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Motivation

▶ A large class of problems in statistics, machine learning, and signal
processing requires sequential processing of observed data with temporal
structure.
▶ geophysical systems (atmosphere, oceans)
▶ robotics
▶ target tracking, positioning, navigation
▶ communications
▶ biomedical signal processing
▶ financial engineering
▶ ecology

▶ Goals:
▶ prediction (with uncertainty quantification)
▶ parameter estimation (with interpretability)
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Inference in State-Space Models (SSM)

▶ Let us consider:
▶ a set of hidden states xt ∈ RNx , t = 1, ..., T .
▶ a set of observations yt ∈ RNy , t = 1, ..., T .

▶ An SSM is an underlying hidden process of xt that evolves and that,
partially and noisily, expresses itself through yt.

xt−1 xt xt+1

yt−1 yt yt+1

... ...
pθ(xt|xt−1) pθ(xt+1|xt)

pθ(yt−1|xt−1) pθ(yt|xt) pθ(yt+1|xt+1)

▶ Probabilistic notation:
▶ Hidden state → p(xt|xt−1)
▶ Observations → p(yt|xt)
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The estimation problem

▶ We sequentially observe data yt related to the hidden state xt.
▶ At time t, we have accumulated t observations, y1:t ≡ {y1, ...,yt}.

▶ Interesting problems (when θ is known):
▶ Filtering: pθ(xt|y1:t)
▶ State prediction: pθ(xt+τ |y1:t), τ ≥ 1
▶ Observation prediction: pθ(yt+τ |y1:t), τ ≥ 1
▶ Smoothing: pθ(xt−τ |y1:t), τ ≥ 1

▶ We want a sequential, efficient, and probabilistic
filtering of the observations.
▶ At time t, we want to process only yt, but not

reprocess all y1:t−1 (that were already processed!)
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The linear-Gaussian Model

▶ The linear-Gaussian model is arguably the most relevant SSM:
▶ Functional notation:

▶ Unobserved state → xt = Atxt−1 + qt
▶ Observations → yt = Htxt + rt

where qt ∼ N (0,Qt) and rt ∼ N (0,Rt).
▶ Probabilistic notation:

▶ Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)
▶ Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

▶ Kalman filter: obtains the filtering pdfs p(xt|y1:t), at each t
▶ Gaussian pdfs, with means and covariances matrices are calculated at each t
▶ Efficient processing of yt, obtaining p(xt|y1:t) from p(xt−1|y1:t−1)

▶ Rauch-Tung-Striebel (RTS) smoother: obtains p(xt|y1:T )
▶ requires a backward reprocessing, refining the Kalman estimates
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Kalman summary and RTS smoother

▶ Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)

▶ Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

Kalman filter
▶ Initialize: m0, P0

▶ For t = 1, . . . , T

Predict stage:
x−
t = Atmt−1

P−
t = AtPt−1A⊤

t +Qt

Update stage:
zt = yt −Htx

−
t

St = HP−
t H⊤

t +Rt

Kt = P−
t H⊤

t S−1
t

mt = x−
t +Ktzt

Pt = P−
t −KtStK⊤

t

RTS smoother
▶ For t = T, . . . , 1

Smoothing stage:
x−
t+1 = Atmt

P−
t+1 = AtPtA⊤

t +Qt

Gt = PtA⊤
t (P−

t+1)
−1

ms
t = mt +Gt(ms

t+1 − x−
t+1)

Ps
t = Pt +Gt(Ps

t+1 −P−
t+1)G

⊤
t

✓ Filtering distribution: p(xt|y1:t) = N (xt;mt,Pt)

✓ Smoothing distribution: p(xt|y1:T ) = N (xt;m
s
t ,P

s
t )

✗ How to proceed if some model parameters are unknown ?

State-space models as graphs Víctor Elvira University of Edinburgh 8/41



Kalman summary and RTS smoother

▶ Hidden state → p(xt|xt−1) ≡ N (xt;Atxt−1,Qt)

▶ Observations → p(yt|xt) ≡ N (yt;Htxt,Rt)

Kalman filter
▶ Initialize: m0, P0

▶ For t = 1, . . . , T

Predict stage:
x−
t = Atmt−1

P−
t = AtPt−1A⊤

t +Qt

Update stage:
zt = yt −Htx

−
t

St = HP−
t H⊤

t +Rt

Kt = P−
t H⊤

t S−1
t

mt = x−
t +Ktzt

Pt = P−
t −KtStK⊤

t

RTS smoother
▶ For t = T, . . . , 1

Smoothing stage:
x−
t+1 = Atmt

P−
t+1 = AtPtA⊤

t +Qt

Gt = PtA⊤
t (P−

t+1)
−1

ms
t = mt +Gt(ms

t+1 − x−
t+1)

Ps
t = Pt +Gt(Ps

t+1 −P−
t+1)G

⊤
t

✓ Filtering distribution: p(xt|y1:t) = N (xt;mt,Pt)

✓ Smoothing distribution: p(xt|y1:T ) = N (xt;m
s
t ,P

s
t )

✗ How to proceed if some model parameters are unknown ?

State-space models as graphs Víctor Elvira University of Edinburgh 8/41



Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion



Goal of the talk

xt= Axt−1 + qt, qt ∼ N (0,Q)

This talk: DGLASSO model and inference approach
▶ Joint estimation of two matrices describing the hidden state dynamics in

the linear Gaussian state-space model.
▶ Sparse graphical model to represent (i) the (Granger) causal dependencies

among the states, and (ii) the correlation among the state noises.
▶ Majorization-minimization methodology for graphical inference.
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A graphical perspective on A

▶ Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Axt−1 + qt, qt ∼ N (0,Q)

▶ Graph discovery perspective: A can be seen as sparse directed graph

• xt ∈ RNx contains Nx time-series
▶ each of them represents the latent

process in a node in the graph

• A(i, j) is the linear effect from node j at
time t− 1 to node i at time t:

xt,i =

Nx∑
j=1

A(i, j)xt−1,j + qt,i

• A(i, j) ̸= 0 ⇒ xt−1,j Granger-causes xt,i.

A =

 0.9 0.7 0 0 0
0 0 −0.3 0 0
0 0 0 0 0.8
0 −0.1 0 0 0
0 0 0.5 0 0


Chouzenoux and Elvira

A =

0
BBB@

0.9 0.7 0 0 0
0 0 �0.3 0 0
0 0 0 0 0.8
0 �0.1 0 0 0
0 0 0.5 0 0

1
CCCA

(a) Matrix A.

supp(A) =

0
BBB@

1 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

1
CCCA

(b) Binary support.

1

2

3

5

4

A(1, 2)

A(2, 3)A(4, 2)

A(5, 3)

A(3, 5)

A(1, 1)

(c) Associated directed graph.

Figure 1: Graphical model associated to (18). Matrix A (a), its binary support (b) and
associated reflexive directed graph (c). The edges are defined as non-zero entries of A>.
Their thickness is proportional to the absolute entries of A>.

3.1.2 State noise precision matrix

Matrix Q denotes the noise covariance in the state Eq. (2). Since the noise is assumed to
be Gaussian, this matrix, and more precisely, the associated precision matrix P = Q�1,
also has a direct interpretation in terms of graphical modeling, using the notion of Gaussian
graphical model (GGM) (Bühlmann and Van De Geer, 2011, Section 13.4)(Uhler, 2017).
Since we consider Q constant during the whole time series, let us denote the multivariate
state noise r.v. at any time step as q ⇠ N (0,Q). The GGM consists in a graphical modeling
of the independence (or not) between the scalar random variables q(1), . . . ,q(Nx). It is easy
to prove that

q(n) ?? q(`)|{q(j), j 2 1, . . . , Nx\{n, `}} () P(n, `) = P(`, n) = 0, (19)

i.e., the dimensions n and ` of q are independent given all other dimensions if and only if the
entry P(n, `) is zero (and obviously also P(`, n) since the precision matrix is symmetric).
Note that it is possible to condition in the l.h.s. of (19) only to the dimensions q(j) for
which P(n, j) 6= 0 and the equivalence would still hold. The GGM relies on an undirected
graph associated to a symmetric weight matrix equals to the inverse of the covariance matrix
P = ⌃�1. In particular, namely (n, `) /2 E if and only if P (n, `) = P (`, n) = 0.

This GGM construction is at the core of the famous GLASSO (Graphical Lasso) for-
mulation (Friedman et al., 2008)(Maathuis et al., 2019, Section 9.7), whose goal is to build
the maximum a posteriori estimator of P given realizations of the random vector q under
a sparsity assumption on matrix P. The sparsity is here interpreted as a way to eliminate
spurious edges in the graph associated to P.

Illustrative example. In Figure 2, we display an illustrative example on the GGM asso-
ciated to a given precision matrix P for Nx = 5. We show the associated binary support
matrix supp(P) and the resulting undirected graph under this interpretation. Although
self-loops (i.e., non-zero diagonal elements) occur, we removed them from the graphical
representation for ease of readability.

3.1.3 Proposed unifying view

We now summarize the graphical perspective on both A and Q and describe an unifying
approach, where sparsity plays a key role. Matrix A is interpreted as the weight matrix
of a directed graph with Nx vertices. Sparsity (i.e., absence of edge in the graph) in A is

10

State-space models as graphs Víctor Elvira University of Edinburgh 11/41



A graphical perspective on A

▶ Goal. Estimation of matrix A (a) introducing prior knowledge, and (b)
under a novel interpretation of A:

xt= Axt−1 + qt, qt ∼ N (0,Q)

▶ Graph discovery perspective: A can be seen as sparse directed graph

• xt ∈ RNx contains Nx time-series
▶ each of them represents the latent

process in a node in the graph

• A(i, j) is the linear effect from node j at
time t− 1 to node i at time t:

xt,i =

Nx∑
j=1

A(i, j)xt−1,j + qt,i

• A(i, j) ̸= 0 ⇒ xt−1,j Granger-causes xt,i.

A =

 0.9 0.7 0 0 0
0 0 −0.3 0 0
0 0 0 0 0.8
0 −0.1 0 0 0
0 0 0.5 0 0


Chouzenoux and Elvira

A =

0
BBB@

0.9 0.7 0 0 0
0 0 �0.3 0 0
0 0 0 0 0.8
0 �0.1 0 0 0
0 0 0.5 0 0

1
CCCA

(a) Matrix A.

supp(A) =

0
BBB@

1 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

1
CCCA

(b) Binary support.

1

2

3

5

4

A(1, 2)

A(2, 3)A(4, 2)

A(5, 3)

A(3, 5)

A(1, 1)

(c) Associated directed graph.

Figure 1: Graphical model associated to (18). Matrix A (a), its binary support (b) and
associated reflexive directed graph (c). The edges are defined as non-zero entries of A>.
Their thickness is proportional to the absolute entries of A>.

3.1.2 State noise precision matrix

Matrix Q denotes the noise covariance in the state Eq. (2). Since the noise is assumed to
be Gaussian, this matrix, and more precisely, the associated precision matrix P = Q�1,
also has a direct interpretation in terms of graphical modeling, using the notion of Gaussian
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A graphical modeling P = Q−1

xt= Axt−1 + qt, qt ∼ N (0,Q)

• Gaussian graphical model (GGM) perspective: P = Q−1 can be seen as an
sparse undirected graph.

q(n) ⊥⊥ q(ℓ)|{q(j), j ∈ 1, . . . , Nx\{n, ℓ}} ⇐⇒ P (n, ℓ) = P (ℓ, n) = 0.

P = Q−1 =




2 0 −0.1 0 0
0 0.9 0.3 −0.2 0.5

−0.1 0.3 0.8 0 0
0 −0.2 0 2 0
0 0.5 0 0 1.5




Sparse Graphical Linear Dynamical Systems

P =

0
BBB@

2 0 �0.1 0 0
0 0.9 0.3 �0.2 0.5

�0.1 0.3 0.8 0 0
0 �0.2 0 2 0
0 0.5 0 0 1.5

1
CCCA

(a) Matrix P.

supp(P) =

0
BBB@

1 0 1 0 0
0 1 1 1 1
1 1 1 0 0
0 1 0 1 0
0 1 0 0 1

1
CCCA

(b) Support matrix.

1

2

3

5

4

P (2, 5)
P (2, 3)

P (1, 3)

P (2, 4)

(c) Associated undirected graph.

Figure 2: Matrix P (a), its binary support (b), and the associated undirected graph (c)
with edge thickness proportional to the absolute entries of P.

interpreted as pair-wise partial/conditional independence, given a subset of the remaining
time series, for a one-step ahead prediction of the hidden state. Matrix P = Q�1 is
interpreted as the weight matrix of an undirected graph, related to a GGM describing
the noise in the latent space. Sparsity in P is interpreted as pair-wise partial/conditional
independence of two dimensions of the additive state noise, given a subset of the remaining
dimensions. Both graphs are reflexive, with Nx nodes and a maximum of N2

x edges for A
(Nx(Nx � 1) for P) associated to N2

x weights (i.e., the N2
x entries of A or P).

Our perspective in the state process of the LG-SSM in (2) is that A encodes the way
the information flows in consecutive time-steps between the nodes (state dimensions) of the
network (vector state). Thus, its properties shape how the energy/information is transferred
and dissipated (under the noise). In contrast, P = Q�1 encodes how information that is not
in the system at time k � 1 enters in the system at time k. In that respect, the interpreted
graph with weight matrix P encodes the dependency of the new information across the
nodes of the network.

We adopt the above perspective to estimate both A and Q by promoting properties
in both graphs. Specifically, we introduce sparsity priors on the matrices, as the sparsity
property is key to reach interpretability and compactness of the whole model. In particular,
it allows to understand the inner structure of the latent space. Moreover, it can be helpful
to speed up computations as the sparsity level is increased, e.g., when running the Kalman
filter and RTS smoother. Our proposed method DGLASSO (Dynamic Graphical Lasso)
hence aims at providing the maximum a posteriori (MAP) estimator of A and P (i.e.,
the weight matrices related to the graphical modeling of the latent state correlation and
causality) under Lasso sparsity regularization on both matrices, given the observed sequence
y1:K . A visual representation of DGLASSO graphical model is given in Figure 3. The figure
summarizes the relationships among the state entries of an LG-SSM using matrices (A,P)
from Figures 1 and 2.

Related works: Our approach DGLASSO generalizes important existing sparse graphi-
cal inference ones. For instance, our model with A = 0 (degenerate case) has no memory,
and all the energy/information of the system is lost at each time step, thus the state di-
mensions only incorporate exogenous energy/information through the additive noises. This
degenerate case is the same model than GLASSO (Friedman et al., 2008) in the case when
Rk ⌘ 0, and same than the robust GLASSO model (Benfenati et al., 2020, Sec.5.2) when
Rk ⌘ �2

RId. In contrast, if the state noise covariance matrix Q is known, DGLASSO coin-
cides with our recent GraphEM framework (Elvira and Chouzenoux, 2022). Probably the

11
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Summary of DGLASSO model

Chouzenoux and Elvira

closer related work is (Ioannidis et al., 2019), which also introduces a joint graph modeling
within an LG-SSM, capturing order-one causal relationships and instantaneous influence
(i.e., order zero), through two sparse graphs. Their proposed inference method is an alter-
nating optimization technique, that infers the two graphs under Lasso prior, jointly with the
estimation of hidden state. In contrast with DGLASSO, in (Ioannidis et al., 2019), (i) the
state model follows a structural vector autoregressive model (SVAR) where instantaneous
causality and noise are distinguished, while DGLASSO assumes an order-one VAR in the
hidden state; and (ii) the cost function does not result from a Bayesian modeling, and as
such it is not related to a maximum a posteriori loss for the graph variables, (iii) the state
estimation is point wise defined as the solution of an handcrafted optimization problem,
while DGLASSO preserves a full Bayesian interpretation and hence allows the complete
characterization of the filtering/smoothing state distributions. In particular, (Ioannidis
et al., 2019) model does not recover GLASSO as a particular case.
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xt(1)
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xt(3)

xt(4)
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xt+1(4)
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Figure 3: Summary representation of the DGLASSO graphical model, for the example
graphs presented in Figs. 1 and 2. Blue (oriented) edges represent Granger causality between
state entries among consecutive time steps, encoded in matrix A (Fig. 1). Magenta edges
represent static (i.e., instantaneous) relationships between the state entries, at every time
step, due to correlated state noise described by matrix P (Fig. 2).

3.2 Optimization problem

The considered MAP inference problem reads as an optimization problem that we formu-
late hereafter. More specifically, let us denote the posterior of the unknown parameter,
p(A,P|y1:K), where the hidden states have been marginalized. It is direct to show, using
Bayes rule and composition with the (strictly increasing) logarithmic function, that the
maximum of p(A,P|y1:K) / p(A,P)p(y1:K |A,P), with p(A,P) some prior on the param-
eters A and P, coincides with the minimum of the following loss function:

(8A 2 RNx⇥Nx)(8P 2 SNx) L(A,P) , L1:K(A,P) + L0(A,P). (20)

12

Summary representation of the DGLASSO graphical model, for the example graphs A and P

from the two previous slides.

DGLASSO (dynamic graphical lasso): maximum a posteriori (MAP) es-
timator of A and P under lasso sparsity regularization on both matrices,
given the observed sequence y1:T .
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Proposed penalized formulation
Goal. MAP estimate of A and P (P = Q−1):

A∗,P∗ = argmax
A,P

p(A,P|y1:T ) = argmax
A

p(A,P)p(y1:T |A,P)

= argmin
A,P

− log p(A,P)︸ ︷︷ ︸
L0(A,P)

− log p(y1:T |A,P)︸ ︷︷ ︸
L1:T (A,P)

= L(A,P)

• Lasso penalty (prior): we promote sparse matrices (A,P) for interpretable
and compact network of connections:

L0(A,P) = λA∥A∥1 + λP ∥P∥1,

• log likelihood:

L1:T (A,P) =
T∑

t=1

1
2
log |2πSt(A,P)|+ 1

2
zt(A,P)⊤St(A,P)−1zt(A,P).

▶ requires to run KF using (A,P)

Challenges:
▶ Joint minimization with non-smooth and non-convex implicit loss.
▶ gradient-based solutions are challenging (unrolling KF recursion) and

numerically unstable
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Construction of the majorant function

EM-like approach:1

▶ Majorizing approximation (E-step): Run the Kalman filter/RTS smoother
by setting (Ã, P̃) ∈ RNx×Nx × SNx and build the majorizing
approximation (Q(A,P; Ã, P̃) ≥ L(A,P), ∀(A,P)):

Q(A,P; Ã, P̃) =
T

2
tr

(
P(Ψ−∆A⊤ −A∆⊤ +AΦA⊤)

)
− T

2
log det(2πP),

where, for every t ∈ {1, . . . , T}, Gt = Σt(Ã)⊤(ÃΣt(Ã)⊤ + P̃−1)−1, and

Ψ =
1

T

T∑
t=1

Σs
t + µs

t (µ
s
t )

⊤,

Φ =
1

T

T∑
t=1

Σs
t−1 + µs

t−1(µ
s
t−1)

⊤,

∆ =
1

T

T∑
t=1

Σs
tG

⊤
t−1 + µs

t (µ
s
t−1)

⊤,

using RTS outputs (µs
t ,Σ

s
t )1≤t≤T using (Ã, P̃).

1R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting
using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.
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DGLASSO minimization procedure

▶ Block alternating majorization-minimization technique:
Set (A(0),P(0)).
At each iteration i ∈ N,
(a) Run RTS to build function Q(A,P;A(i),P(i)) (E-step)
(b) Update transition matrix (M-step):

A(i+1) = argmin
A

Q(A,P(i);A(i),P(i)) + λA∥A∥1+
1

2θA
∥A−A(i)∥2F

(c) Run RTS to build function Q(A,P;A(i+1),P(i)) (E-step)
(d) Update precision matrix (M-step):

P(i+1) = argmin
P

Q(A(i+1),P;A(i+1),P(i))+λP ∥P∥1+
1

2θP
∥P−P(i)∥2F

▶ Proximal terms, with stepsizes (θA, θP ) > 0, to stabilize the minimization
process and guarantee convergence of iterates.

▶ Convenient bi-convex structure of Q(·, ·; Ã, P̃)
▶ Step (b) is a lasso-like regression problem
▶ Step (d) is a GLASSO-like problem.

State-space models as graphs Víctor Elvira University of Edinburgh 17/41



Convergence theorem

Consider the sequence {A(i),P(i)}i∈N generated by DGLASSO, as-
suming exact resolution of both inner steps (b) and (d). Denote
L = L0 + L1:T the loss function.
▶ The sequence {A(i),P(i)}i∈N produced by DGLASSO algorithm

satisfies

(∀i ∈ N) L(A(i+1),P(i+1)) ≤ L(A(i),P(i)).

▶ If the sequence {A(i),P(i)}i∈N is bounded, then {A(i),P(i)}i∈N
converges to a critical point of L.

• Proof based on the recent work.2

• In practice, inner mininimization steps (b) and (d) using a Dykstra proximal
splitting solver.3

2L. T. K. Tien, D. N. Phan, and N. Gillis. An inertial block majorization minimization
framework for nonsmooth nonconvex optimization. Technical report, 2020.
https://arxiv.org/abs/2010.12133.

3H. H. Bauschke and P. L. Combettes. A Dykstra-like algorithm for two monotone
operators. Pacific Journal of Optimization, 4:383–391, 2008
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Summary of the GraphEM algorithm

▶ DGLASSO generalises our previous GraphEM,4 where only A is unknown.

GraphEM algorithm

▶ Initialization of A(0).
▶ For i = 1, 2, . . .

E-step Run the Kalman filter and RTS smoother by setting A′ := A(i−1) and
construct Q(A;A(i−1)).

M-step Update A(i) = argminA
(
Q(A;A(i−1))

)
using Douglas-Rachford algorithm

(simpler version) or monotone+skew (MS) algorithm (generalized version).

▶ Flexible approach, valid as long as the proximity operators of (fm)2≤m≤M

are available, with L0 =
∑M

m=1 fm

4V. Elvira and É. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.
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Ongoing extensions: beyond ℓ1 norm (1/3)

▶ GraphEM requires the penalty term L0(A) to be
convex (e.g., ℓ1 norm).

▶ However, for very sparse graphs, non-convex
penalties such as SCAD, MCP, CEL0 have shown
to be more suited than ℓ1 norm (closer to
pseudo-norm ℓ0). -3 -2 -1 0 1 2 3

0

0.5

1

1.5

2

2.5

3

▶ GraphIT algorithm5 implements an iterative reweighted (IR) scheme
▶ MM framework: L0(A) is approximated by a surrogate convex function
▶ optimization via modern solvers with strong convergence gurantees

(a) True graph (b) GraphEM (c) GraphIT
5E. Chouzenoux and V. Elvira. “GraphIT: Iterative reweighted ℓ1 algorithm for sparse graph

inference in state-space models”. In: ICASSP. 2023.
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Ongoing extensions: beyond Markovianity (2/3)

▶ Non-Markovian LG-SSM:
▶ Unobserved state → xt =

∑P
i=1 Aixt−i + qt

▶ Observations → yt = Htxt + rt

▶ Standard filtering and smoothing approach with known {Ai}Pi=1

▶ stacking (columnwise) the p consecutive states into
zt = [xt;xt−1; . . . ;xt−p+1] ∈ RpNx

▶ run KF and RTS in the extended model{
zt = Ǎzt−1 + q̌t,

yt = Ȟzt + rt,
(1)

where we define

Ǎ =


A1 · · · · · · Ap

I 0 · · · 0
. . .

. . .
...

(0) I 0

 ∈ RpNx×pNx ,

Ȟ = [H (0)] ∈ RNy×pNx , Q̌ =

[
Q (0)
(0) (0)

]
∈ RpNx×pNx ,

q̌t ∼ N (0, Q̌), and rt ∼ N (0,R)
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Ongoing extensions: beyond Markovianity (2/3)

A1 =

 0.9 0.7 0
0 0 −0.3
0 0 0

, A2 =

 0 0 0
0 0 0
0 0.8 0

.

1

2

3

A1(1, 2)

A2(3, 2) A1(2, 3)

A1(1, 1)

xk−2(1)

xk−2(2)

xk−2(3)

xk−1(1)

xk−1(2)

xk−1(3)

xk(1)

xk(2)

xk(3)
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Ongoing extensions: beyond Markovianity (2/3)
▶ LaGrangEM (ICASSP 2024): a GraphEM-type algorithm that operates in

non-Markovian models including desirable properties and interpretability,
e.g.,
▶ acyclic graph
▶ sparsity
▶ only one-lag interaction at maximum betwen nodes (more sparsity!)

▶ reasonable in some physical models
▶ one input arrow at maximum at each node (even more sparsity!)

▶ strong connection with modern Granger causality models6

LUENGO et al.: HIERARCHICAL ALGORITHMS FOR CAUSALITY RETRIEVAL IN ATRIAL FIBRILLATION INTRACAVITARY ELECTROGRAMS 149

Fig. 3. Different propagation patterns generated by the synthetic signal simulator. (a)–(f) Flat 1–6. (g)–(l) Circular 1–6. (m)–(q) Single 1–5.
(r): Legend.

LUENGO et al.: HIERARCHICAL ALGORITHMS FOR CAUSALITY RETRIEVAL IN ATRIAL FIBRILLATION INTRACAVITARY ELECTROGRAMS 149

Fig. 3. Different propagation patterns generated by the synthetic signal simulator. (a)–(f) Flat 1–6. (g)–(l) Circular 1–6. (m)–(q) Single 1–5.
(r): Legend.

▶ So far, great results but with intermediate/post-processing mapping steps
which may compromise the theoretical guarantees (?)
▶ ongoing work in bridging the gap between well-perorming methods and solid

theory
6D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. “Hierarchical

algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: IEEE
journal of biomedical and health informatics 23.1 (2018), pp. 143–155.
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Ongoing extensions: beyond linearity (3/3)

▶ Models of this type:

xt =

J∑
j=1

AjΦj(xt−1) + qt

e.g., with J = 3:

xt = A1xt−1 +A2x
2
t−1 +A3x

2
t−1 + qt

▶ possible to include cross-terms

▶ Functional learning (Taylor-expansion perspective)
▶ Ongoing work with several challenges:

▶ too high-dimensional space
▶ identifiability issues
▶ even more complicated for fully Bayesian approaches
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SpaRJ algorithm

▶ SpaRJ7 (sparse reversible jump) is a fully probabilistic algorithm for the
estimation of A, i.e., obtains samples from p(A|y1:T ).

▶ The sparsity is imposed by transitioning among models of different
complexity, defined hierarchically:
▶ Mn ∈ {0, 1}Nx×Nx : sparsity pattern sample
▶ An: matrix A sample, with non-zero elements, A(i, j) for

{(i, j) : Mn(i, j) = 1}
▶ We use reversible jump MCMC (RJ-MCMC) to explore p(A|y1:T ).8

▶ MCMC algorithm to simulate in spaces of varying dimension, e.g., the
number of ones in the sparsity pattern, |Mn|.

▶ It requires to define:
▶ transition kernels for the model jumps
▶ mechanism to set values when jumping to a more complex model.

7B. Cox and V. Elvira. “Sparse Bayesian Estimation of Parameters in Linear-Gaussian
State-Space Models”. In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922–1937.

8P. J. Green. “Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination”. In: Biometrika 82.4 (1995), pp. 711–732.
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Pseudocode of SpaRJ

Input: Known SSM parameters {x̄0,P0,Q,R,H}, observations {yt}Tt=1,
hyper-parameters, number of iterations N , initial value A0

Output: Set of sparse samples {An}Nn=1

Initialization
Initialize M0 as fully dense (all ones) and A0

Run Kf obtaining l0 := log(p(y1:T |A0))p(A0)
for n = 1, ..., N do

Step 1: Propose model
Propose a new sparsity pattern M ′, obtaining a symmetry correction of c.
Step 2: Propose A′

Propose A′ using an MCMC sampler conditional on M ′

Step 3: MH accept-reject
Evaluate Kalman filter with A := A′

Set l′ := log(p(y1:T |A′))p(A′)
Compute log(ar) := l′ − ln−1 + c and Accept w.p. ar:
if Accept then

Set Mn := M ′, An := A′, ln := log(p(y1:T |A′))p(A′)
else

Set Mn := Mn−1,An := An−1, ln := ln−1

end if
end for
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Run Kf obtaining l0 := log(p(y1:T |A0))p(A0)
for n = 1, ..., N do

Step 1: Propose model
Propose a new sparsity pattern M ′, obtaining a symmetry correction of c.
Step 2: Propose A′

Propose A′ using an MCMC sampler conditional on M ′

Step 3: MH accept-reject
Evaluate Kalman filter with A := A′

Set l′ := log(p(y1:T |A′))p(A′)
Compute log(ar) := l′ − ln−1 + c and Accept w.p. ar:
if Accept then

Set Mn := M ′, An := A′, ln := log(p(y1:T |A′))p(A′)
else

Set Mn := Mn−1,An := An−1, ln := ln−1

end if
end for
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Data description and numerical settings

• Four synthetic datasets with H = Id and block-diagonal matrix A, composed
with b blocks of size (bj)1≤j≤b, so that Ny = Nx =

∑b
j=1 bj . We set T = 103,

Q = σ2
QId, R = σ2

RId, P0 = σ2
PId.

Dataset Nx (bj)1≤j≤b (σQ, σR, σP)

A 9 (3, 3, 3) (10−1, 10−1, 10−4)

B 9 (3, 3, 3) (1, 1, 10−4)

C 16 (3, 5, 5, 3) (10−1, 10−1, 10−4)

D 16 (3, 5, 5, 3) (1, 1, 10−4)

• GraphEM is compared with:
▶ Maximum likelihood EM (MLEM)9

▶ Granger-causality approaches: pairwise Granger Causality (PGC) and
conditional Granger Causality (CGC)10

9S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
10D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. “Hierarchical

algorithms for causality retrieval in atrial fibrillation intracavitary electrograms”. In: IEEE
journal of biomedical and health informatics 23.1 (2018), pp. 143–155.
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Experimental results of GraphEM
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Experimental results of GraphEM

method RMSE accur. prec. recall spec. F1

A

GraphEM 0.081 0.9104 0.9880 0.7407 0.9952 0.8463
MLEM 0.149 0.3333 0.3333 1 0 0.5
PGC - 0.8765 0.9474 0.6667 0.9815 0.7826
CGC - 0.8765 1 0.6293 1 0.7727

B

GraphEM 0.082 0.9113 0.9914 0.7407 0.9967 0.8477
MLEM 0.148 0.3333 0.3333 1 0 0.5
PGC - 0.8889 1 0.6667 1 0.8
CGC - 0.8889 1 0.6667 1 0.8

C

GraphEM 0.120 0.9231 0.9401 0.77 0.9785 0.8427
MLEM 0.238 0.2656 0.2656 1 0 0.4198
PGC - 0.9023 0.9778 0.6471 0.9949 0.7788
CGC - 0.8555 0.9697 0.4706 0.9949 0.6337

D

GraphEM 0.121 0.9247 0.9601 0.7547 0.9862 0.8421
MLEM 0.239 0.2656 0.2656 1 0 0.4198
PGC - 0.8906 0.9 0.6618 0.9734 0.7627
CGC - 0.8477 0.9394 0.4559 0.9894 0.6139
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Experimental results: Realistic weather datasets
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Graph inference results on an example from WeathN5a dataset.11

11J. Runge, X.-A. Tibau, M. Bruhns, J. Muoz-Mar, and G. Camps-Valls. The causality for
climate competition. In Proceedings of the NeurIPS 2019 Competition and Demonstration
Track, volume 123, pages 110–120, 2020.
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Computational complexity of DGLASSO

Chouzenoux and Elvira

Table 1: Results for the four considered datasets A to D, with an increasing conditioning
number of P∗ equals to log10(c) ∈ {0.1, 0.2, 0.1, 1}, respectively. We evaluate the methods
in terms of estimation quality for (A,P,Q), using either RMSE as defined in (63), and edge
detection scores (AUC, F1), as well as in terms of inference quality using cNMSE metrics
defined in (64).

Estimation of A Estimation of P Estim. Q State distrib. Predictive distrib.

Method RMSE AUC F1 RMSE AUC F1 RMSE cNMSE(µ∗, µ̂) cNMSE(µs∗, µ̂s) cNMSE(ν∗, ν̂) L1:K(Â, P̂)

D
a
ta

se
t

A DGLASSO 0.061 0.843 0.641 0.082 0.778 0.698 0.083 6.394 × 10−8 1.050 × 10−7 2.984 × 10−4 12 307.169

MLEM 0.076 0.817 0.500 0.105 0.857 0.500 0.102 1.095 × 10−7 1.803 × 10−7 4.843 × 10−4 12 341.205

GLASSO NA NA NA 0.818 0.804 0.496 1 073.510 4.485 × 10−6 7.180 × 10−6 1.000 28 459.294

rGLASSO NA NA NA 0.764 0.924 0.598 31.689 2.826 × 10−6 5.492 × 10−6 1.000 22 957.693

GRAPHEM 0.045 0.895 0.847 NA NA NA NA 4.364 × 10−6 6.944 × 10−6 2.980 × 10−4 29 035.030

D
a
ta

se
t

B DGLASSO 0.068 0.833 0.603 0.070 0.893 0.835 0.071 7.490 × 10−8 1.236 × 10−7 3.281 × 10−4 11 806.744

MLEM 0.080 0.815 0.500 0.106 0.898 0.500 0.100 1.299 × 10−7 2.133 × 10−7 4.619 × 10−4 11 833.448

GLASSO NA NA NA 0.827 0.826 0.505 341.873 5.069 × 10−6 8.072 × 10−6 1.000 27 744.964

rGLASSO NA NA NA 0.734 0.930 0.608 33.896 3.215 × 10−6 6.187 × 10−6 1.000 22 530.036

GRAPHEM 0.047 0.893 0.848 NA NA NA NA 5.158 × 10−6 8.036 × 10−6 2.912 × 10−4 29 031.412

D
a
ta

se
t

C DGLASSO 0.070 0.829 0.581 0.090 0.954 0.830 0.078 1.896 × 10−7 2.994 × 10−7 3.956 × 10−4 10 311.104

MLEM 0.081 0.810 0.500 0.097 0.974 0.500 0.094 2.583 × 10−7 4.180 × 10−7 5.053 × 10−4 10 326.410

GLASSO NA NA NA 0.901 0.805 0.489 3.926 × 1017 0.012 0.012 1.000 26 634.892

rGLASSO NA NA NA 0.805 0.928 0.614 29.530 7.195 × 10−6 1.320 × 10−5 1.000 21 322.247

GRAPHEM 0.049 0.892 0.857 NA NA NA NA 1.055 × 10−5 1.641 × 10−5 3.912 × 10−4 29 023.369

D
a
ta

se
t

D DGLASSO 0.073 0.835 0.575 0.083 1.000 0.598 0.080 5.127 × 10−7 8.243 × 10−7 3.373 × 10−4 7 911.943

MLEM 0.098 0.808 0.500 0.095 1.000 0.500 0.084 6.296 × 10−7 1.027 × 10−6 4.219 × 10−4 7 923.850

GLASSO NA NA NA 0.964 0.941 0.550 187.823 2.348 × 10−5 3.701 × 10−5 1.000 23 684.178

rGLASSO NA NA NA 0.882 0.956 0.645 28.703 1.886 × 10−5 3.239 × 10−5 1.000 20 100.491

GRAPHEM 0.061 0.892 0.864 NA NA NA NA 2.503 × 10−5 3.839 × 10−5 3.743 × 10−4 29 016.321
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Figure 6: Evolution of the complexity time (left), RMSE(A∗, Â) (middle) and
cNMSE(µ∗, µ̂) (right) metrics, as a function of the time series length K, for experiments
on dataset A averaged over 50 runs.

the price of an increased computational time. Interestingly, the regularization still yields
improved results for very large K.

5.2 Weather data

5.2.1 Experimental settings

We now evaluate our method on realistic graph datasets arising from causal discovery studies
in the field of weather variability tracking. Specifically, we consider two sets of 200 sparse
matrices A∗ ∈ RNx , with Nx = 5 or 10 respectively, representing the ground truth causal
graphs used to produce WEATH datasets in the Neurips 2019 data challenge (Runge et al.,

28
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Performance of DGLASSO (toy example)Chouzenoux and Elvira

Table 1: Results for the four considered datasets A to D, with an increasing conditioning
number of P∗ equals to log10(c) ∈ {0.1, 0.2, 0.1, 1}, respectively. We evaluate the methods
in terms of estimation quality for (A,P,Q), using either RMSE as defined in (63), and edge
detection scores (AUC, F1), as well as in terms of inference quality using cNMSE metrics
defined in (64).
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Figure 6: Evolution of the complexity time (left), RMSE(A∗, Â) (middle) and
cNMSE(µ∗, µ̂) (right) metrics, as a function of the time series length K, for experiments
on dataset A averaged over 50 runs.

the price of an increased computational time. Interestingly, the regularization still yields
improved results for very large K.

5.2 Weather data

5.2.1 Experimental settings

We now evaluate our method on realistic graph datasets arising from causal discovery studies
in the field of weather variability tracking. Specifically, we consider two sets of 200 sparse
matrices A∗ ∈ RNx , with Nx = 5 or 10 respectively, representing the ground truth causal
graphs used to produce WEATH datasets in the Neurips 2019 data challenge (Runge et al.,

28
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Performance of DGLASSO (climate model)

Chouzenoux and Elvira

Dataset Nx = Ny (Bj)1≤j≤J log10(cond(Q∗))
WeathN5a 5 (2, 3) 0.1
WeathN5b 5 (2, 3) 1

WeathN10a 10 (5, 5) 0.1
WeathN10b 10 (5, 5) 1

Table 2: Details about the datasets. Each dataset is associated with 200 examples for
matrix A∗.

Table 3: Results for climate datasets along with computing times. All the metrics are
averaged over the 200 examples of the dataset.

method RMSE accur. prec. recall spec. F1 Time (s.)

WeathN5a

DGLASSO 0.108 0.937 0.894 0.998 0.894 0.937 0.608
MLEM 0.140 0.413 0.413 1.000 0.000 0.584 0.596

GRAPHEM 0.127 0.703 0.595 1.000 0.496 0.742 0.606
PGC - 0.772 0.902 0.515 0.953 0.652 0.019
CGC - 0.672 0.828 0.285 0.945 0.415 0.026

WeathN5b

DGLASSO 0.166 0.773 0.668 0.992 0.619 0.788 0.630
MLEM 0.197 0.413 0.413 1.000 0.000 0.584 0.376

GRAPHEM 0.186 0.629 0.536 1.000 0.368 0.694 0.470
PGC - 0.675 0.677 0.469 0.819 0.544 0.017
CGC - 0.634 0.659 0.263 0.895 0.369 0.023

WeathN10a

DGLASSO 0.202 0.948 0.898 0.925 0.954 0.890 1.363
MLEM 0.264 0.219 0.219 1.000 0.000 0.359 0.834

GRAPHEM 0.224 0.511 0.311 1.000 0.374 0.473 1.445
PGC - 0.879 0.904 0.504 0.983 0.644 0.232
CGC - 0.773 0.539 0.211 0.932 0.278 0.358

WeathN10b

DGLASSO 0.192 0.866 0.633 0.994 0.829 0.769 0.557
MLEM 0.342 0.219 0.219 1.000 0.000 0.359 0.989

GRAPHEM 0.219 0.855 0.620 0.994 0.816 0.757 0.655
PGC - 0.799 0.558 0.473 0.890 0.506 0.154
CGC - 0.750 0.407 0.218 0.900 0.265 0.178

CGC have significantly lower running times for the case with Ny = 5, the computational
cost for Ny = 10 is closer to DGLASSO while the performance gap is higher. Thus, in this
examples we show that as the dimension grows, the computational cost of all methods is
comparable while the proposed method has clearly a better performance. We also display
some examples of inferred graphs in Figures 7 and 8. We can observe that DGLASSO
is able to capture in a very accurate manner the structure of the graphs, despite the wide
variability of the dataset. MLEM and GRAPHEM capture the main edges, but their graphs
are perturbed by several spurious edges, which shows how important it is to adopt a joint
graph modeling, with sparsity priors on each.

6. Conclusion

This paper proposes a joint graphical modeling approach that incorporates a graphical
perspective on the dynamics of the hidden state of a linear Gaussian state-space model.

30

State-space models as graphs Víctor Elvira University of Edinburgh 36/41



Convergence of SpaRJ and GarphEM with data

Figure: 3× 3 system with known isotropic state covariance.
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Convergence of SpaRJ with iterations

Figure: Progression of sample metrics in a 12× 12.
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Real-world applications

▶ cardiology application of finding rotors in atrial fibrillation
▶ topology discovery is the key

▶ climate models
▶ already tested over realistic climate synthetic data (the Causality for

Climate Competition, NeurIPS 2019)
▶ preliminary work “Graphs in State-Space Models for Granger Causality in

Climate Science” at CausalStats 2023

▶ networks, neuroscience, ..., ideas? :-)
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Conclusion

▶ Novel graphical interpretation on matrices A and Q in LG-SSMs.
▶ Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ

(fully Bayesian).
▶ GraphEM is faster and allows explicit penalty functions (prior knowledge)

beyond sparsity.
▶ SpaRJ provides samples of the posterior allowing for uncertainty

quantification.
▶ Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)

▶ strong model interpretation
▶ sophisticated optimization scheme

▶ All have solid theoretical guarantees and show good performance.
▶ This is a challenging problem with many exciting ongoing methodological

and applied avenues ahead!
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Thank you for your attention!
GraphEM paper: V. Elvira, É. Chouzenoux, “Graphical Inference in Linear-Gaussian
State-Space Models”, IEEE Transactions on Signal Processing, Vol. 70, pp.
4757-4771, 2022.

SpaRJ: B. Cox and V. Elvira, “Sparse Bayesian Estimation of Parameters in
Linear-Gaussian State-Space Models”, IEEE Transactions on Signal Processing, vol.
71, pp. 1922-1937, 2023.

GraphIT paper: E. Chouzenoux and V. Elvira, “Iterative reweighted ℓ1 algorithm for
sparse graph inference in state-space models”, IEEE International Conf. on Acoustics,
Speech, and Signal Processing (ICASSP 2023), Rhodes, Greece, June, 2023.

Non-Markovian models: E. Chouzenoux and V. Elvira, “Graphical Inference in
Non-Markovian Linear-Gaussian State-space Models”, IEEE International Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 2024), Seoul, Korea, April, 2024.
Under review:
▶ DGLASSO: E. Chouzenoux and V. Elvira, “Sparse Graphical Linear Dynamical

Systems, submitted, 2023. https://arxiv.org/abs/2307.03210
▶ Application to climate: V. Elvira, E. Chouzenoux, J. Cerda, and G. Camps-Valls

“Graphs in State-Space Models for Granger Causality in Climate Science”,
CausalStats Workshop, 2023.

▶ Community detection paper: B. Cox and V. Elvira, “Community Detection for
structural Parameter Estimation in Linear-Gaussian State-Space Models”, 2024.



GraphEM in a nutshell

• Goal. MAP estimate of A:

A∗ = argmaxAp(A|y1:T ) = argmaxAp(A)p(y1:T |A)

▶ Equivalent to minimizing L(A) = − log p(A)− log p(y1:T |A).
▶ Challenges: evaluating L1:T (A) ≡ − log p(y1:T |A) requires to run the KF:

L1:T (A) =

T∑
t=1

1

2
log |2πSt(A)|+ 1

2
zt(A)⊤St(A)−1zt(A).

▶ Function L0(A) ≡ − log p(A) might be complicated (e.g., non smooth).
▶ Non tractable minimization.

▶ Simplest version of GraphEM:12 an EM strategy to minimize a sequence of
(tractable) majorizing approximations of L.
▶ Lasso regularization (Laplace prior) to promote a sparse matrix A:

(∀A ∈ RNx×Nx) L0(A) = γ∥A∥1, γ > 0.

12E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, pp. 5840–5844.
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▶ Equivalent to minimizing L(A) = − log p(A)− log p(y1:T |A).
▶ Challenges: evaluating L1:T (A) ≡ − log p(y1:T |A) requires to run the KF:

L1:T (A) =

T∑
t=1

1

2
log |2πSt(A)|+ 1

2
zt(A)⊤St(A)−1zt(A).

▶ Function L0(A) ≡ − log p(A) might be complicated (e.g., non smooth).
▶ Non tractable minimization.

▶ Simplest version of GraphEM:12 an EM strategy to minimize a sequence of
(tractable) majorizing approximations of L.
▶ Lasso regularization (Laplace prior) to promote a sparse matrix A:

(∀A ∈ RNx×Nx) L0(A) = γ∥A∥1, γ > 0.

12E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, pp. 5840–5844.

State-space models as graphs Víctor Elvira University of Edinburgh 41/41



GraphEM in a nutshell

• Goal. MAP estimate of A:

A∗ = argmaxAp(A|y1:T ) = argmaxAp(A)p(y1:T |A)

▶ Equivalent to minimizing L(A) = − log p(A)− log p(y1:T |A).
▶ Challenges: evaluating L1:T (A) ≡ − log p(y1:T |A) requires to run the KF:

L1:T (A) =

T∑
t=1

1

2
log |2πSt(A)|+ 1

2
zt(A)⊤St(A)−1zt(A).

▶ Function L0(A) ≡ − log p(A) might be complicated (e.g., non smooth).
▶ Non tractable minimization.

▶ Simplest version of GraphEM:12 an EM strategy to minimize a sequence of
(tractable) majorizing approximations of L.
▶ Lasso regularization (Laplace prior) to promote a sparse matrix A:

(∀A ∈ RNx×Nx) L0(A) = γ∥A∥1, γ > 0.

12E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, pp. 5840–5844.

State-space models as graphs Víctor Elvira University of Edinburgh 41/41



GraphEM in a nutshell

• Goal. MAP estimate of A:

A∗ = argmaxAp(A|y1:T ) = argmaxAp(A)p(y1:T |A)

▶ Equivalent to minimizing L(A) = − log p(A)− log p(y1:T |A).
▶ Challenges: evaluating L1:T (A) ≡ − log p(y1:T |A) requires to run the KF:

L1:T (A) =

T∑
t=1

1

2
log |2πSt(A)|+ 1

2
zt(A)⊤St(A)−1zt(A).

▶ Function L0(A) ≡ − log p(A) might be complicated (e.g., non smooth).
▶ Non tractable minimization.

▶ Simplest version of GraphEM:12 an EM strategy to minimize a sequence of
(tractable) majorizing approximations of L.
▶ Lasso regularization (Laplace prior) to promote a sparse matrix A:

(∀A ∈ RNx×Nx) L0(A) = γ∥A∥1, γ > 0.

12E. Chouzenoux and V. Elvira. “GraphEM: EM algorithm for blind Kalman filtering under
graphical sparsity constraints”. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2020, pp. 5840–5844.

State-space models as graphs Víctor Elvira University of Edinburgh 41/41



Expression of EM steps

• Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by
setting the state matrix to A′ and define13

Σ =
1

T

T∑
t=1

Ps
t +ms

t (m
s
t )

⊤,

Φ =
1

T

T∑
t=1

Ps
t−1 +ms

t−1(m
s
t−1)

⊤

C =
1

T

T∑
t=1

Ps
tG

⊤
t−1 +ms

t (m
s
t−1)

⊤.

and build
Q(A;A′) =

T

2
tr
(
Q−1(Σ−CA⊤ −AC⊤ +AΦA⊤)

)
+ L0(A) + ct/A,

such that, for every A ∈ RNx×Nx :

Q(A;A′) ≥ L(A), and Q(A′;A′) = L(A′).

• Upper bound optimization (M-step): The M-step consists in searching for a
minimizer of Q(A;A′) with respect to A (A′ being fixed).

13R. H. Shumway and D. S. Stoffer. “An approach to time series smoothing and forecasting
using the EM algorithm”. In: Journal of Time Series Analysis 3.4 (1982), pp. 253–264.
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Computation of the M-step
• Convex non-smooth minimization problem

argminA Q(A;A
′
)

︸ ︷︷ ︸
f(A)

= argminA
T

2
tr
(
Q

−1
(Σ − CA

⊤ − AC
⊤

+ AΦA
⊤
)
)

︸ ︷︷ ︸
f1(A)=upper bound of − log (p(y1:T |A))

+ γ∥A∥1︸ ︷︷ ︸
f2(A)=− log p(A)

(prior)

Proximal splitting approach: The proximity operator of f : RNx×Nx → R is
defined

proxf (Ã) = argminA

(
f(A) +

1

2
∥A− Ã∥2F

)
.

Douglas-Rachford algorithm in GraphEM

▶ Set Z0 ∈ RNx×Nx and θ ∈ (0, 2).
▶ For n = 1, 2, . . .

An = proxθf2 (Zn)

Vn = proxθf1 (2An − Zn)

Zn+1 = Zn + θ(Vn −An)

✓ {An}n∈N guaranteed to converge to a minimizer of Q(A;A′) = f1 + f2

✓ Both involved proximity operators have closed form solution.
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Generic GraphEM algorithm
▶ generic GraphEM allows for a larger family of priors (and several):14

(∀A ∈ RNx×Nx) Q(A;A′) =
M∑

m=1

fm(A), (2)

▶ f1(A) is still an upper bound of − log (p(y1:T |A))
▶ fM (A) = γ∥A∥1 (sparsity promoter)
▶ other losses {fm(A)}M−1

m=2 promote properties in A (e.g., stability)
▶ The inference now requires a more sophisticated optimization algorithm in

the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)

▶ Set Vm
0 = A′ ∀m ∈ {1, . . . ,M}, and stepsizes λ ∈ (0, 1

M
), γ ∈ [λ, 1−λ

M−1
].

▶ For n = 1, 2, . . .

Wm
n = Vm

n + γVM
n (∀m ∈ {1, . . . ,M − 1})

WM
n = VM

n − γ
∑M−1

m=1 Vm
n

Am
n = Wm

n − γ proxfm/γ(W
m
n ) (∀m ∈ {1, . . . ,M − 1})

AM
n = proxγfM

(WM
n )

Zm
n = Am

n + γAM
n (∀m ∈ {1, . . . ,M − 1})

ZM
n = AM

n − γ
∑M−1

m=1 Am
n

Vm
n+1 = Vm

n − Wm
n + Zm

n (∀m ∈ {1, . . . ,M})

14V. Elvira and É. Chouzenoux. “Graphical Inference in Linear-Gaussian State-Space
Models”. In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.
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Theoretical guarantees

Theorem
Assume that the prior term L0 is proper, convex, lower semicontinuous. Under
mild technical assumptions (qualification conditions),
▶ {L(A(i))}i∈N is a decreasing sequence converging to a finite limit L∗.
▶ The sequence of iterates {A(i)}i∈N has a cluster point (i.e., one can

extract a converging subsequence)
▶ Let A∗ a cluster point (i.e., the limit of a converging subsequence) of

{A(i)}i∈N. Then, L(A∗) = L∗ and A∗ is a critical point of L, i.e.,
∇L1:T (A

∗) ∈ ∂L0(A
∗).
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Data description and numerical settings
• Four synthetic datasets with H = Id, size Nx = Ny = 9, and randomly

generated ground truth sparse matrices A∗ and P∗ (block diagonal 3× 3)
with varying conditioning for Q∗ = (P∗)−1.
We set K = 103 and R = σ2

RId, P0 = σ2
0Id with (σR, σ0) = (10−1, 10−4).

• Goal: (i) Given {yk}Kk=1, and (H,R,P0), provide estimates (Â, P̂) of
(A∗,P∗), evaluated by RMSE and F1 metrics, (ii) Given a new test data,
compute the the predictive distribution means by KF/RTS using the
estimated model parameters, evaluated by cNMSE and loss metrics.

• DGLASSO, is compared with:
▶ Maximum likelihood EM (MLEM): DGLASSO model with λA = λP = 0.
▶ GRAPHEM approach [Elvira et al., 2022]: MAP estimate of A, while fixing

Q̂ = σ2
QId with finetuned σQ.

▶ GLASSO approach [Friedman et al., 2008]: MAP estimate of P, fixing
Â = 0 and neglecting R.

▶ rGLASSO approach [Benfenati et al., 2020]: MAP estimate of P, fixing
Â = 0.

▶ Pairwise Granger Causality (PGC) / conditional Granger Causality (CGC)
based on sparse vector autoregressive (VAR) models [Luengo et al., 2019].

• Manual finetuning of hyperparameters (e.g., ℓ1 penalty weight) on a single
realization (see more details in paper). Results are averaged on 50
realizations.State-space models as graphs Víctor Elvira University of Edinburgh 41/41
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