(T)] . a}
a:[0,1]—-[0,1]
@ Next, we will establish lower bounds on the length of a

distribution-free confidence interval for object learning.
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Distribution-Free Object Learning is Not Feasible

Theorem (Object learning is not feasible)

Let C,, be any algorithm that provides a (1 - «)-distribution-free
confidence interval for mp(x). Then, for any nonatomic distribution
P onRY x {0,1}, it holds that

Ex, v, iid p[1eb(Cn(Xn+1))] 2 La(Ip),

where I1p is the (unknown) distribution of the random variable
wp(X) €[0,1]; leb() denotes the Lebesgue measure on R.

@ Proof follows by using similar arguments to (Donoho 1988)

@ In the distribution-free setting, parameter estimation is
fundamentally as imprecise as prediction!

e Confidence intervals for estimating the label probabilities
7wp(x) = Pr(Y = 1x) have a lower bound on their length
that does not vanish even with sample size n - c0 ®
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Improving Calibration

@ lIdeally, true and estimated probabilities should coincide:
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bias on extreme probabilities (left), systematic overestimation (right)
o We say that a (binary) classifier is calibrated if
Pr(y:1|Xe{xeé\,’:p(y=1|x):a})=a, V ae(0,1).
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Conformal Learning

@ Instead of point predictions, make set-valued predictions
covering the true outcome with higher probability

e Conformal prediction (Vovk et al., 2004) is a framework for
reliable prediction that is rooted in classical frequentist statistics
and hypothesis testing

@ Instead of point predictions, CP makes set-valued predictions
covering the true outcome with high probability

g — P(yev={2309}) whp.

o Guaranteed validity: probability of an invalid prediction
(y ¢Y ) is (asymptotically) bounded by a > 0.
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Information and Diversity Measures
"“fmma{\o“' ,
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Shannon Entropy

Entropy H(X) of a discrete random variable (RV) X ~ p:
@ 1. Measure of uncertainty — “surprise” function s(x),
xe X, and H(X) = E[s(X)]
e 2. Independent of alphabet — s(x) = s(p(x))
e 3. Additivity:

s(p(x)a(y)) = s(p(x)) +s(aly)) - s(x)=logp(x)
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Shannon Entropy

Entropy H(X) of a discrete random variable (RV) X ~ p:

@ 1. Measure of uncertainty — “surprise” function s(x),
xe X, and H(X) = E[s(X)]

e 2. Independent of alphabet — s(x) = s(p(x))

e 3. Additivity:

s(p(z)a(y)) = s(p(x)) +s(a(y)) — s(z)=logp(z)
@ Lower probability implies higher surprise - s(x) = —logp(z)

H(X) = - 2;{ p(z)logp(x)

- ~E[logp(X)]

e H(X) is nonnegative, continuous, and strictly concave function
of p, and 0 < H(X) < log|X|.
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Mutual Information

@ Mutual Information for discrete RVs (X,Y) ~ p is defined as
I(X;Y) = H(X) - H(X[|Y)
= H(Y) - H(Y[X)
=H(X) + H(Y) - H(XY)

- . I C2Y)
) (a:,y)ze:/'\f'xyp( 7y)1 gp(x)p(y)

Mutual information is a measure of dependency

@ It is a non-negative function of pxy, concave in px for fixed
Py|x, and convex in pyjx for fixed px

e I(X;Y) >0 with equality iff X and Y are independent

@ Entropy and mutual information can be extended to continuous
alphabets, but care must be exercised in applications.
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Rényi Entropy

@ Rényi entropy for a discrete r.v. X with probability p(z):

~log > p(x)”

xeX
1 .
log B[p(X)*™'],
-

for a>0; Hy(X) - H(X) asa— 1
e Conditional Rényi entropy for discrete RVs (X,Y) ~ p(z,y):

Hao(XY) = 3" p(y)( ~log > plaly)® )

yey reX

Ha(x) =

- 8]1os X pav |

reX

There are many other information measures.
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Measures of Diversity

@ Diversity is a fundamental concept found in various scientific
disciplines, including statistics, ecology, and machine learning

o Extensive literature on measures of diversity within populations
and dissimilarity or similarity between populations

o Examples of applications: in anthropology, genetics,
economics, sociology, and biology

@ We will show that Rao’s measures of diversity (Rao et al.
1982) are essential tools that provide insights into the
predicted distributions and uncertainty.
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Shannon and Simpson Diversity Index

@ Shannon Diversity Index quantifies the uncertainty
associated with a random variable representing the distribution
of different categories:

H(Y) =~} p(y)logp(y)
yeX
p(y) is the probability of observing category p(y)

Simpson’s Diversity Index focuses on the probability that two
randomly selected individuals belong to different categories:

SGni=1- ) p(y)*,
yey
it considers the proportion of individuals of each type p(y)

It is particularly useful in ecology to measure biodiversity
and species dominance.
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Rao’s Diversity Measure (1982)

@ Proposed by Rao in 1982, Rao's Diversity Measure introduces a
unique perspective by focusing on the distribution of
distances between pairs of individuals:

sa= . ¥ d(y,y")p(y)p(y')

yeYy'ey

d(-,-) > 0 is a distance measure, and p(y) is the probability
measure of a discrete random variable

@ Note that the Simpson Diversity Index coefficient sginj is a
special case of sq when d;; =1 if i # j and d;; = 0. Thus,
S4 = Saini When choosing d to be the Hamming distance

@ Extensions to the continuous random variables are available.
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Fisher-Rao Riemannian Geometry

Definition (Fisher-Rao Distance (FRD))

@ Given a family of probability distributions:
C={q(10): 00}
@ Metric tensor (Fisher information):
G(0) = Eyq0)[ Vo log q(Y]0) Vg log q(Y1]6)]

>A{ %Q:
R. Rao and R. Fisher,
1956

is positive definite for any 6 € ©
@ Infinitesimal squared length element:

ds® = (6, d0) ey = dOT G(0)do
@ The FRD between ¢y (:|0) and ¢y (:|6) is:

dr.c(q0,q0) lnff \/d’y (t)G( (t ))dV(t) Blix)

the inf is over all piecewise smooth curves

@ FRD is the length of the geodesic between
(6,0") using G(0) as the metric tensor.
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Applications of Diversity Measures

o Ecological studies: In ecology, raw diversity measures help in
understanding species distribution and ecosystem health

o Statistical analysis: These measures are valuable in statistical
analysis, especially when dealing with categorical data

e Image and signal processing: In image and signal processing,
diversity measures aid in pattern recognition and understanding
the distribution of features

@ Our focus: Rao's Diversity Measure finds applications in
detecting misclassifications by assessing the distribution of
distances between predicted categories.
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© A Novel Approach to Misclassification Detection
@ Measuring the Diversity of Predicted Categories
@ A Data-Driven Approach for Measuring the Diversity of
Predicted Categories
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DocToOR: A Simple Method for Detecting

Misclassification Errors

Joint work with Federica Granese, Marco Romanelli,
Daniele Gorla and Catuscia Palamidessi

S,

9.' NEURAL INFORMATION
% . PROCESSING SYSTEMS
<

(https://neurips.cc/virtual/2021/spotlight/28017)

Detecting Misclassification Errors 34



We use the following notation:

# X C R% be the feature space

*

Y ={1,...,C} be the label space

pxy be the underlying p.d.f. over X x )

# Dp ={(x1,91),--.,(Xn,yn)} ~ pxy be a random realization of n
i.i.d. samples according to pxy denoting the training set

%

. fp, : X — Y be the predictor

fp,(x) = arg max P(ylx; Dy).
yey
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Problem Formulation

r---~-"~-~-~-~-~--~-- P(ylz) [€ ~ B
¢ xo ~ Px
Accept 0/ DETECTOR
Reject 1
A
|
L o -2 yeR

Detecting Misclassification Errors Background
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Ideal (Oracle) Setting

Definition (Error probability per sample)

For a given testing feature xg € X,

# E(xg) = 1[Y # fp, (x0)] is the error variable corresponding to a
predetermined predictor fp, (based on Py |x)

* P.(x0) = E[E(xg)|x0] =1— PY|X(fDn (x0)|x0) is the probability of
error classification w.r.t. Py|x

Py x(fp, (x0)[%o0)

r——————-——-——-—=---- Pyix |« - y

»l« xo ~ Px
ey < LR > (- P

f

yeRy

In practice, P.(x): X — [0,1] is not available, but can we approximate it?

Background
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Simpson Index of Diversity: D,

Proposition (SIMPSON INDEX OF DIVERSITY: D,)

For a given testing feature xg € X,

# 1—g(xo)=1->cy ]3§|X(y|x0), which approximates P.(x)
# (1 —/g(x0)) — A(xo) < Pe(x0) < (1 —+/9g(x0)) + A(x0), where

A(xo) = 24/2 KL(Py x (-x0)l| By x (-1x0))).

r——~~~=—~-==-=-=-- ﬁy\x < - 3
|
~ P
v Xg ~ Px
Accept 0 /
« - 1p- > -
s [1—g(x0) > 7-g(x0)]
A
|
L - - - - - - — veRy

Da(x0,7) £ 11— g(x0) > 7-g(x0)]
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Self-error Approximation: Djg

Definition (SELF-ERROR APPROXIMATION: Dp)

For a given testing feature x € X,
# F(xg) & ]l[}/} # fp,(X0)] is the self-error variable corresponding to
fp, (based on the model Py |x)
# P.(x0) 2 E[E(x0)[x0] = 1 — Py|x(fp, (%o)|x0) is the probability of
error classification w.r.t. ﬁy‘x

Isy|x(fDn(X0)\X0) =
r-——=-~-"~-=-=-=-=-=-=-- Pyix <~ 3
: Xp ~ Px
Accept 0 / = S
- [P S(1-P.
Reject 1 < { e(x0) > - ( ‘<XO))}
A
|
L oo o o e e e e e v ERY

39
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Evaluation Metrics

Definition (FRR versus TRR)

The false rejection rate (FRR) represents the probability that a hit (sample
correctly classified) is rejected, while the true rejection rate (TRR) is the
probability that a miss (sample wrongly classified) is rejected.

Definition (AUROC)

The area under the Receiver Operating Characteristic curve (ROC) depicts
the relationship between TRR and FRR. The perfect detector corresponds
to a score of 100%.

Definition (FRR at 95% TRR)

This is the probability that a hit is rejected when the TRR is at 95%.

Detecting Misclassification Errors Evaluation Metrics



Scenarios: Totally Black Box & Partially Black Box

Definition (Totally Black Box (TBB) Scenario)

In TBB only the output of the last layer of the network is available, hence
gradient-propagation to perform input pre-processing is not allowed.

Definition (Partially Black Box (PBB) Scenario)

In PBB we allow method-specific inputs perturbations and the possibility of
doing temperature scaling.

Detecting Misclassification Errors Evaluation Metrics



Competitors (SOTA Methods) for TBB and PBB

1) ODIN [Liang et al., 2018]

SODIN(x )— max

# f(X) the vector of logits

# X represents a magnitude e perturbation of the original x

exp(fi(x)/T)

if SODIN

in,

# T is the temperature scaling parameter

* *

Detecting Misclassification Errors

d € [0,1] is the threshold value
in indicates the acceptance decision

= out indicates the rejection decision.

Competing Methods

(x
(x

X

)
)

=[1:C] E _yexp(f;(x)/T

ODIN(%;6, T, ¢) = {fmt, if SODIN (X

<
>

)
5
5



Competitors (SOTA Methods) for PBB

2) Mahalanobis distance [Lee et al., 2018]

M) = max —(f(%) = fie) 'S (F(X) = e)
- t, if M(x) >
MHLNB(%: ¢, ) — { "7 F M) >¢
in, if M(x) <¢
# [ is the empirical class mean for each class ¢ (training set)

# 3 is the empirical covariance (trainig set)

f(x) the vector of logits
# X represents a magnitude e perturbation of the original x
¢ € Ry is the threshold value

in indicates the acceptance decision

= out indicates the rejection decision For a given x € X.

Detecting Misclassification Errors Competing Methods 43



TBB versus PBB

1) Softmax Response

(SR) [Hendrycks and Gimpel, 2017, Geifman and El-Yaniv, 2017]
ODIN with T'=1 and € = 0.

2) Mahalanobis distance (MHLNB) [Lee et al., 2018]
Mahalanobis distance without input pre-processing and with the softmax

output in place of the logits.
TBB
# Temperature scaling, T'=1
# Input pre-processing, ¢ = 0
PBB
# D, T, =1 and ¢, = 0.00035
# Dg, Tg = 1.5 and eg = 0.00035
% ODIN, TODIN = 1.3 and €ODIN = 0
% MHLNB, Tpmuing = 1 and empuns = 0.0002
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Discrimination Performance for TBB
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Figure 1. DOCTOR, SR and MHLNB to split data samples in
TinylmageNet under TBB. Histograms for wrongly classified samples and
correctly classified samples.
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Discrimination Performance for PBB
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Figure 2. DOCTOR, ODIN and MHLNB to split data samples in
TinylmageNet under PBB. Histograms for wrongly classified samples and
correctly classified samples.
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PBB: ROCs

TRR

1.000
0.975
0.950
0.925
0.900
0.875
0.850
0.825
0.800

CIFAR10

I
Dg
— obIN
MHLNB
0.2 0.4 0.6 0.8 1.0
FRR
CIFAR100
,»/
— D
Dg
— ODIN
MHLNB
02 04 056 08 10
FRR

1.000
0.975
0.950
0.925
<
& 0.900
=
0.875
0.850
0.825
0.800

0.98

TinylmageNet

—— Da

—— ODIN
MHLNB

03 04 05 06 07 08 09
FRR

SVHN

\

D,
Dg

— oDIN
MHLNB

0.3 0.4 0.5 0.6
FRR

Figure 3. ROC curves. Comparison between DOCTOR, ODIN and
MHLNB. The red dashed line marks the 95% threshold of TRR.
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Overall Results: TBB & PBB

Table 1. Collection of the results in both TBB and PBB. For all methods,
in TBB, weset T'=1 and ¢ = 0; in PBB we set : ¢, = 0.00035 and

To =1, eg = 0.00035 and Ts =15, copin =0 and Topiy = 1.3,

emHLNB = 0.0002 and Tyyning = 1. In TBB for ODIN we report same
results as in SR, since both methods coincide when T'=1 and ¢ = 0.

o o o
AUROC % | FRR % (95 % TRR) | _AUROC % | FRR % (95 % TRR)

DATASET ‘METHOD ‘

DATASET | METHOD
| TBB [ PBB [ TBB [  PBB ‘ |65 [ po6 | 65| PEB
D, 94 | 95.2 | 17.9 13.9
D* i Tors Tise 34 Da 923 | 93 | 38.6 36.6
CIFAR10 ()D;\I (J‘sv; ;)4V2 18‘2 18.4 SVHN Ds 923 | 928 | 897 384
Acc. 95% - 200 | 9% : : Acc. 96% ODIN 92.3 | 92.3 | 38.6 10.7
SR 93.8 - 18.2 - cc. 9% SR 923 - 386 N
MHLNB | 92.2 | 844 | 308 146 NIHLNE 573 | 58 |85 K
D, 87 | 88.2 | 40.6 35.7 B 7 | | 271
Dy 84.2 | 87.4 | 40.6 36.7 AMAZON - - -
CIFART00 DI 5.9 | 87.1 | 405 10 ; FASHION D 897 | - | %63
Acc. 78% - 5. - = — Acc. 85% SR 874 | - [ 501
SR 86.0 | - | 405 - > o0 2
MHLNB 82.6 | 50 | 66.7 94 AMAZON D“ ﬁsls . 73'2
SOFTWARE B - - -
D, 84.9 | 86.1 | 45.8 433 Ace, 3% Sk o3 T Tsos
Tiny Dy 84.9 | 85.3 | 45.8 45.1
IMAGENET ODIN 84.9 | 84.9 | 45.8 45.3 IMDB g“ 8:': - 54.2
0 T 544
Acc. 63% SR 829 | - | 458 " Acc. 90% s 84. 4.4
MHLNB | 784 | 59 | 823 86 SR 87| - 1617
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Misclassification Detection in Presence of OOD Samples

# DOCTOR is not tuned for OOD detection (differently from ODIN).

# We test ODIN and DocTOR when one sample to reject out of five

(), three (), or two (#) is OOD.

TINY (RES) | 95.5 /0.1 95.2 /0.1 [ 95.1 /0.1 | 93.5/0 | 147 /03 | 148 /0.5 | 17.1 /0.4 | 256 / 0.3

DATASET- DATASET- AUROC % FRR % (95 % TRR)
‘ Out Do | Ds | ODIN [ENERGY | D. | Dy | ODIN | ENERGY
CIFARI0 | 1SUN \954/01\951/01\946/01\ 924 /0 | 14/05 |135/04]17.2/03 ] 322 /0.1
* | Tiny (res) | 95.2 /0.1 949 /0 [94.6/0.1|923 /01| 14/04 | 14/05 |17.8 /04 | 322 /0.1
CIFAR10 | 1SUN | 955 /0.1 ]95.3/0.1 949 /0.1 | 92.9/0 [ 144 /0.6 |13.4/02]16.8/0.5| 27/1
| Tinv (res) | 95.4 /0.1 | 95/01 [94.8/01| 928 /0 | 15/0.1 |14.8/0.7| 17/05 | 288/ 1.9
CIFAR10 } ISUN | 956 /0.1] 956/0 | 954/0 |93.6/0.1]151/0.1]13.6/0.5]16.1/0.2]251/02

Table 2. Results in terms of mean / standard deviation.
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Takeaways from DOCTOR

% DOCTOR provides a very simple tool for detecting
misclassification errors which applies to any pre-trained classifier

# We leverage simple diversity measures to better discriminate between
trusted and untrusted model predictions

# Our method adapts to various scenarios depending on the level of
information access of the DNN, uses only the pre-trained model.

Limitations and open issues:

% Statistical capabilities and limitations are not known
# |t does not perform well in presence of a large number of classes

# |t cannot incorporate validation samples.
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© A Novel Approach to Misclassification Detection
@ Measuring the Diversity of Predicted Categories
@ A Data-Driven Approach for Measuring the Diversity of
Predicted Categories

gims.

Pablo Piantanida (CNRS Université Paris-Saclay) Bellairs Workshop



A Data-Driven Measure of Relative Uncertainty for

Misclassification Detection

Joint work with Eduardo Dadalto, Marco Romanelli,
and Georg Pichler

(https://openreview.net/pdf?id=ruGY8v1iOmK)
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Misclassification Detection Problem

o Misclassification detection is a standard binary classification
problem, where the random binary error event

E=1[fp,(X)#Y]

needs to be predicted from a given x

@ The underlying pdf px can be expressed as a mixture of two
random variables:

X ~ px|p(x/0) (positive instances E = 0)
X_ ~px|e(x|1) (negative instances E = 1)

@ Our focus: How can we enhance the performance of Doctor
when provided with both positive and negative examples?

Pablo Piantanida (CNRS Université Paris-Saclay) Bellairs Workshop



Rao’s Measure of Diversity

@ We propose to construct a class of uncertainty measures,
inspired by the measure of diversity investigated in (Rao 1982)

e The quantity p(x) denotes the posterior distribution output
(p(y = 1|x),...,p(y = C|x)) by the model given the input x

@ We define an uncertainty measure s;: X — R that assigns a
score s4(x) to every feature x in the input space X as

sa(x) = E[d(Y Y’ )X =x] Z z d(y,y )p(X)yp(X)y
yeVy'ey

where d: ) x ) — R is a symmetric matrix of positive values

o Given a feature x, the random variables ¥, Y’ ~ p(x) are i.i.d.
according to p(x).
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Optimization Problem

Definition (Objective function )

@ Given the hyperparameter A € [0, 1],
£(D) = AE[p(X.) Dp(X.)"] - AE[B(X_) DH(X_)"]

@ For a fixed K € R*, we define our optimization problem as:

minimize pgexc L(D)

subject to di =0, Vie)
di; >0, Vi, jey
dij = dji, Vi,jey
T(DD")< K
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Closed Form Solution

Proposition (Closed form solution)

@ The constrained optimization problem defined above admits a
closed form solution

* 1 *
D* = =(dj),

where
dr. = {RGLU ()\E[IA)(X—)ZTIA)(X—)J] - E‘E[IA)(X+)1TIA)(X+)]]) ]

@ The multiplicative constant Z is chosen such that D* satisfies
the condition T(D*(D*)") = K

The proof is based on a Lagrangian approach.
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Relative Uncertainty Score

Definition (Relative uncertainty)

For a given feature x, the Relative Uncertainty (Rel-U) score as

srel-u(x) = P(x) D" p(x)’

@ We can derive a misclassification detector g by fixing a
threshold ~ € R,

9(x;8,7) = 1[srelu(x) <71,
where g(x) = 1 implies £ =0

o Note that the Gini coefficient sgini(x) = H2(Y|x) proposed by

Doctor is a special case of sgel.y(x) when d;; =1 if i # j and
di; =0

@ Thus, s1-4(X) = Sgini(x) When choosing d to be the Hamming
distance.
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What Does the Diversity Matrix Uncover?

D Matrix Class-Wise Confusion Matrix with True Labels
airplane - - 161010065
automobile - 04 0 - 00000016
bird - 6 0 -50956 401
cat- | 036405»6.5402
deer - § 0025 -15400
dog - . o2 §015.3»0500
frog - F 004211 -100
horse - o 2002440 -00
-01
ship - 92400000 - 4
truck - 4101 200015 -
“““““ -0.0 CE .
¢ Q& &S DD LR Y e & & PP E R ¢ e Q& &S DD LR S
&\f& & T S S &\f&y\ o PSS @@1 S FFEEEL S
% N LS
® ® >

Predicted Label

@ Intuitive example illustrating the advantage of this method
compared to entropy-based methods

@ This method (left-end side heatmap) captures the real
uncertainty (central heatmap) much better than Doctor.
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Misclassification Detection Results

Model Training  Accuracy | MSP [2] ODIN [3] Doctor [1] REL-U

CrossEntropy  95.4 | 25.8 (48) 19.4 (1.0) 143 (02 14.1 (01)
ResNet-34 LoglFNorm 94.3 30.5 (16) 26.0 (06) 31.5 (05) 31.3 (056)
(CIFAR-10) Mixup 96.1 |60.1 10.7) 38.2 (20) 26.8 (06) 19.0 (03)
OpenMix 94.0 | 40.4 00) 39.5@13 28.3 07 28.5 (0.2
RegMixUp 97.1 34.0 52) 26.7 01) 21.8 (02) 18.2 (02
CrossEntropy  79.0 429 (25) 38.3 (02) 34.9 (05 32.7 (0. 3)
ResNet.34 Logl.tNorm 76.7 |58.3(10) 55.7 (01 65.5 02 65.4 (02
(CIFAR-100) Mixup 78.1 |535 k3 43516 37.504 37.50. 3)
OpenMix 77.2 46.0 00) 43.0 09) 41.6 (0.3) 39.0 (02
RegMixUp 80.8 50.5 (28) 45.6 (09) 40.9 (08) 37.7 (04

@ Misclassification detection performance in terms of average
FPR at 95% TPR (lower is better) in percentage with one
standard deviation over ten different seeds in parenthesis.
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Impact of the Split Size on the Misclassification

o 30.0 —&— Doctor 'I - —8— Doctor
[ N 42.0 . =
= LT #— RelU O = \.\ —— Rel-U
> "\x\x e O 40.0 £
& T &
o 20.0 x
e x & 380 n
10 20 30 40 50 10 20 30 40 50
Split (%) Split (%)
(a) CIFAR-10 (b) CIFAR-100

@ Impact of the tuning split size on the misclassification
performance on a ResNet-34 model trained with supervised CE
loss for our method

@ Doctor's hyperparameters are set to default values (7" = 1.0,
€=0.0, and A = 0.5), so that only the impact of the validation
split size is observed.
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Does Calibration Improve Detection?

Architecture Dataset ECE, ECEr ‘ Uncal. Doctor Cal. Doctor Uncal. REL-U Cal. REL-U
DenseNet-121 CIFAR-10 0.03 0.01 31.1(2.4) 28.2(3.8) 32.7(1.7) 27.72.1)
i CIFAR-100 0.03 0.01 44.4(1.1) 45.9(0.9) 45.7(0.9) 46.6 (0.6)
ResNet-34 CIFAR-10 0.03 0.01 24.3 (0.0) 23.0(1.4) 26.2 (0.0) 24.2(0.1)
) CIFAR-100 0.06 0.04 40.0 (0.3) 38.7(1.0) 40.6 (0.7) 38.9(0.9)
ResNet-50 ImageNet 0.41 0.03 ‘ 76.0 (0.0) 55.4(0.7) ‘ 51.7 (0.0) 53.0(0.3)

@ Impact of model probability calibration on misclassification
detection methods

@ The uncalibrated and the calibrated performances are in terms
of average FPR at 95% TPR (lower is better) and one
standard deviation in parenthesis.
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Misclassification Detection Results

ResNet-34 (CIFAR-10) (CE) ResNet-34 (CIFAR-10) (CE)
1.00 4 ~ —®— MSP (AUC=0.35)
ODIN (AUC=0.34)
] —#«— DOCTOR (AUC=0.34)
= 0.95 3
-4 ¥ A MLP (AUC=0.43)
e I~ Ours (AUC=0.30)
2 0.90 2 X 2
e ! —e— MSP (AUC=0.95) 3
9] 3 ODIN (AUC=0.95) —
£ 0.85 | —+~ DOCTOR (AUC=0.95) 1 AR
/) A MLP (AUC=0.93) Lol
i Ours (AUC=0,95) PO N ol
Ta ¥ 0
0.80 L
0.0 0.2 0.4 0.6 0.8 1.0 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate Coverage
(a) ResNet-34 ROC curve. (b) ResNet-34 RC curve.

Equivalent performance of the detectors in terms of ROC
demonstrating lower FPR for high TPR regime

Risk and coverage curves also looks similar between methods,
with a small advantage to our method in terms of AUROC.
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Beyond i.i.d: Mismatched Data Detection

frost
gauss blur

frost

f
gauss blur 8

fog

elastic elastic

gauss noise gauss noise

defocus defocus

glass glass
contrast contrast
impulse impulse
L bright L bright
jpeg jpeg
zoom zoom
motion motion
speckle speckle
pixelate pixelate
spatter spatter
. Doctor saturate I Doctor saturate
= REL-U shot  Smow = ReL-U shot  Snow
(a) AUC (b) FPR at 95% TPR

o CIFAR-10 vs CIFAR-10-C, ResNet-34, using 10% of the test
split for validation.
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© Discussion and Research Perspectives

&
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Concluding Remarks

Understanding the nature of misclassification errors:

@ Researchers often have a tendency to fixate on model
performance metrics, e.g., accuracy, but metrics only tell
part of the story of a model’s predictive decisions.

@ It is of paramount importance to understand what drives a
model to take certain decisions.

@ Rao's Diversity Measure finds applications in detecting
misclassifications by assessing the distribution of distances
between predicted categories.

Uncertainty and robustness are critical problems: Al models that
demonstrate self-awareness of their errors are highly valuable.
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Open Problems and Extensions

We need a better understanding of many aspects:

@ Quantifying the link between distribution of distances of
predicted categories and misclassification errors in a
theoretically sound manner.

@ The acquired distance metric D can be employed to capture
model interpretability and robustness.

o We need better benchmark models for natural distribution
drifts and calibration errors, uncertainty-robustness frontier.

@ Various extensions: regression, segmentation, generalized
settings (e.g., OOD data), evaluation, other forms of
uncertainty, applications, etc.
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Thank you for your attention
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