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Outline

Introduction



Motivation

» A large class of problems in statistics, machine learning, and signal
processing requires sequential processing of observed data with temporal
structure.

> geophysical systems (atmosphere, oceans)
> robotics

> target tracking, positioning, navigation

» communications

» biomedical signal processing

> financial engineering

> ecology

» Goals:

> prediction (with uncertainty quantification)
> parameter estimation (with interpretability)
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Inference in State-Space Models (SSM)

» Let us consider:
> a set of hidden states x; € RN= ¢t =1,...,T.
> a set of observations yx € RNv, t =1,...,T.
» An SSM is an underlying hidden process of x; that evolves and that,
partially and noisily, expresses itself through y:.

po(yi—1 \er

» Probabilistic notation:

»> Hidden state — p(x¢|x¢—1)
» Observations — p(y¢|x:)
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The estimation problem

» We sequentially observe data y; related to the hidden state x;.
> At time t, we have accumulated ¢ observations, yi.: = {y1,...,y¢}-
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The estimation problem

» We sequentially observe data y; related to the hidden state x;.

> At time t, we have accumulated ¢ observations, yi.: = {y1,...,y¢}-
» Interesting problems (when 6 is known):
Filtering: pg(x:|y1.+)
State prediction: pg(Xt4+r|y1:t), T>1
Observation prediction: pg(yt++|yi:t),
Smoothing: p9(xt77|y1:t)a T2>1

T2>1

\ A A A

> We want a sequential, efficient, and probabilistic
filtering of the observations.
> At time ¢, we want to process only y, but not
reprocess all y1.1—1 (that were already processed!)

State-space models as graphs Victor Elvira University of Edinburgh 5/41



Outline

Linear-Gaussian model and Kalman filter



The linear-Gaussian Model

» The linear-Gaussian model is arguably the most relevant SSM:
» Functional notation:

» Unobserved state — x¢ = AsXx¢+—1 + Q¢
» Observations — yt = Hix¢ +r¢

where q; ~ N(0,Q¢) and ry ~ N(0,Ry).
» Probabilistic notation:

»> Hidden state — p(x¢|x¢—1)
» Observations — p(y¢|x:) =

= N(x¢; Aexi—1,Qt)
N(ye; Hixe, Ry)
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The linear-Gaussian Model

» The linear-Gaussian model is arguably the most relevant SSM:
» Functional notation:

» Unobserved state — x¢ = AsXx¢+—1 + Q¢
» Observations — yr = Hix; + 1y

where q; ~ N(0,Q¢) and ry ~ N(0,Ry).
» Probabilistic notation:

> Hidden state — p(x¢|xi—1) = N(x¢; Arxi—1, Qt)
»> Observations — p(y¢|xt) = N(ye; Hixe, Rye)

» Kalman filter: obtains the filtering pdfs p(x:|y1.:), at each ¢

» Gaussian pdfs, with means and covariances matrices are calculated at each ¢
> Efficient processing of y¢, obtaining p(x¢|y1.:) from p(x;—1|y1:4—1)
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The linear-Gaussian Model

» The linear-Gaussian model is arguably the most relevant SSM:
» Functional notation:

» Unobserved state — x¢ = AsXx¢+—1 + Q¢
» Observations — yt = Hix¢ +r¢

where q; ~ N(0,Q¢) and ry ~ N(0,Ry).
» Probabilistic notation:

> Hidden state — p(x¢|xi—1) = N(x¢; Arxi—1, Qt)
»> Observations — p(y¢|xt) = N(ye; Hixe, Rye)

» Kalman filter: obtains the filtering pdfs p(x:|y1.:), at each ¢

» Gaussian pdfs, with means and covariances matrices are calculated at each ¢
> Efficient processing of y¢, obtaining p(x¢|y1.:) from p(x;—1|y1:4—1)

» Rauch-Tung-Striebel (RTS) smoother: obtains p(x:|y1.7)
> requires a backward reprocessing, refining the Kalman estimates
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Kalman summary and RTS smoother

> Hidden state — p(x¢|xt—1) = N (x¢; Arxi—1, Qr)
» Observations — p(y:|x:) = N(y; Hixi,Ry)

Kalman filter RTS smoother

» |nitialize: mg, Py > Fort=1T,...,1
» Fort=1,...,T Smoothing stage:
xt_+1 = Asmy
x; =Agm; P, =AP Al +Q
P, = AP AT +Q Gy = PtA:(P;+1)71
Update stage: m; =my; + Ge(m§, | —x;, )
zt =yt — Hix, P} =P: + G¢(P7,; — P;+1)G;r
S: = HP; H/ + R ’

K. =P, HS; !
m; = Xt_ +Ktzt
P, =P, —K{S:K,

v Filtering distribution: p(x;|y1.¢) = N (x;;m;, Py)
v Smoothing distribution: p(xt|y1.7) = N (x:; mj, P)
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Kalman summary and RTS smoother

> Hidden state — p(x¢|xt—1) = N (x¢; Arxi—1, Qr)
» Observations — p(y:|x:) = N(y; Hixi,Ry)

Kalman filter RTS smoother

» |nitialize: mg, Py > Fort=1T,...,1
» Fort=1,...,T Smoothing stage:
xt_+1 = Asmy
x; =Agm; P, =AP Al +Q
P, = AP AT +Q Gy = PtA:(P;+1)71
Update stage: m; =my; + Ge(m§, | —x;, )
zt =yt — Hix, P} =P: + G¢(P7,; — P;+1)G;r
S: = HP; H/ + R ’

K. =P, HS; !
m; = Xt_ +Ktzt
P, =P, —K{S:K,

v Filtering distribution: p(x;|y1.¢) = N (x;;m;, Py)
v Smoothing distribution: p(xt|y1.7) = N (x:; mj, P)

X How to proceed if some model parameters are unknown ?
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Outline

A doubly graphical perspective on SSMs



Goal of the talk

xt= Ax;—1 + qi, a ~N(0,Q)

This talk: DGLASSO model and inference approach

» Joint estimation of two matrices describing the hidden state dynamics in
the linear Gaussian state-space model.

> Sparse graphical model to represent (i) the (Granger) causal dependencies
among the states, and (ii) the correlation among the state noises.

» Majorization-minimization methodology for graphical inference.
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A graphical perspective on A

> Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1 + qq, a: ~N(0,Q)

» Graph discovery perspective: A can be seen as sparse directed graph
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A graphical perspective on A

> Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1 + qq, a: ~N(0,Q)

» Graph discovery perspective: A can be seen as sparse directed graph

e x; € RM* contains N, time-series
» each of them represents the latent
process in a node in the graph
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A graphical perspective on A

> Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Ax;—1 + qq, a: ~N(0,Q)

» Graph discovery perspective: A can be seen as sparse directed graph

0.9 0.7 0 0 o0

0 0 —03 0 0

N ) . ) A = 0 0 0 0 0.8

e x; € R"® contains N, time-series 0 —o0.1 0 0 o
0 0 05 0 0

» each of them represents the latent
process in a node in the graph

e A(i,j) is the linear effect from node j at
time ¢t — 1 to node ¢ at time ¢:

N

Teo =Y Al )Te-1,5 + G

j=1

o A(i,j) #0 = x¢_1,; Granger-causes x ;.
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A graphical modeling P = Q!

x¢= Ax¢_1 + qy, q: ~N(0,Q)

e Gaussian graphical model (GGM) perspective: P = Q' can be seen as an
sparse undirected graph.

a(n) L a(®){a(y),j € 1,...,N.\{n,£}} < P(n,l) = P({,n) =0.

2 0 —0.1 0 0
0 0.9 03 —-0.2 05
P=Q != -0.1 0.3 0.8 0 0

0 —0.2 0 2 0
0 0.5 0 0 1.5
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Summary of DGLASSO model

Summary representation of the DGLASSO graphical model, for the example graphs A and P

from the two previous slides.

DGLASSO (dynamic graphical lasso): maximum a posteriori (MAP) es-
timator of A and P under lasso sparsity regularization on both matrices,
given the observed sequence yi.7.
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Outline

Point-wise estimation: GraphEM and DGLASSO algorithms



Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A", P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yi.r|A,P)
AP A

= argmin —logp(A, P) —logp(y1.T|A,P) = L(A,P)
AP

Lo(A,P)
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Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A", P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yi.r|A,P)
AP A

= argmin —logp(A, P) —logp(y1.T|A,P) = L(A,P)

)

Lo(A,P)

e Lasso penalty (prior): we promote sparse matrices (A, P) for interpretable
and compact network of connections:

Lo(A,P) = Aal|Alls + Ar[IP[1,
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Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A" P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yr.T|A,P)
AP

= argmin —logp(A,P) —logp(y1.r|A,P) = L(A,P)
AP

Lo(A,P)

e Lasso penalty (prior): we promote sparse matrices (A, P) for interpretable
and compact network of connections:

Lo(A,P) = Aal|Alls + Ar[IP[1,
e log likelihood:

T
= 3log|27S,(A,P)| + zt(A P)'S:(A,P) 'z (A, P).

t=1

> requires to run KF using (A, P)
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Proposed penalized formulation
Goal. MAP estimate of A and P (P =Q'):

A" P" = argmax p(A,Plyi.r) = argmax p(A,P)p(yr.T|A,P)
AP

= argmin —logp(A, P) —logp(y1.7|A,P) = L(A, P)

)

Lo(A,P)

e Lasso penalty (prior): we promote sparse matrices (A, P) for interpretable
and compact network of connections:

Lo(A,P) = Aal|Alls + Ar[IP[1,
e log likelihood:

T
= 3log|27S,(A,P)| + zt(A P)'S:(A,P) 'z (A, P).

t=1

> requires to run KF using (A, P)
Challenges:
» Joint minimization with non-smooth and non-convex implicit loss.
» gradient-based solutions are challenging (unrolling KF recursion) and
numerically unstable
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Construction of the majorant function

EM-like approach:!
» Majorizing approximation (E-step): Run the Kalman filter/RTS smoother
by setting (K,IS) € RNaxNa » Sy and build the majorizing
approximation ( > V(A P)):

T T
=St (P(\Il “AAT —AAT ¢ A@AT)) — 5 logdet(2nP),

where, for every t € {1,...,T}, G; = 5:(A)T(AZ:(A)T + P11, and

T
1
= B aie)’
t=1
T

1
® = T ZE§—1 i (o)’
t=1

T
1
A= T E G +ui(pi)T,
t=1

using RTS outputs (i, 33)1<.<r using (A, P).

1R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253—-264, 1982.

State-space models as graphs Victor Elvira University of Edinburgh

16/41



DGLASSO minimization procedure

> Block alternating majorization-minimization technique:
Set (A POy,
At each iteration 7 € N,
(a) Run RTS to build function (E-step)
(b) Update transition matrix (M-step):

. 1 .
AlHD = argmin +AallAllt (1A = AT
A 20 4
(c) Run RTS to build function (E-step)
(d) Update precision matrix (M-step):
) 1 N
POt — argmin [P+ [P — P2
P 20p

> Proximal terms, with stepsizes (64,6p) > 0, to stabilize the minimization
process and guarantee convergence of iterates.

» Convenient bi-convex structure of Q(-, -; 11, 13)

» Step (b) is a lasso-like regression problem
> Step (d) is a GLASSO-like problem.
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Convergence theorem

Consider the sequence {A(i),P@)}igN generated by DGLASSO, as-
suming exact resolution of both inner steps (b) and (d). Denote
L = Lo+ L1.7 the loss function.

> The sequence {A® P}, produced by DGLASSO algorithm
satisfies

(VieN) A POy <A@ pW),

> If the sequence {A) P },cy is bounded, then {A®) P},
converges to a critical point of L.

e Proof based on the recent work.?

e In practice, inner mininimization steps (b) and (d) using a Dykstra proximal
splitting solver.®

2L. T. K. Tien, D. N. Phan, and N. Gillis. An inertial block majorization minimization
framework for nonsmooth nonconvex optimization. Technical report, 2020.
https://arxiv.org/abs/2010.12133.

3H. H. Bauschke and P. L. Combettes. A Dykstra-like algorithm for two monotone
operators. Pacific Journal of Optimization, 4:383-391, 2008
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Summary of the GraphEM algorithm

»> DGLASSO generalises our previous GraphEM,* where only A is unknown.

GraphEM algorithm

> Initialization of A().

» Fori=1,2,...

E-step Run the Kalman filter and RTS smoother by setting A’ := AG=1) and
construct Q(A; A(=1),

M-step Update A () = argmin (Q(A; A(i_l))) using Douglas-Rachford algorithm
(simpler version) or monotone+skew (MS) algorithm (generalized version).

> Flexible approach, valid as long as the proximity operators of (fm)2<m<m

. . M
are available, with Lo =3 fm

4V. Elvira and E. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.
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Outline

Point-wise estimation: extensions



Ongoing extensions: beyond ¢; norm (1/3)

» GraphEM requires the penalty term Lo(A) to be s S—
convex (e.g., £1 norm). &
» However, for very sparse graphs, non-convex s
penalties such as SCAD, MCP, CELO have shown !
to be more suited than ¢; norm (closer to o8 1
pseudo-norm 4p). R

> GraphlT algorithm® implements an iterative reweighted (IR) scheme

> MM framework: Lo(A) is approximated by a surrogate convex function
> optimization via modern solvers with strong convergence gurantees

27 17 27
“ A a
o5 > R o5 '/‘/ 7R 5 s TR .
/ >3 \ / ] 3 \ / »3
5. A X8 p [L_¥6. R p
) 1 / ) 1 4 +
B 8 ‘8
(a) True graph (b) GraphEM (c) GraphlT

5E. Chouzenoux and V. Elvira. “GraphlT: Iterative reweighted £; algorithm for sparse graph
inference in state-space models”. In: [CASSP. 2023.
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Ongoing extensions: beyond Markovianity (2/3)

» Non-Markovian LG-SSM:
> Unobserved state — x: = 3.5 | A;x;; + q
» Observations — yt = Hix¢ +r¢
» Standard filtering and smoothing approach with known {A4;}7,

» stacking (columnwise) the p consecutive states into
Zy = [X¢;Xe—15 .- - Xe—py1) € RPVe
» run KF and RTS in the extended model

7t = Az 1 + qt,
y: = Hz + 1y,

where we define

Al A,

§ I 0o --- 0

A = ] . ) c RPN(Z‘XPN1'7
(0) I 0

T y XPpNg o Q
B O R o= | 3
d ~N(0.Q), and r, ~ N0, R)
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Ongoing extensions: beyond Markovianity (2/3)

09 07 0 0 0 0
A= 0o o -03 |,A.=| 0 0 0
0 0 0 0 08 0
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Ongoing extensions: beyond Markovianity (2/3)

» LaGrangEM (ICASSP 2024): a GraphEM-type algorithm that operates in
non-Markovian models including desirable properties and interpretability,

e.g.,
» acyclic graph
> sparsity
» only one-lag interaction at maximum betwen nodes (more sparsity!)

» reasonable in some physical models
> one input arrow at maximum at each node (even more sparsity!)

P strong connection with modern Granger causality models'

1
9—7 ‘\'z

) @G

(a) (b)

» So far, great results but with intermediate/post-processing mapping steps

which may compromise the theoretical guarantees (7
» ongoing work in bridging the gap between well-perorming methods and solid

theory
°D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "“Hierarchical
algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: |EEE
Journal of biomedical and health informatics 23.1 (2018), pp. 143-155.
Victor Elvira
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Ongoing extensions: beyond linearity (3/3)

» Models of this type:

J
xX; = ZAjcpj(xt_l) +q:

j=1
e.g., with J =3:

Xt = A1xe—1 + Aox; 1 + Asx;  +qr

» possible to include cross-terms

» Functional learning (Taylor-expansion perspective)
» Ongoing work with several challenges:

> too high-dimensional space
> identifiability issues
» even more complicated for fully Bayesian approaches

State-space models as graphs Victor Elvira University of Edinburgh
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Outline

Probabilistic estimation



SpaRJ algorithm

> SpaRJ’ (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1i.7).

7B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
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SpaRJ algorithm

> SpaRJ’ (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1i.7).
» The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
> M, € {0,1}N=*Nx: sparsity pattern sample
> An: matrix A sample, with non-zero elements, A(¢,5) for

{(&,9) : Mn(4,5) = 1}

7B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian

State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
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SpaRJ algorithm

> SpaRJ’ (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1i.7).
» The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
> M, € {0,1}N=*Nx: sparsity pattern sample
> An: matrix A sample, with non-zero elements, A(¢,5) for
{(&,9) : Mn(4,5) = 1}
> We use reversible jump MCMC (RJ-MCMC) to explore p(A|y1.7).2

» MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |My]|.

7B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
8P. J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711-732.
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SpaRJ algorithm

> SpaRJ’ (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1i.7).
» The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
> M, € {0,1}N=xNz: sparsity pattern sample
> A,: matrix A sample, with non-zero elements, A(%, j) for
{@@,5) : Mn(4,j) = 1}
> We use reversible jump MCMC (RJ-MCMC) to explore p(A|y1.7).2
> MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |My]|.
» |t requires to define:

> transition kernels for the model jumps
» mechanism to set values when jumping to a more complex model.

7B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.

8P. J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711-732.
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
Step 2: Propose A’
Propose A’ using an MCMC sampler conditional on M’
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
Step 2: Propose A’
Propose A’ using an MCMC sampler conditional on M’
Step 3: MH accept-reject
Evaluate Kalman filter with A := A’
Set " := log(p(y1.7|A"))p(A")
Compute log(ar) := ' —l,—1 + ¢ and Accept w.p. ar:
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Pseudocode of SpaRJ

Input: Known SSM parameters {Xo, Po, Q, R, H}, observations {yt}zzl,
hyper-parameters, number of iterations N, initial value Ag
Output: Set of sparse samples {A,}N_;
Initialization
Initialize My as fully dense (all ones) and Ag
Run Kf obtaining lo := log(p(y1.7|A0))p(Ao)
forn=1,...,N do
Step 1: Propose model
Propose a new sparsity pattern M’, obtaining a symmetry correction of c.
Step 2: Propose A’
Propose A’ using an MCMC sampler conditional on M’
Step 3: MH accept-reject
Evaluate Kalman filter with A := A’
Set " := log(p(y1.7|A"))p(A")
Compute log(ar) := ' —l,—1 + ¢ and Accept w.p. ar:
if Accept then
Set My, :=M’', A, :=A’, I, :=log(p(y1.7|A"))p(A’)
else
Set My, := Mn—l,An = An—l:ln =lp_1
end if
end for
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Experimental evaluation



Data description and numerical settings

e Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)i1<;<s, so that Ny = N, = 23:1 b;. We set T = 103,

Q =o3ld, R =0ogld, Py = opld.

[ Dataset || N [ (bj)i<j<o |

(UQ70R7UP) ‘

State-space models as graphs

A 9 (3,3,3) | (1071, 1071, 107%)

B 9 (3,3,3) (1,1,107%)

C 16 | (3,5,5,3) | (10-5, 101,107 %)

D 16 | (3,5,5,3) (1,1,107%)
Victor Elvira

University of Edinburgh
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Data description and numerical settings

e Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)i1<;<s, so that Ny = N, = Z?‘:l b;. We set T = 103,
Q =o3ld, R =0ogld, Py = opld.

l Dataset H N, ‘ (bj)lgjgb ‘ (UQ,O’R7UP) ‘
A 9 (3,3,3) | (1071, 1071, 107%)
B 9 (3,3,3) (1,1,107%)
C 16 | (3,5,5,3) | (10-5, 101,107 %)
D 16 | (3,5,5,3) (1,1,107%)

e GraphEM is compared with:
> Maximum likelihood EM (MLEM)?

» Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)™®

9S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.

op, Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical
algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: |EEE
Journal of biomedical and health informatics 23.1 (2018), pp. 143-155.
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Experimental results of GraphEM

True graph (left) and GraphEM estimate (right) for dataset C.




Experimental results of GraphEM

method RMSE | accur. prec. recall spec. F1
GraphEM 0.081 | 0.9104 | 0.9880 | 0.7407 | 0.9952 | 0.8463

A MLEM 0.149 | 0.3333 | 0.3333 1 0 0.5
PGC - 0.8765 | 0.9474 | 0.6667 | 0.9815 | 0.7826
CGC - 0.8765 1 0.6293 1 0.7727
GraphEM 0.082 | 0.9113 | 0.9914 | 0.7407 | 0.9967 | 0.8477

B MLEM 0.148 | 0.3333 | 0.3333 1 0 0.5

PGC - 0.8889 1 0.6667 1 0.8

CGC - 0.8889 1 0.6667 1 0.8
GraphEM 0.120 | 0.9231 | 0.9401 0.77 0.9785 | 0.8427
C MLEM 0.238 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.9023 | 0.9778 | 0.6471 | 0.9949 | 0.7788
CGC - 0.8555 | 0.9697 | 0.4706 | 0.9949 | 0.6337
GraphEM 0.121 | 0.9247 | 0.9601 | 0.7547 | 0.9862 | 0.8421
D MLEM 0.239 | 0.2656 | 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 | 0.9734 | 0.7627
CGC - 0.8477 | 0.9394 | 0.4559 | 0.9894 | 0.6139
State-space models as graphs Victor Elvira University of Edinburgh
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Experimental results: Realistic weather datasets
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Graph inference results on an example from WeathN5a dataset.'*

11y, Runge, X.-A. Tibau, M. Bruhns, J. Muoz-Mar, and G. Camps-Valls. The causality for
climate competition. In Proceedings of the NeurlPS 2019 Competition and Demonstration
Track, volume 123, pages 110-120, 2020.

State-space models as graphs

Victor Elvira University of Edinburgh 33/41



Computational complexity of DGLASSO

' 10%
10" F—e=MLEM 025 —o—NLEM —o—NLEM
——DGLASSO) —o—DGLASSO —o—DGLASSO

CNMSE(st*, 1)

RMSE(A", A)

“ -

o

0 1000 2000 3000 4000 5000 0 1000 2000 8000 4000 5000 0 1000 2000 3000 4000 5000
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Figure 6: Evolution of the complexity time (left), RMSE(A*,A) (middle) and
cNMSE(p*, ) (right) metrics, as a function of the time series length K, for experiments

on dataset A averaged over 50 runs.
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Performance of DGLASSO (toy example)

Stimation of A Tstimation of P Tate distrb. Prodiciive distrb____]

Method RNSE UC | _F1 RMSE | AUC | _FI W NMSE(u™ ") || cNMSE(w™. ) | £, x(A.P)
« DGLASSO 0.061 | 0.843 | 0641 0.082 0.778 608 6394 x 10 ° 1.050 X 10 2984 x 101 12307.169
< MLEM 0.076 | 0.817 0.105 | 0.857 | 0.500 1.095 x 1077 1.803 x 1077 4843 x 10 4 12341.205
2 GLASSO NA NA 0.818 | 0.804 | 0.496 4.485 x 10°© 7.180 x 10°°¢ 1.000 28459.294
K rGLASSO NA NA 0.764 0924 | 0.598 2.826 x 10~ 5.492 x 10°¢ 1.000 2957.693
2 | GrapHEM | o0t5 | oses NA NA NA 4.364 x 106 6.944 x 10°© 2980 x 10°* | 29035.030
@ | DGLASSO | 0068 | 0.833 0070 | 0.893 | 083 7490 X 10 ° 1236 X 10 3281 % 10 1 11806744
s MLEM 0.080 | 0815 0.106 | 0.898 | 0.500 1.299 x 1077 2.133 x 1077 4.619 x 104 11833.448
] GLASSO NA NA NA 0.827 0.826 | 0.505 5.069 x 1076 8.072 x 1075 1.000 27 744.964
& rGLASSO NA NA NA 0.734 0930 | 0.608 3.215 x 1079 6.187 x 1075 1.000 22530.036
2 | crapuenm | oo | oses | osus NA NA | NA 5.158 x 10°° 5.036 x 100 2012x 104 | 20031412
B) 0.070 | 0.829 | 0.681 0.09 | 0.954 | 0830 1896 x 10 2091 x 10 10311101
5 0081 | 0810 | 0500 |[ 0.007 | 0974 | 0500 2.583 x 107 4.180 x 107 10326.410
4 NA NA NA 0.901 0.805 | 0.489 0: 0.012 26 634.892
k- rGLASSO NA NA NA 0.805 | 0.928 | 0.614 x 1.320 x 1072 21322.247
2 | crapuem | oow | ose | osst NA NA | Na x 1.641 x 105 20023.369
a 0073 | 0.835 | 0575 || 0083 | 1000 | 0508 0.080 x 8203 X 10~ TO1L043
5 0008 | 008 | 0500 |[ 0.005 | 1000 | 0.500 0.084 96 x 107 1.027 x 106 7923.850
3 NA NA NA 0.964 | 0.941 | 0.550 187.823 2.348 x 107 3.701 x 10~ 23684.178
® NA NA NA 0.882 | 0,956 | 0.645 28.703 1.886 x 1077 3.239 x 10 20100.491
2 | crapuem | oost | ose | oses NA NA | Na NA 2503 x 10 ° 3.839 x 10 20016.321
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Performance of DGLASSO (climate model)

method RMSE | accur. | prec. | recall | spec. F1 Time (s.)
DGLASSO 0.108 0.937 | 0.894 | 0.998 | 0.894 | 0.937 0.608
MLEM 0.140 0.413 | 0.413 | 1.000 | 0.000 | 0.584 0.596
WeathN5a | GRAPHEM 0.127 0.703 | 0.595 | 1.000 | 0.496 | 0.742 0.606
PGC - 0.772 | 0.902 | 0.515 | 0.953 | 0.652 0.019
CGC - 0.672 | 0.828 | 0.285 | 0.945 | 0.415 0.026
DGLASSO 0.166 0.773 | 0.668 | 0.992 | 0.619 | 0.788 0.630
MLEM 0.197 0.413 | 0.413 | 1.000 | 0.000 | 0.584 0.376
WeathN5b | GRAPHEM 0.186 0.629 | 0.536 | 1.000 | 0.368 | 0.694 0.470
PGC - 0.675 | 0.677 | 0.469 | 0.819 | 0.544 0.017
CGC - 0.634 | 0.659 | 0.263 | 0.895 | 0.369 0.023
DGLASSO 0.202 0.948 | 0.898 | 0.925 | 0.954 | 0.890 1.363
MLEM 0.264 0.219 | 0.219 | 1.000 | 0.000 | 0.359 0.834
WeathN10a | GRAPHEM 0.224 0.511 | 0.311 | 1.000 | 0.374 | 0.473 1.445
PGC - 0.879 | 0.904 | 0.504 | 0.983 | 0.644 0.232
CGC - 0.773 | 0.539 | 0.211 | 0.932 | 0.278 0.358
DGLASSO 0.192 0.866 | 0.633 | 0.994 | 0.829 | 0.769 0.557
MLEM 0.342 0.219 | 0.219 | 1.000 | 0.000 | 0.359 0.989
WeathN10b | GRAPHEM 0.219 0.855 | 0.620 | 0.994 | 0.816 | 0.757 0.655
PGC - 0.799 | 0.558 | 0.473 | 0.890 | 0.506 0.154
CGC - 0.750 | 0.407 | 0.218 | 0.900 | 0.265 0.178
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Convergence of SpaRJ and GarphEM with data
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Figure: 3 x 3 system with known isotropic state covariance.
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Convergence of SpaRJ with iterations
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Figure: Progression of sample metrics in a 12 x 12.
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Real-world applications

» cardiology application of finding rotors in atrial fibrillation
> topology discovery is the key
» climate models

> already tested over realistic climate synthetic data (the Causality for
Climate Competition, NeurlPS 2019)

» preliminary work “Graphs in State-Space Models for Granger Causality in
Climate Science” at CausalStats 2023

> networks, neuroscience, ..., ideas? :-)

State-space models as graphs Victor Elvira University of Edinburgh
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Conclusion

» Novel graphical interpretation on matrices A and Q in LG-SSMs.
> Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ
(fully Bayesian).
» GraphEM is faster and allows explicit penalty functions (prior knowledge)
beyond sparsity.
» SpaRJ provides samples of the posterior allowing for uncertainty
quantification.
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» GraphEM is faster and allows explicit penalty functions (prior knowledge)
beyond sparsity.
» SpaRJ provides samples of the posterior allowing for uncertainty
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» Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)

> strong model interpretation
> sophisticated optimization scheme
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beyond sparsity.
» SpaRJ provides samples of the posterior allowing for uncertainty
quantification.

» Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)

> strong model interpretation
> sophisticated optimization scheme

» All have solid theoretical guarantees and show good performance.
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Conclusion

» Novel graphical interpretation on matrices A and Q in LG-SSMs.
> Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ
(fully Bayesian).
» GraphEM is faster and allows explicit penalty functions (prior knowledge)
beyond sparsity.
» SpaRJ provides samples of the posterior allowing for uncertainty
quantification.

» Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)

> strong model interpretation
> sophisticated optimization scheme

» All have solid theoretical guarantees and show good performance.

» This is a challenging problem with many exciting ongoing methodological
and applied avenues ahead!
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Thank you for your attention!

GraphEM paper: V. Elvira, E. Chouzenoux, "Graphical Inference in Linear-Gaussian
State-Space Models", IEEE Transactions on Signal Processing, Vol. 70, pp.
4757-4771, 2022.

SpaRJ: B. Cox and V. Elvira, “Sparse Bayesian Estimation of Parameters in
Linear-Gaussian State-Space Models", IEEE Transactions on Signal Processing, vol.
71, pp. 1922-1937, 2023.

GraphlT paper: E. Chouzenoux and V. Elvira, “lterative reweighted ¢; algorithm for
sparse graph inference in state-space models”, IEEE International Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2023), Rhodes, Greece, June, 2023.

Non-Markovian models: E. Chouzenoux and V. Elvira, “Graphical Inference in
Non-Markovian Linear-Gaussian State-space Models”, IEEE International Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 2024), Seoul, Korea, April, 2024.
Under review:
> DGLASSO: E. Chouzenoux and V. Elvira, “Sparse Graphical Linear Dynamical
Systems, submitted, 2023. https://arxiv.org/abs/2307.03210
> Application to climate: V. Elvira, E. Chouzenoux, J. Cerda, and G. Camps-Valls
“Graphs in State-Space Models for Granger Causality in Climate Science”,
CausalStats Workshop, 2023.

» Community detection paper: B. Cox and V. Elvira, “Community Detection for
structural Parameter Estimation in Linear-Gaussian State-Space Models”, 2024.



GraphEM in a nutshell
o Goal. MAP estimate of A:

A" = argmax, p(Alyi.r) = argmaxa p(A)p(y1.r|A)

» Equivalent to minimizing L(A) = —logp(A) — log p(y1.7|A).
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GraphEM in a nutshell
o Goal. MAP estimate of A:

A" = argmax,p(Alyrr) = argmax, p(A)p(yir|A)

» Equivalent to minimizing £L(A) = —logp(A) — logp(y1.7|A).
» Challenges: evaluating £1.7(A) = —log p(y1.7|A) requires to run the KF:

—_

T
Li.r(A Ziog\QﬂS |+7z, A)TS(A) Tz (A).

» Function Lo(A) = —logp(A) might be complicated (e.g., non smooth).
» Non tractable minimization.
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GraphEM in a nutshell
o Goal. MAP estimate of A:

A" = argmax,p(Alyrr) = argmax, p(A)p(yir|A)

» Equivalent to minimizing £L(A) = —logp(A) — logp(y1.7|A).
» Challenges: evaluating £1.7(A) = —log p(y1.7|A) requires to run the KF:

T
1 o1 L
Li7(A) = Z 3 log |27S: (A)] + §z,(A)TS,(A) 'z (A).

t=1

» Function Lo(A) = —logp(A) might be complicated (e.g., non smooth).
» Non tractable minimization.
» Simplest version of GraphEM:'? an EM strategy to minimize a sequence of
(tractable) majorizing approximations of L.

12E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, pp. 5840-5844.
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GraphEM in a nutshell
o Goal. MAP estimate of A:

A" = argmax,p(Alyrr) = argmax, p(A)p(yir|A)

» Equivalent to minimizing £L(A) = —logp(A) — logp(y1.7|A).
» Challenges: evaluating £1.7(A) = —log p(y1.7|A) requires to run the KF:

T
1 o1 L
Li7(A) = Z 3 log |27S: (A)] + §z,(A)TS,(A) 'z (A).

t=1

» Function Lo(A) = —logp(A) might be complicated (e.g., non smooth).
» Non tractable minimization.
» Simplest version of GraphEM:'? an EM strategy to minimize a sequence of
(tractable) majorizing approximations of L.
> Lasso regularization (Laplace prior) to promote a sparse matrix A:

(VA e RN=*Noy  £4(A) =4[|Al;, v >0.

12E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, pp. 5840-5844.
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Expression of EM steps

e Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by

setting the state matrix to A’ and define!®
T

1 s s s
3 = ?;Pt —l—mt(mt)T,

T
1
® =3 Pl +mi(mi)

t=1
1 T
C= ;P;?GL +mi(mi_,)".
and build T
Q(A;A') = Str (Q*l(z ~CA”T —ACT + A<I>AT)) + Lo(A) + ctya,

such that, for every A € RNoxNa.

Q(A;A') > L(A), and Q(A;A') = L(A)).

13R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting
using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253-264.

State-space models as graphs Victor Elvira University of Edinburgh 41/41



Expression of EM steps

e Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by

setting the state matrix to A’ and define!®
T

1 s s s
3 = ?;Pt —l—mt(mt)T,

T
1
® =3 Pl +mi(mi)

t=1
1 T
C= 2D PiGL, +mjmi,)".
t=1
and build T
Q(A;A') = Str (Q*l(z ~CA”T —ACT + A<I>AT)) + Lo(A) + ctya,
such that, for every A € RNoxNa.
O(A;A') > L(A), and Q(A;A')=L(A)).

e Upper bound optimization (M-step): The M-step consists in searching for a
minimizer of Q(A; A’) with respect to A (A’ being fixed).
13R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting
using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253-264.
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Computation of the M-step

e Convex non-smooth minimization problem

T
argming Q(A; A’) = argming —tr (Q*l(z: —cAT —ACT + A<I>AT)) +  AlAlL

fa(A)=—logp(A)

f(A) f1(A)=upper bound of —log (p(y1.7|A)) (prior)
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Computation of the M-step

e Convex non-smooth minimization problem

T
argminp Q(A; A') = argming tr (Q*l(z: —CcAT —ACT + A@AT)) +  AlAlL
——— N——

F(A) f2(A)=—logp(A)

f1(A)=upper bound of —log (p(y1.7|A)) (prior)

Proximal splitting approach: The proximity operator of f : RN=XNa 5 R is
defined

prox; (&) = argmina ((A) + ;1A -~ A} )

Douglas-Rachford algorithm in GraphEM

> Set Zo € RN=XN= and 6 € (0,2).
> Forn=1,2,...
A, = ProXgy, (Zy)
Vi = proxgy, (2An — Zn)
zn+1 = Zn + g(vn - An)
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Computation of the M-step

e Convex non-smooth minimization problem

T
argminp Q(A; A') = argming tr (Q*l(z: —CcAT —ACT + A@AT)) +  AlAlL
——— N——

F(A) f2(A)=—logp(A)

f1(A)=upper bound of —log (p(y1.7|A)) (prior)

Proximal splitting approach: The proximity operator of f : RN=XNa 5 R is
defined

prox; (&) = argmina ((A) + ;1A -~ A} )

Douglas-Rachford algorithm in GraphEM

> Set Zo € RN=XN= and 6 € (0,2).
> Forn=1,2,...
A, = ProXgy, (Zy)
Vi = proxgy, (2An — Zn)
zn+1 = Zn + g(vn - An)

v {Ay}nen guaranteed to converge to a minimizer of Q(A; A’) = f1 + f2

v Both involved proximity operators have closed form solution.
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Generic GraphEM algorithm

> generic GraphEM allows for a larger family of priors (and several):*
M
(VA € R M) Q(A;AY) = ) fu(A), (2)
m=1

> fi1(A) is still an upper bound of —log (p(y1.7|A))
> fr(A) =~||All1 (sparsity promoter)
> other losses {f,,,(A)}M*1 promote properties in A (e.g., stability)

m=2

14y Elvira and E. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757—4771.
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Generic GraphEM algorithm

> generic GraphEM allows for a larger family of priors (and several):*
M
(VA € RMN) QA A") = ) fum(A), (2)
m=1

> fi1(A) is still an upper bound of —log (p(y1.7|A))
> fr(A) =~||All1 (sparsity promoter)
> other losses {f,,,(A)};‘\n'T;Q1 promote properties in A (e.g., stability)

» The inference now requires a more sophisticated optimization algorithm in
the M-step, the monotone+skew algorithm.

14y Elvira and E. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757—4771.
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Generic GraphEM algorithm

> generic GraphEM allows for a larger family of priors (and several):*
M
(VA e RM=*Ne) QA A') = Y fm(A), (2

> f1(A) is still an upper bound of —log (p(y1.7|A))
> far(A) =~||All1 (sparsity promoter)
> other losses {fi.(A)},), ”71 promote properties in A (e.g., stability)
» The inference now reqwres a more sophisticated optimization algorithm in
the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)
> Set Vi = A’ Vm € {1,..., M}, and stepsizes A € (0, &), v € [\, 2]

M—1
» Forn=1,2,...

w —Vm+'yVM(Vme{1,.,‘,M_1})

WM VM—’YZ —lym

A’" =W — 'yproxf /,Y(W"L) (Ym e {1,...,M —1})
A]\/I = prox, g, (WA

Z" = AT +yAM (Ym e {1,...,M —1})

ZM AM _ M—1 am

3 m=1
Vi =V WL 2 (Ym € {1,..., M})

14y Elvira and E. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.
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Theoretical guarantees

Assume that the prior term L is proper, convex, lower semicontinuous. Under
mild technical assumptions (qualification conditions),
> {L(A™)}icn is a decreasing sequence converging to a finite limit £*.
> The sequence of iterates {AY},cx has a cluster point (i.e., one can
extract a converging subsequence)
> Let A" a cluster point (i-e., the limit of a converging subsequence) of
{A®Y,cn. Then, L(A*) = £* and A" is a critical point of £, i.e.,
VCLT(A*) € 8£0(A*)

State-space models as graphs Victor Elvira University of Edinburgh
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Data description and numerical settings
e Four synthetic datasets with H = Id, size N, = N, =9, and randomly
generated ground truth sparse matrices A* and P* (block diagonal 3 x 3)
with varying conditioning for Q* = (P*)~!.
We set K = 10° and R = o 1d, Py = ¢ld with (or, 00) = (1071,107%).

e Goal: (i) Given {yx}i_,, and (H, R, Py), provide estimates (;&,f’) of
(A*,P"), evaluated by RMSE and F; metrics, (ii) Given a new test data,
compute the the predictive distribution means by KF/RTS using the
estimated model parameters, evaluated by cNMSE and loss metrics.

° DGLASSO is compared with:
Maximum likelihood EM (MLEM): DGLASSO model with A4 = Ap = 0.
» GRAPHEM approach [Elvira et al., 2022]: MAP estimate of A, while fixing

Q = O’éld with finetuned og.
» GLASSO approach [Friedman et al., 2008]: MAP estimate of P, fixing

A =0 and neglecting R.

» rGLASSO approach [Benfenati et al., 2020]: MAP estimate of P, fixing
A=o0.

> Pairwise Granger Causality (PGC) / conditional Granger Causality (CGC)
based on sparse vector autoregressive (VAR) models [Luengo et al., 2019].

e Manual finetuning of hyperparameters (e.g., £1 penalty weight) on a single
realization (see more details in paper). Results are averaged on 50
" State.-space models as graphs Victor Elvira University of Edinburgh 41/41



	Plan
	Introduction
	Linear-Gaussian model and Kalman filter
	A doubly graphical perspective on SSMs
	Point-wise estimation: GraphEM and DGLASSO algorithms
	Point-wise estimation: extensions
	Probabilistic estimation
	Experimental evaluation
	Conclusion

