State-space models as graphs (part II)

Víctor Elvira
School of Mathematics
University of Edinburgh

Joint work with E. Chouzenoux (INRIA Saclay, France) and B. Cox (University of Edinburgh, UK)

Bellairs Research Institute of McGill University, Barbados
January 22, 2024

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
Point-wise estimation: extensions
Probabilistic estimation
Experimental evaluation
Conclusion
```


Motivation

- A large class of problems in statistics, machine learning, and signal processing requires sequential processing of observed data with temporal structure.
- geophysical systems (atmosphere, oceans)
- robotics
- target tracking, positioning, navigation
- communications
- biomedical signal processing
- financial engineering
- ecology
- Goals:
- prediction (with uncertainty quantification)
- parameter estimation (with interpretability)

Inference in State-Space Models (SSM)

- Let us consider:
- a set of hidden states $\mathbf{x}_{t} \in \mathbb{R}^{N_{x}}, t=1, \ldots, T$.
- a set of observations $\mathbf{y}_{t} \in \mathbb{R}^{N_{y}}, t=1, \ldots, T$.
- An SSM is an underlying hidden process of \mathbf{x}_{t} that evolves and that, partially and noisily, expresses itself through \mathbf{y}_{t}.

- Probabilistic notation:
- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right)$

The estimation problem

- We sequentially observe data \mathbf{y}_{t} related to the hidden state \mathbf{x}_{t}.
\rightarrow At time t, we have accumulated t observations, $\mathbf{y}_{1: t} \equiv\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{t}\right\}$.
\rightarrow Interesting problems (when θ is known):
- Filtering
- State prediction: $p_{\theta}\left(\mathrm{x}_{t+\tau} \mid \mathrm{y} 1: t\right)$,
- Observation prediction: $p_{\theta}\left(\mathrm{y}_{t+\tau} \mid \mathrm{Y}_{1: t}\right), \quad \tau \geq$
- Smoothing: $p_{\theta}\left(\mathbf{x}_{t-\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- We want a sequential, efficient, and probabilistic filtering of the observations.
\rightarrow At time t, we want to process only y_{t}, but not reprocess all $\mathbf{y}_{1: t-1}$ (that were already processed!)

The estimation problem

- We sequentially observe data \mathbf{y}_{t} related to the hidden state \mathbf{x}_{t}.
- At time t, we have accumulated t observations, $\mathbf{y}_{1: t} \equiv\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{t}\right\}$.
- Interesting problems (when $\boldsymbol{\theta}$ is known):
- Filtering: $p_{\boldsymbol{\theta}}\left(\mathrm{x}_{t} \mid \mathrm{y}_{1: t}\right)$
- State prediction: $p_{\theta}\left(\mathbf{x}_{t+\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- Observation prediction: $p_{\boldsymbol{\theta}}\left(\mathbf{y}_{t+\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- Smoothing: $p_{\boldsymbol{\theta}}\left(\mathbf{x}_{t-\tau} \mid \mathbf{y}_{1: t}\right), \quad \tau \geq 1$
- We want a sequential, efficient, and probabilistic filtering of the observations.
- At time t, we want to process only \mathbf{y}_{t}, but not reprocess all $\mathbf{y}_{1: t-1}$ (that were already processed!)

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
Point-wise estimation: extensions
Probabilistic estimation
Experimental evaluation
Conclusion
```


The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Functional notation:
- Unobserved state $\rightarrow \mathbf{x}_{t}=\mathbf{A}_{t} \mathbf{x}_{t-1}+\mathbf{q}_{t}$
- Observations $\quad \rightarrow \mathbf{y}_{t}=\boldsymbol{H}_{t} \mathrm{x}_{t}+\mathbf{r}_{t}$
where $\mathbf{q}_{t} \sim \mathcal{N}\left(0, \mathbf{Q}_{t}\right)$ and $\mathbf{r}_{t} \sim \mathcal{N}\left(0, \mathbf{R}_{t}\right)$.
- Probabilistic notation:
- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \equiv \mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{A}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) \equiv \mathcal{N}\left(\mathbf{y}_{t} ; \boldsymbol{H}_{t} \mathbf{x}_{t}, \mathbf{R}_{t}\right)$
$>$ Kalman filter: obtains the filtering pdfs $p\left(\mathrm{x}_{t} \mid \mathrm{y}_{1: t}\right)$, at each t
- Gaussian pdfs, with means and covariances matrices are calculated at each t
- Efficient processing of y_{t}, obtaining
$>$ Rauch-Tung-Striebel (RTS) smoother: obtains $p\left(\mathrm{x}_{t} \mid \mathbf{y}_{1: T}\right)$
- requires a backward reprocessing, refining the Kalman estimates

The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Functional notation:
- Unobserved state $\rightarrow \mathbf{x}_{t}=\mathbf{A}_{t} \mathbf{x}_{t-1}+\mathbf{q}_{t}$
- Observations $\quad \rightarrow \mathbf{y}_{t}=\boldsymbol{H}_{t} \mathrm{x}_{t}+\mathbf{r}_{t}$ where $\mathbf{q}_{t} \sim \mathcal{N}\left(0, \mathbf{Q}_{t}\right)$ and $\mathbf{r}_{t} \sim \mathcal{N}\left(0, \mathbf{R}_{t}\right)$.
- Probabilistic notation:
- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \equiv \mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{A}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) \equiv \mathcal{N}\left(\mathbf{y}_{t} ; \boldsymbol{H}_{t} \mathbf{x}_{t}, \mathbf{R}_{t}\right)$
- Kalman filter: obtains the filtering pdfs $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$, at each t
- Gaussian pdfs, with means and covariances matrices are calculated at each t
- Efficient processing of \mathbf{y}_{t}, obtaining $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$ from $p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right)$
$>$ Rauch-Tung-Striebel (RTS) smoother
- requires a backward reprocessing, refining the Kalman estimates

The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Functional notation:
- Unobserved state $\rightarrow \mathbf{x}_{t}=\mathbf{A}_{t} \mathbf{x}_{t-1}+\mathbf{q}_{t}$
- Observations $\quad \rightarrow \mathbf{y}_{t}=\boldsymbol{H}_{t} \mathrm{x}_{t}+\mathrm{r}_{t}$ where $\mathbf{q}_{t} \sim \mathcal{N}\left(0, \mathbf{Q}_{t}\right)$ and $\mathbf{r}_{t} \sim \mathcal{N}\left(0, \mathbf{R}_{t}\right)$.
- Probabilistic notation:
- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \equiv \mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{A}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) \equiv \mathcal{N}\left(\mathbf{y}_{t} ; \boldsymbol{H}_{t} \mathbf{x}_{t}, \mathbf{R}_{t}\right)$
- Kalman filter: obtains the filtering pdfs $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)$, at each t
- Gaussian pdfs, with means and covariances matrices are calculated at each t
- Efficient processing of \mathbf{y}_{t}, obtaining $p\left(\mathrm{x}_{t} \mid \mathbf{y}_{1: t}\right)$ from $p\left(\mathbf{x}_{t-1} \mid \mathbf{y}_{1: t-1}\right)$
- Rauch-Tung-Striebel (RTS) smoother: obtains $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: T}\right)$
- requires a backward reprocessing, refining the Kalman estimates

Kalman summary and RTS smoother

- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \equiv \mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{A}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) \equiv \mathcal{N}\left(\mathbf{y}_{t} ; \boldsymbol{H}_{t} \mathbf{x}_{t}, \mathbf{R}_{t}\right)$

Kalman filter

- Initialize: $\mathbf{m}_{0}, \mathbf{P}_{0}$
- For $t=1, \ldots, T$

Predict stage:

$$
\begin{aligned}
& \mathbf{x}_{t}^{-}=\mathbf{A}_{t} \mathrm{~m}_{t-1} \\
& \mathbf{P}_{t}^{-}=\mathbf{A}_{t} \mathbf{P}_{t-1} \mathbf{A}_{t}^{\top}+\mathbf{Q}_{t}
\end{aligned}
$$

Update stage:

$$
\begin{aligned}
& \mathbf{z}_{t}=\mathbf{y}_{t}-\mathbf{H}_{t} \mathbf{x}_{t}^{-} \\
& \mathbf{S}_{t}=\mathbf{H} \mathbf{P}_{t}^{-} \mathbf{H}_{t}^{\top}+\mathbf{R}_{t} \\
& \mathbf{K}_{t}=\mathbf{P}_{t}^{-} \mathbf{H}_{t}^{\top} \mathbf{S}_{t}^{-1} \\
& \mathrm{~m}_{t}=\mathbf{x}_{t}^{-}+\mathbf{K}_{t} \mathbf{z}_{t} \\
& \mathbf{P}_{t}=\mathbf{P}_{t}^{-}-\mathbf{K}_{t} \mathbf{S}_{t} \mathbf{K}_{t}^{\top}
\end{aligned}
$$

\checkmark Filtering distribution: $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \mathrm{m}_{t}, \mathbf{P}_{t}\right)$
\checkmark Smoothing distribution: $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: T}\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{m}_{t}^{s}, \mathbf{P}_{t}^{s}\right)$
X How to proceed if some model parameters are unknown ?

Kalman summary and RTS smoother

- Hidden state $\rightarrow p\left(\mathbf{x}_{t} \mid \mathbf{x}_{t-1}\right) \equiv \mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{A}_{t} \mathbf{x}_{t-1}, \mathbf{Q}_{t}\right)$
- Observations $\rightarrow p\left(\mathbf{y}_{t} \mid \mathbf{x}_{t}\right) \equiv \mathcal{N}\left(\mathbf{y}_{t} ; \boldsymbol{H}_{t} \mathbf{x}_{t}, \mathbf{R}_{t}\right)$

Kalman filter

- Initialize: $\mathbf{m}_{0}, \mathbf{P}_{0}$
- For $t=1, \ldots, T$

Predict stage:

$$
\begin{aligned}
& \mathbf{x}_{t}^{-}=\mathbf{A}_{t} \mathrm{~m}_{t-1} \\
& \mathbf{P}_{t}^{-}=\mathbf{A}_{t} \mathbf{P}_{t-1} \mathbf{A}_{t}^{\top}+\mathbf{Q}_{t}
\end{aligned}
$$

Update stage:

$$
\begin{aligned}
& \mathbf{z}_{t}=\mathbf{y}_{t}-\mathbf{H}_{t} \mathbf{x}_{t}^{-} \\
& \mathbf{S}_{t}=\mathbf{H} \mathbf{P}_{t}^{-} \mathbf{H}_{t}^{\top}+\mathbf{R}_{t} \\
& \mathbf{K}_{t}=\mathbf{P}_{t}^{-} \mathbf{H}_{t}^{\top} \mathbf{S}_{t}^{-1} \\
& \mathrm{~m}_{t}=\mathbf{x}_{t}^{-}+\mathbf{K}_{t} \mathbf{z}_{t} \\
& \mathbf{P}_{t}=\mathbf{P}_{t}^{-}-\mathbf{K}_{t} \mathbf{S}_{t} \mathbf{K}_{t}^{\top}
\end{aligned}
$$

\checkmark Filtering distribution: $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: t}\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \mathrm{m}_{t}, \mathbf{P}_{t}\right)$
\checkmark Smoothing distribution: $p\left(\mathbf{x}_{t} \mid \mathbf{y}_{1: T}\right)=\mathcal{N}\left(\mathbf{x}_{t} ; \mathbf{m}_{t}^{s}, \mathbf{P}_{t}^{s}\right)$
\boldsymbol{x} How to proceed if some model parameters are unknown ?

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
```


Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

```
Experimental evaluation
Conclusion
```


Goal of the talk

$$
\mathbf{x}_{t}=\mathbf{A} \mathbf{x}_{t-1}+\mathbf{q}_{t}, \quad \mathbf{q} t \sim \mathcal{N}(0, \mathbf{Q})
$$

This talk: DGLASSO model and inference approach

- Joint estimation of two matrices describing the hidden state dynamics in the linear Gaussian state-space model.
- Sparse graphical model to represent (i) the (Granger) causal dependencies among the states, and (ii) the correlation among the state noises.
- Majorization-minimization methodology for graphical inference.

A graphical perspective on \mathbf{A}

- Goal. Estimation of matrix A (a) introducing prior knowledge, and (b) under a novel interpretation of \mathbf{A} :

$$
\mathbf{x}_{t}=\mathbf{A} \mathbf{x}_{t-1}+\mathbf{q}_{t}, \quad \mathbf{q}_{t} \sim \mathcal{N}(0, \mathbf{Q})
$$

- Graph discovery perspective: A can be seen as sparse directed graph

A graphical perspective on \mathbf{A}

- Goal. Estimation of matrix A (a) introducing prior knowledge, and (b) under a novel interpretation of \mathbf{A} :

$$
\mathbf{x}_{t}=\mathbf{A} \mathbf{x}_{t-1}+\mathbf{q}_{t}, \quad \mathbf{q}_{t} \sim \mathcal{N}(0, \mathbf{Q})
$$

- Graph discovery perspective: A can be seen as sparse directed graph
- $\mathbf{x}_{t} \in \mathbb{R}^{N_{x}}$ contains N_{x} time-series
- each of them represents the latent process in a node in the graph

A graphical perspective on \mathbf{A}

- Goal. Estimation of matrix A (a) introducing prior knowledge, and (b) under a novel interpretation of \mathbf{A} :

$$
\mathbf{x}_{t}=\mathbf{A} \mathbf{x}_{t-1}+\mathbf{q}_{t}, \quad \mathbf{q}_{t} \sim \mathcal{N}(0, \mathbf{Q})
$$

- Graph discovery perspective: A can be seen as sparse directed graph
- $\mathbf{x}_{t} \in \mathbb{R}^{N_{x}}$ contains N_{x} time-series
- each of them represents the latent

$$
\mathbf{A}=\left(\begin{array}{ccccc}
0.9 & 0.7 & 0 & 0 & 0 \\
0 & 0 & -0.3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.8 \\
0 & -0.1 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0
\end{array}\right)
$$ process in a node in the graph

- $A(i, j)$ is the linear effect from node j at time $t-1$ to node i at time t :

$$
x_{t, i}=\sum_{j=1}^{N_{x}} A(i, j) x_{t-1, j}+q_{t, i}
$$

- $A(i, j) \neq 0 \Rightarrow x_{t-1, j}$ Granger-causes $x_{t, i}$.

A graphical modeling $\mathbf{P}=\mathbf{Q}^{-1}$

$$
\mathbf{x}_{t}=\mathbf{A} \mathbf{x}_{t-1}+\mathbf{q}_{t}, \quad \mathbf{q}_{t} \sim \mathcal{N}(0, \mathbf{Q})
$$

- Gaussian graphical model (GGM) perspective: $\mathbf{P}=\mathrm{Q}^{-1}$ can be seen as an sparse undirected graph.

$$
\mathbf{q}(n) \Perp \mathbf{q}(\ell) \mid\left\{\mathbf{q}(j), j \in 1, \ldots, N_{x} \backslash\{n, \ell\}\right\} \Longleftrightarrow P(n, \ell)=P(\ell, n)=0
$$

Summary of DGLASSO model

Summary representation of the DGLASSO graphical model, for the example graphs \mathbf{A} and P from the two previous slides.

DGLASSO (dynamic graphical lasso): maximum a posteriori (MAP) estimator of \mathbf{A} and P under lasso sparsity regularization on both matrices, given the observed sequence $\mathbf{y}_{1: T}$.

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
Point-wise estimation: extensions
Probabilistic estimation
Experimental evaluation
Conclusion
```


Proposed penalized formulation

Goal. MAP estimate of \mathbf{A} and $\mathrm{P}\left(\mathrm{P}=\mathrm{Q}^{-1}\right)$:

$$
\begin{aligned}
\mathbf{A}^{*}, \mathbf{P}^{*} & =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} p\left(\mathbf{A}, \mathbf{P} \mid \mathbf{y}_{1: T}\right)=\underset{\mathbf{A}}{\operatorname{argmax}} p(\mathbf{A}, \mathbf{P}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right) \\
& =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right)}_{\mathcal{L}_{1: T}(\mathbf{A}, \mathrm{P})}=\mathcal{L}(\mathbf{A}, \mathbf{P})
\end{aligned}
$$

- Lasso penalty (prior): we promote sparse matrices (\mathbf{A}, \mathbf{P}) for interpretable and compact network of connections:

- \log likelihood

\rightarrow requires to run KF using (\mathbf{A}, \mathbf{P})
Challenges:
- Joint minimization with non-smooth and non-convex implicit loss.
\rightarrow gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Proposed penalized formulation

Goal. MAP estimate of \mathbf{A} and $\mathrm{P}\left(\mathrm{P}=\mathrm{Q}^{-1}\right)$:

$$
\begin{aligned}
\mathbf{A}^{*}, \mathbf{P}^{*} & =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} p\left(\mathbf{A}, \mathbf{P} \mid \mathbf{y}_{1: T}\right)=\underset{\mathbf{A}}{\operatorname{argmax}} p(\mathbf{A}, \mathbf{P}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right) \\
& =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right)}_{\mathcal{L}_{1: T}(\mathbf{A}, \mathbf{P})}=\mathcal{L}(\mathbf{A}, \mathbf{P})
\end{aligned}
$$

- Lasso penalty (prior): we promote sparse matrices (A,P) for interpretable and compact network of connections:

$$
\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})=\lambda_{A}\|\mathbf{A}\|_{1}+\lambda_{P}\|\mathbf{P}\|_{1}
$$

- \log likelihood

- requires to run KF using (\mathbf{A}, \mathbf{P}) Challenges:
- Joint minimization with non-smooth and non-convex implicit loss.
- gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Proposed penalized formulation

Goal. MAP estimate of \mathbf{A} and $\mathrm{P}\left(\mathrm{P}=\mathrm{Q}^{-1}\right)$:

$$
\begin{aligned}
\mathbf{A}^{*}, \mathbf{P}^{*} & =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} p\left(\mathbf{A}, \mathbf{P} \mid \mathbf{y}_{1: T}\right)=\underset{\mathbf{A}}{\operatorname{argmax}} p(\mathbf{A}, \mathbf{P}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right) \\
& =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right)}_{\mathcal{L}_{1: T}(\mathbf{A}, \mathrm{P})}=\mathcal{L}(\mathbf{A}, \mathbf{P})
\end{aligned}
$$

- Lasso penalty (prior): we promote sparse matrices (A,P) for interpretable and compact network of connections:

$$
\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})=\lambda_{A}\|\mathbf{A}\|_{1}+\lambda_{P}\|\mathbf{P}\|_{1}
$$

- log likelihood:

$$
\mathcal{L}_{1: T}(\mathbf{A}, \mathbf{P})=\sum_{t=1}^{T} \frac{1}{2} \log \left|2 \pi \mathbf{S}_{t}(\mathbf{A}, \mathbf{P})\right|+\frac{1}{2} \mathbf{z}_{t}(\mathbf{A}, \mathbf{P})^{\top} \mathbf{S}_{t}(\mathbf{A}, \mathbf{P})^{-1} \mathbf{z}_{t}(\mathbf{A}, \mathbf{P})
$$

- requires to run KF using (\mathbf{A}, \mathbf{P})
\rightarrow Joint minimization with non-smooth and non-convex implicit loss.
\rightarrow gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Proposed penalized formulation

Goal. MAP estimate of \mathbf{A} and $\mathrm{P}\left(\mathrm{P}=\mathrm{Q}^{-1}\right)$:

$$
\begin{aligned}
\mathbf{A}^{*}, \mathbf{P}^{*} & =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} p\left(\mathbf{A}, \mathbf{P} \mid \mathbf{y}_{1: T}\right)=\underset{\mathbf{A}}{\operatorname{argmax}} p(\mathbf{A}, \mathbf{P}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right) \\
& =\underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}, \mathbf{P}\right)}_{\mathcal{L}_{1: T}(\mathbf{A}, \mathrm{P})}=\mathcal{L}(\mathbf{A}, \mathbf{P})
\end{aligned}
$$

- Lasso penalty (prior): we promote sparse matrices (A,P) for interpretable and compact network of connections:

$$
\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})=\lambda_{A}\|\mathbf{A}\|_{1}+\lambda_{P}\|\mathbf{P}\|_{1}
$$

- log likelihood:

$$
\mathcal{L}_{1: T}(\mathbf{A}, \mathbf{P})=\sum_{t=1}^{T} \frac{1}{2} \log \left|2 \pi \mathbf{S}_{t}(\mathbf{A}, \mathbf{P})\right|+\frac{1}{2} \mathbf{z}_{t}(\mathbf{A}, \mathbf{P})^{\top} \mathbf{S}_{t}(\mathbf{A}, \mathbf{P})^{-1} \mathbf{z}_{t}(\mathbf{A}, \mathbf{P})
$$

- requires to run KF using (A, P)

Challenges:

- Joint minimization with non-smooth and non-convex implicit loss.
- gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Construction of the majorant function

EM-like approach: ${ }^{1}$

- Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{P}}) \in \mathbb{R}^{N_{x} \times N_{x}} \times \mathcal{S}_{N_{x}}$ and build the majorizing approximation $(\mathcal{Q}(\mathbf{A}, \mathbf{P} ; \widetilde{\mathbf{A}}, \widetilde{\mathbf{P}}) \geq \mathcal{L}(\mathbf{A}, \mathbf{P}), \forall(\mathbf{A}, \mathbf{P}))$:

$$
\mathcal{Q}(\mathbf{A}, \mathbf{P} ; \widetilde{\mathbf{A}}, \widetilde{\mathbf{P}})=\frac{T}{2} \operatorname{tr}\left(\mathbf{P}\left(\boldsymbol{\Psi}-\boldsymbol{\Delta} \mathbf{A}^{\top}-\mathbf{A} \boldsymbol{\Delta}^{\top}+\mathbf{A} \mathbf{\Phi} \mathbf{A}^{\top}\right)\right)-\frac{T}{2} \log \operatorname{det}(2 \pi \mathbf{P})
$$

where, for every $t \in\{1, \ldots, T\}, \mathbf{G}_{t}=\boldsymbol{\Sigma}_{t}(\widetilde{\mathbf{A}})^{\top}\left(\widetilde{\mathbf{A}} \boldsymbol{\Sigma}_{t}(\widetilde{\mathbf{A}})^{\top}+\widetilde{\mathbf{P}}^{-1}\right)^{-1}$, and

$$
\begin{aligned}
& \boldsymbol{\Psi}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{t}^{s}+\boldsymbol{\mu}_{t}^{s}\left(\boldsymbol{\mu}_{t}^{s}\right)^{\top} \\
& \mathbf{\Phi}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{t-1}^{s}+\boldsymbol{\mu}_{t-1}^{s}\left(\boldsymbol{\mu}_{t-1}^{s}\right)^{\top}, \\
& \boldsymbol{\Delta}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{t}^{s} \mathbf{G}_{t-1}^{\top}+\boldsymbol{\mu}_{t}^{s}\left(\boldsymbol{\mu}_{t-1}^{s}\right)^{\top},
\end{aligned}
$$

using RTS outputs $\left(\boldsymbol{\mu}_{t}^{s}, \boldsymbol{\Sigma}_{t}^{s}\right)_{1 \leq t \leq T}$ using $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{P}})$.

[^0]
DGLASSO minimization procedure

- Block alternating majorization-minimization technique:

Set $\left(\mathbf{A}^{(0)}, \mathbf{P}^{(0)}\right)$.
At each iteration $i \in \mathbb{N}$,
(a) Run RTS to build function $\mathcal{Q}\left(\mathbf{A}, \mathbf{P} ; \mathbf{A}^{(i)}, \mathbb{P}^{(i)}\right)$ (E-step)
(b) Update transition matrix (M-step):

$$
\mathbf{A}^{(i+1)}=\underset{\mathbf{A}}{\operatorname{argmin}} \mathcal{Q}\left(\mathbf{A}, \mathbf{P}^{(i)} ; \mathbf{A}^{(i)}, \mathbf{P}^{(i)}\right)+\lambda_{A}\|\mathbf{A}\|_{1}+\frac{1}{2 \theta_{A}}\left\|\mathbf{A}-\mathbf{A}^{(i)}\right\|_{F}^{2}
$$

(c) Run RTS to build function $\mathcal{Q}\left(\mathbf{A}, \mathbf{P} ; \mathbf{A}^{(i+1)}, \mathbf{P}^{(i)}\right)$ (E-step)
(d) Update precision matrix (M-step):

$$
\mathbf{P}^{(i+1)}=\underset{\mathbf{P}}{\operatorname{argmin}} \mathcal{Q}\left(\mathbf{A}^{(i+1)}, \mathbf{P} ; \mathbf{A}^{(i+1)}, \mathbf{P}^{(i)}\right)+\lambda_{P}\|\mathbf{P}\|_{1}+\frac{1}{2 \theta_{P}}\left\|\mathbf{P}-\mathbf{P}^{(i)}\right\|_{F}^{2}
$$

- Proximal terms, with stepsizes $\left(\theta_{A}, \theta_{P}\right)>0$, to stabilize the minimization process and guarantee convergence of iterates.
- Convenient bi-convex structure of $\mathcal{Q}(\cdot, \cdot ; \widetilde{\mathbf{A}}, \widetilde{\mathbf{P}})$
- Step (b) is a lasso-like regression problem
- Step (d) is a GLASSO-like problem.

Convergence theorem

Consider the sequence $\left\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\right\}_{i \in \mathbb{N}}$ generated by DGLASSO, assuming exact resolution of both inner steps (b) and (d). Denote $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1: T}$ the loss function.

- The sequence $\left\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\right\}_{i \in \mathbb{N}}$ produced by DGLASSO algorithm satisfies

$$
(\forall i \in \mathbb{N}) \quad \mathcal{L}\left(\mathbf{A}^{(i+1)}, \mathbf{P}^{(i+1)}\right) \leq \mathcal{L}\left(\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\right) .
$$

- If the sequence $\left\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\right\}_{i \in \mathbb{N}}$ is bounded, then $\left\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\right\}_{i \in \mathbb{N}}$ converges to a critical point of \mathcal{L}.
- Proof based on the recent work. ${ }^{2}$
- In practice, inner mininimization steps (b) and (d) using a Dykstra proximal splitting solver. ${ }^{3}$

[^1]
Summary of the GraphEM algorithm

- DGLASSO generalises our previous GraphEM, ${ }^{4}$ where only \mathbf{A} is unknown.

GraphEM algorithm

- Initialization of $\mathbf{A}^{(0)}$.
- For $i=1,2, \ldots$.

E-step Run the Kalman filter and RTS smoother by setting $\mathbf{A}^{\prime}:=\mathbf{A}^{(i-1)}$ and construct $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{(i-1)}\right)$.
M-step Update $\mathbf{A}^{(i)}=\operatorname{argmin}_{\mathbf{A}}\left(\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{(i-1)}\right)\right)$ using Douglas-Rachford algorithm (simpler version) or monotone+skew (MS) algorithm (generalized version).

- Flexible approach, valid as long as the proximity operators of $\left(f_{m}\right)_{2 \leq m \leq M}$ are available, with $\mathcal{L}_{0}=\sum_{m=1}^{M} f_{m}$

[^2]
Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
```

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

Ongoing extensions: beyond ℓ_{1} norm $(1 / 3)$

- GraphEM requires the penalty term $\mathcal{L}_{0}(\mathbf{A})$ to be convex (e.g., ℓ_{1} norm).
- However, for very sparse graphs, non-convex penalties such as SCAD, MCP, CELO have shown to be more suited than ℓ_{1} norm (closer to pseudo-norm ℓ_{0}).

- GraphIT algorithm ${ }^{5}$ implements an iterative reweighted (IR) scheme
- MM framework: $\mathcal{L}_{0}(\mathbf{A})$ is approximated by a surrogate convex function
- optimization via modern solvers with strong convergence gurantees

(a) True graph

(b) GraphEM

(c) GraphIT

[^3]
Ongoing extensions: beyond Markovianity (2/3)

- Non-Markovian LG-SSM:
- Unobserved state $\rightarrow \mathbf{x}_{t}=\sum_{i=1}^{P} \mathbf{A}_{i} \mathbf{x}_{t-i}+\mathbf{q}_{t}$
- Observations $\quad \rightarrow \mathrm{y}_{t}=\boldsymbol{H}_{t} \mathrm{x}_{t}+\mathrm{r}_{t}$
- Standard filtering and smoothing approach with known $\left\{A_{i}\right\}_{i=1}^{P}$
- stacking (columnwise) the p consecutive states into $\mathbf{z}_{t}=\left[\mathbf{x}_{t} ; \mathbf{x}_{t-1} ; \ldots ; \mathbf{x}_{t-p+1}\right] \in \mathbb{R}^{p N_{x}}$
- run KF and RTS in the extended model

$$
\left\{\begin{array}{l}
\mathbf{z}_{t}=\check{\mathbf{A}} \mathbf{z}_{t-1}+\check{\mathbf{q}}_{t} \tag{1}\\
\mathbf{y}_{t}=\check{\mathbf{H}} \mathbf{z}_{t}+\mathbf{r}_{t}
\end{array}\right.
$$

where we define

$$
\begin{gathered}
\check{\mathbf{A}}=\left[\begin{array}{cccc}
\mathbf{A}_{1} & \cdots & \cdots & \mathbf{A}_{p} \\
\boldsymbol{I} & 0 & \cdots & 0 \\
& \ddots & \ddots & \vdots \\
(0) & & \boldsymbol{I} & 0
\end{array}\right] \in \mathbb{R}^{p N_{x} \times p N_{x}}, \\
\check{\mathbf{H}}=[\mathbf{H}(0)] \in \mathbb{R}^{N_{y} \times p N_{x}}, \check{\mathbf{Q}}=\left[\begin{array}{cc}
\mathbf{Q} & (0) \\
(0) & (0)
\end{array}\right] \in \mathbb{R}^{p N_{x} \times p N_{x}}, \\
\check{\mathbf{q}}_{t} \sim \mathcal{N}(0, \check{\mathbf{Q}}), \text { and } \mathbf{r}_{t} \sim \mathcal{N}(0, \mathbf{R})
\end{gathered}
$$

Ongoing extensions: beyond Markovianity (2/3)

$$
\mathbf{A}_{1}=\left(\begin{array}{ccc}
0.9 & 0.7 & 0 \\
0 & 0 & -0.3 \\
0 & 0 & 0
\end{array}\right), \mathbf{A}_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0.8 & 0
\end{array}\right)
$$

Ongoing extensions: beyond Markovianity (2/3)

- LaGrangEM (ICASSP 2024): a GraphEM-type algorithm that operates in non-Markovian models including desirable properties and interpretability, e.g.,
- acyclic graph
- sparsity
- only one-lag interaction at maximum betwen nodes (more sparsity!)
- reasonable in some physical models
- one input arrow at maximum at each node (even more sparsity!)
- strong connection with modern Granger causality models ${ }^{6}$

- So far, great results but with intermediate/post-processing mapping steps which may compromise the theoretical guarantees (?)
- ongoing work in bridging the gap between well-perorming methods and solid theory

[^4]
Ongoing extensions: beyond linearity $(3 / 3)$

- Models of this type:

$$
\mathbf{x}_{t}=\sum_{j=1}^{J} \mathbf{A}_{j} \boldsymbol{\Phi}_{j}\left(\mathbf{x}_{t-1}\right)+\mathbf{q}_{t}
$$

e.g., with $J=3$:

$$
\mathbf{x}_{t}=\mathbf{A}_{1} \mathbf{x}_{t-1}+\mathbf{A}_{2} \mathbf{x}_{t-1}^{2}+\mathbf{A}_{3} \mathbf{x}_{t-1}^{2}+\mathbf{q}_{t}
$$

- possible to include cross-terms
- Functional learning (Taylor-expansion perspective)
- Ongoing work with several challenges:
- too high-dimensional space
- identifiability issues
- even more complicated for fully Bayesian approaches

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
Point-wise estimation: extensions
Probabilistic estimation
Experimental evaluation
Conclusion
```


SpaRJ algorithm

- SpaRJ^{7} (sparse reversible jump) is a fully probabilistic algorithm for the estimation of \mathbf{A}, i.e., obtains samples from $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)$.
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
- $M_{n} \in\{0,1\}^{N_{x} \times N_{x}}$: sparsity pattern sample
- A_{n} : matrix \mathbf{A} sample, with non-zero elements, $A(i, j)$ for
- We use reversible jump MCMC (RJ-MCMC) to explore $p\left(\mathbf{A} \mid \mathrm{y}_{1: T}\right) .^{8}$
- MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, $\left|M_{n}\right|$
- It requires to define:
- transition kernels for the model jumps
- mechanism to set values when jumping to a more complex model.

[^5]
SpaRJ algorithm

- SpaRJ^{7} (sparse reversible jump) is a fully probabilistic algorithm for the estimation of \mathbf{A}, i.e., obtains samples from $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)$.
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
- $M_{n} \in\{0,1\}^{N_{x} \times N_{x}}$: sparsity pattern sample
- A_{n} : matrix \mathbf{A} sample, with non-zero elements, $A(i, j)$ for $\left\{(i, j): M_{n}(i, j)=1\right\}$
- We use reversible jump MCMC (RJ-MCMC) to explore $p\left(\mathbf{A} \mid \mathrm{y}_{1: T}\right) .^{8}$
- MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, $\left|M_{n}\right|$
\rightarrow It requires to define:
- transition kernels for the model jumps
- mechanism to set values when jumping to a more complex model.

[^6]
SpaRJ algorithm

- SpaRJ ${ }^{7}$ (sparse reversible jump) is a fully probabilistic algorithm for the estimation of \mathbf{A}, i.e., obtains samples from $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)$.
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
- $M_{n} \in\{0,1\}^{N_{x} \times N_{x}}$: sparsity pattern sample
- A_{n} : matrix A sample, with non-zero elements, $A(i, j)$ for $\left\{(i, j): M_{n}(i, j)=1\right\}$
- We use reversible jump MCMC (RJ-MCMC) to explore $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right) .{ }^{8}$
- MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, $\left|M_{n}\right|$.
- It requires to define:
transition kernels for the model jumps
- mechanism to set values when jumping to a more complex model.

[^7]
SpaRJ algorithm

- SpaRJ ${ }^{7}$ (sparse reversible jump) is a fully probabilistic algorithm for the estimation of \mathbf{A}, i.e., obtains samples from $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)$.
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
- $M_{n} \in\{0,1\}^{N_{x} \times N_{x}}$: sparsity pattern sample
- A_{n} : matrix A sample, with non-zero elements, $A(i, j)$ for $\left\{(i, j): M_{n}(i, j)=1\right\}$
- We use reversible jump MCMC (RJ-MCMC) to explore $p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right) .{ }^{8}$
- MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, $\left|M_{n}\right|$.
- It requires to define:
- transition kernels for the model jumps
- mechanism to set values when jumping to a more complex model.

[^8]
Pseudocode of SpaRJ

Input: Known SSM parameters $\left\{\overline{\mathbf{x}}_{0}, \mathbf{P}_{0}, \mathbf{Q}, \mathbf{R}, \mathbf{H}\right\}$, observations $\left\{y_{t}\right\}_{t=1}^{T}$, hyper-parameters, number of iterations N, initial value \mathbf{A}_{0} Output: Set of sparse samples $\left\{\mathbf{A}_{n}\right\}_{n=1}^{N}$

```
Initialization
    Initialize }\mp@subsup{M}{0}{}\mathrm{ as fully dense (all ones) and }\mp@subsup{\mathbf{A}}{0}{
    Run Kf obtaining lo }\mp@subsup{l}{0}{}:=\operatorname{log}(\textrm{p}(\mp@subsup{\mathbf{y}}{1:T}{}|\mp@subsup{\mathbf{A}}{0}{}))p(\mp@subsup{\mathbf{A}}{0}{}
    for }n=1,\ldots,N d
    Step 1: Propose model
    Propose a new sparsity pattern }\mp@subsup{M}{}{\prime}\mathrm{ , obtaining a symmetry correction of c.
    Step 2: Propose A
    Propose A' using an MCMC sampler conditional on M'
    Step 3: MH accept-reject
    Evaluate Kalman filter with A:= \mathbf{A}
    Set l}\mp@subsup{l}{}{\prime}:=\operatorname{log}(p(\mp@subsup{\mathbf{y}}{1:T}{}|\mp@subsup{\mathbf{A}}{}{\prime}))p(\mp@subsup{\mathbf{A}}{}{\prime}
    Compute log}(\mp@subsup{a}{T}{}):=\mp@subsup{l}{}{\prime}-\mp@subsup{l}{n-1}{}+c\mathrm{ and Accept w.p. }\mp@subsup{a}{T}{}
    if Accept then
    Set }\mp@subsup{M}{n}{}:=\mp@subsup{M}{}{\prime},\mp@subsup{\mathbf{A}}{n}{}:=\mp@subsup{\mathbf{A}}{}{\prime},\mp@subsup{l}{n}{}:=\operatorname{log}(p(\mp@subsup{\textrm{y}}{1:T}{}|\mp@subsup{\mathbf{A}}{}{\prime}))p(\mp@subsup{\mathbf{A}}{}{\prime}
    else
    Set }\mp@subsup{M}{n}{}:=\mp@subsup{M}{n-1}{},\mp@subsup{\mathbf{A}}{n}{}:=\mp@subsup{\mathbf{A}}{n-1}{},\mp@subsup{l}{n}{}:=\mp@subsup{l}{n-1}{
    end if
    end for
```


Pseudocode of SpaRJ

Input: Known SSM parameters $\left\{\overline{\mathbf{x}}_{0}, \mathbf{P}_{0}, \mathbf{Q}, \mathbf{R}, \mathbf{H}\right\}$, observations $\left\{y_{t}\right\}_{t=1}^{T}$, hyper-parameters, number of iterations N, initial value \mathbf{A}_{0}
Output: Set of sparse samples $\left\{\mathbf{A}_{n}\right\}_{n=1}^{N}$
Initialization
Initialize M_{0} as fully dense (all ones) and \mathbf{A}_{0}
Run Kf obtaining $l_{0}:=\log \left(\mathrm{p}\left(\mathbf{y}_{1: T} \mid \mathbf{A}_{0}\right)\right) p\left(\mathbf{A}_{0}\right)$
for $n=1, \ldots, N$ do
Step 1: Propose model
Propose a new sparsity pattern M^{\prime}, obtaining a symmetry correction of c.
Step 2: Propose \mathbf{A}^{\prime}
Propose \mathbf{A}^{\prime} using an $M C M C$ sampler conditional on M^{\prime}
Step 3: MH accept-reject
Evaluate Kalman filter with $\mathbf{A}:=\mathbf{A}^{\prime}$
Set $\ddot{l}^{\prime}:=\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}^{\prime}\right)\right) p\left(\mathbf{A}^{\prime}\right)$
Compute $\log \left(a_{r}\right):=l^{\prime}-l_{n-1}+c$ and Accept w.p. a_{r} :
if Accept then
else
end if
end for

Pseudocode of SpaRJ

Input: Known SSM parameters $\left\{\overline{\mathbf{x}}_{0}, \mathbf{P}_{0}, \mathbf{Q}, \mathbf{R}, \mathbf{H}\right\}$, observations $\left\{y_{t}\right\}_{t=1}^{T}$, hyper-parameters, number of iterations N, initial value \mathbf{A}_{0}
Output: Set of sparse samples $\left\{\mathbf{A}_{n}\right\}_{n=1}^{N}$
Initialization
Initialize M_{0} as fully dense (all ones) and \mathbf{A}_{0}
Run Kf obtaining $l_{0}:=\log \left(\mathrm{p}\left(\mathbf{y}_{1: T} \mid \mathbf{A}_{0}\right)\right) p\left(\mathbf{A}_{0}\right)$
for $n=1, \ldots, N$ do
Step 1: Propose model
Propose a new sparsity pattern M^{\prime}, obtaining a symmetry correction of c.
Step 2: Propose A^{\prime}
Propose \mathbf{A}^{\prime} using an MCMC sampler conditional on M^{\prime}
Step 3: MH accept-reject
Evaluate Kalman filter with $\mathbf{A}:=\mathbf{A}^{\prime}$
Set $l^{\prime}:=\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}^{\prime}\right)\right) p\left(\mathbf{A}^{\prime}\right)$
Compute $\log \left(a_{r}\right):=l^{\prime}-l_{n-1}+c$ and Accept w.p. a_{r}
if Accept then
else
end if
end for

Pseudocode of SpaRJ

Input: Known SSM parameters $\left\{\overline{\mathbf{x}}_{0}, \mathbf{P}_{0}, \mathbf{Q}, \mathbf{R}, \mathbf{H}\right\}$, observations $\left\{y_{t}\right\}_{t=1}^{T}$, hyper-parameters, number of iterations N, initial value \mathbf{A}_{0}
Output: Set of sparse samples $\left\{\mathbf{A}_{n}\right\}_{n=1}^{N}$

Initialization

Initialize M_{0} as fully dense (all ones) and \mathbf{A}_{0}
Run Kf obtaining $l_{0}:=\log \left(\mathrm{p}\left(\mathbf{y}_{1: T} \mid \mathbf{A}_{0}\right)\right) p\left(\mathbf{A}_{0}\right)$
for $n=1, \ldots, N$ do
Step 1: Propose model
Propose a new sparsity pattern M^{\prime}, obtaining a symmetry correction of c.
Step 2: Propose A^{\prime}
Propose \mathbf{A}^{\prime} using an MCMC sampler conditional on M^{\prime}
Step 3: MH accept-reject
Evaluate Kalman filter with $\mathbf{A}:=\mathbf{A}^{\prime}$
Set $l^{\prime}:=\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}^{\prime}\right)\right) p\left(\mathbf{A}^{\prime}\right)$
Compute $\log \left(a_{r}\right):=l^{\prime}-l_{n-1}+c$ and Accept w.p. a_{r} :
if Accept then
else
end if
end for

Pseudocode of SpaRJ

Input: Known SSM parameters $\left\{\overline{\mathbf{x}}_{0}, \mathbf{P}_{0}, \mathbf{Q}, \mathbf{R}, \mathbf{H}\right\}$, observations $\left\{y_{t}\right\}_{t=1}^{T}$, hyper-parameters, number of iterations N, initial value \mathbf{A}_{0}
Output: Set of sparse samples $\left\{\mathbf{A}_{n}\right\}_{n=1}^{N}$

Initialization

Initialize M_{0} as fully dense (all ones) and \mathbf{A}_{0}
Run Kf obtaining $l_{0}:=\log \left(\mathrm{p}\left(\mathbf{y}_{1: T} \mid \mathbf{A}_{0}\right)\right) p\left(\mathbf{A}_{0}\right)$
for $n=1, \ldots, N$ do
Step 1: Propose model
Propose a new sparsity pattern M^{\prime}, obtaining a symmetry correction of c.
Step 2: Propose A^{\prime}
Propose \mathbf{A}^{\prime} using an MCMC sampler conditional on M^{\prime}
Step 3: MH accept-reject
Evaluate Kalman filter with $\mathbf{A}:=\mathbf{A}^{\prime}$
Set $l^{\prime}:=\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}^{\prime}\right)\right) p\left(\mathbf{A}^{\prime}\right)$
Compute $\log \left(a_{r}\right):=l^{\prime}-l_{n-1}+c$ and Accept w.p. a_{r} :
if Accept then
Set $M_{n}:=M^{\prime}, \mathbf{A}_{n}:=\mathbf{A}^{\prime}, l_{n}:=\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}^{\prime}\right)\right) p\left(\mathbf{A}^{\prime}\right)$
else
Set $M_{n}:=M_{n-1}, \mathbf{A}_{n}:=\mathbf{A}_{n-1}, l_{n}:=l_{n-1}$
end if
end for

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
Point-wise estimation: extensions
Probabilistic estimation
Experimental evaluation
Conclusion
```

Data description and numerical settings

- Four synthetic datasets with $\mathbf{H}=\mathbf{I d}$ and block-diagonal matrix \mathbf{A}, composed with b blocks of size $\left(b_{j}\right)_{1 \leq j \leq b}$, so that $N_{y}=N_{x}=\sum_{j=1}^{b} b_{j}$. We set $T=10^{3}$, $\mathbf{Q}=\sigma_{\mathbf{Q}}^{2} \mathbf{l d}, \mathbf{R}=\sigma_{\mathbf{R}}^{2} \mathbf{l d}, \mathbf{P}_{0}=\sigma_{\mathbf{P}}^{2} \mathbf{l d}$.

Dataset	N_{x}	$\left(b_{j}\right)_{1 \leq j \leq b}$	$\left(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}}\right)$
A	9	$(3,3,3)$	$\left(10^{-1}, 10^{-1}, 10^{-4}\right)$
B	9	$(3,3,3)$	$\left(1,1,10^{-4}\right)$
C	16	$(3,5,5,3)$	$\left(10^{-1}, 10^{-1}, 10^{-4}\right)$
D	16	$(3,5,5,3)$	$\left(1,1,10^{-4}\right)$

- GraphEM is compared with:
- Maximum likelihood EM (MLEM) ${ }^{9}$ conditional Granger Causality (CGC) ${ }^{10}$

[^9]
Data description and numerical settings

- Four synthetic datasets with $\mathbf{H}=\mathbf{I d}$ and block-diagonal matrix \mathbf{A}, composed with b blocks of size $\left(b_{j}\right)_{1 \leq j \leq b}$, so that $N_{y}=N_{x}=\sum_{j=1}^{b} b_{j}$. We set $T=10^{3}$, $\mathbf{Q}=\sigma_{\mathbf{Q}}^{2} \operatorname{ld}, \mathbf{R}=\sigma_{\mathbf{R}}^{2} \operatorname{ld}, \mathbf{P}_{0}=\sigma_{\mathbf{P}}^{2} \backslash \mathrm{~d}$.

Dataset	N_{x}	$\left(b_{j}\right)_{1 \leq j \leq b}$	$\left(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}}\right)$
A	9	$(3,3,3)$	$\left(10^{-1}, 10^{-1}, 10^{-4}\right)$
B	9	$(3,3,3)$	$\left(1,1,10^{-4}\right)$
C	16	$(3,5,5,3)$	$\left(10^{-1}, 10^{-1}, 10^{-4}\right)$
D	16	$(3,5,5,3)$	$\left(1,1,10^{-4}\right)$

- GraphEM is compared with:
- Maximum likelihood EM (MLEM) ${ }^{9}$
- Granger-causality approaches: pairwise Granger Causality (PGC) and conditional Granger Causality (CGC) ${ }^{10}$

[^10]
Experimental results of GraphEM

True graph (left) and GraphEM estimate (right) for dataset C.

Experimental results of GraphEM

	method	RMSE	accur.	prec.	recall	spec.	F1
A	GraphEM	0.081	0.9104	0.9880	0.7407	0.9952	0.8463
	MLEM	0.149	0.3333	0.3333	1	0	0.5
	PGC	-	0.8765	0.9474	0.6667	0.9815	0.7826
	CGC	-	0.8765	1	0.6293	1	0.7727
B	GraphEM	0.082	0.9113	0.9914	0.7407	0.9967	0.8477
	MLEM	0.148	0.3333	0.3333	1	0	0.5
	PGC	-	0.8889	1	0.6667	1	0.8
	CGC	-	0.8889	1	0.6667	1	0.8
C	GraphEM	0.120	0.9231	0.9401	0.77	0.9785	0.8427
	MLEM	0.238	0.2656	0.2656	1	0	0.4198
	PGC	-	0.9023	0.9778	0.6471	0.9949	0.7788
	CGC	-	0.8555	0.9697	0.4706	0.9949	0.6337
D	GraphEM	0.121	0.9247	0.9601	0.7547	0.9862	0.8421
	MLEM	0.239	0.2656	0.2656	1	0	0.4198
	PGC	-	0.8906	0.9	0.6618	0.9734	0.7627
	CGC	-	0.8477	0.9394	0.4559	0.9894	0.6139

Experimental results: Realistic weather datasets

True

GRAPHEM

DGLASSO

PGC

MLEM

CGC

Graph inference results on an example from WeathN5a dataset. ${ }^{11}$

[^11]
Computational complexity of DGLASSO

Figure 6: Evolution of the complexity time (left), $\operatorname{RMSE}\left(\mathbf{A}^{*}, \widehat{\mathbf{A}}\right)$ (middle) and $\operatorname{cNMSE}\left(\boldsymbol{\mu}^{*}, \widehat{\boldsymbol{\mu}}\right)$ (right) metrics, as a function of the time series length K, for experiments on dataset A averaged over 50 runs.

Performance of DGLASSO (toy example)

		Estimation of A			Estimation of P			Estim. Q	State distrib.		Predictive distrib.	
	Method	RMSE	AUC	F1	RMSE	AUC	F1	RMSE	$\mathrm{cNMSE}\left(\boldsymbol{\mu}^{*}, \widehat{\boldsymbol{\mu}}\right)$	cNMSE $\left(\boldsymbol{\mu}^{5 \pi}, \hat{\boldsymbol{\mu}}^{3}\right)$	cNMSE $\left(\nu^{*}, \hat{\nu}\right)$	$\mathcal{L}_{1: K}(\mathbf{A}, \mathbf{P})$
	DGLASSO	0.061	0.843	0.641	0.082	0.778	0.698	0.083	$6.394 \times 10^{-}$	$1.050 \times 10^{-}$	2.984×10^{-4}	12307.169
	MLEM	0.076	0.817	0.500	0.105	0.857	0.500	0.102	1.095×10^{-7}	1.803×10^{-7}	4.843×10^{-4}	12341.205
	GLASSO	NA	NA	NA	0.818	0.804	0.496	1073.510	4.485×10^{-6}	7.180×10^{-6}	1.000	28459.294
	rGLASSO	NA	NA	NA	0.764	0.924	0.598	31.689	2.826×10^{-6}	5.492×10^{-6}	1.000	22957.693
	GRAPHEM	0.045	0.895	0.847	NA	NA	NA	NA	4.364×10^{-6}	6.944×10^{-6}	2.980×10^{-4}	29035.030
	DGLASSO	0.068	0.833	0.603	0.070	0.893	0.835	0.071	7.490×10^{-8}	$1.236 \times 10^{-}$	$3.281 \times 10^{-}$	11806.744
	MLEM	0.080	0.815	0.500	0.106	0.898	0.500	0.100	1.299×10^{-7}	2.133×10^{-7}	4.619×10^{-4}	11833.448
	GLASSO	NA	NA	NA	0.827	0.826	0.505	341.873	5.069×10^{-6}	8.072×10^{-6}	1.000	27744.964
	rGLASSO	NA	NA	NA	0.734	0.930	0.608	33.896	3.215×10^{-6}	6.187×10^{-6}	1.000	22530.036
	GRAPHEM	0.047	0.893	0.848	NA	NA	NA	NA	5.158×10^{-6}	8.036×10^{-6}	2.912×10^{-4}	29031.412
	DGLASSO	0.070	0.829	0.581	0.090	0.954	0.830	0.078	$1.896 \times 10^{-}$	$2.994 \times 10^{-}$	$3.956 \times 10^{-}$	10311.104
	MLEM	0.081	0.810	0.500	0.097	0.974	0.500	0.094	2.583×10^{-7}	4.180×10^{-7}	5.053×10^{-4}	10326.410
	GLASSO	NA	NA	NA	0.901	0.805	0.489	3.926×10^{17}	0.012	0.012	1.000	26634.892
	rGLASSO	NA	NA	NA	0.805	0.928	0.614	29.530	7.195×10^{-6}	1.320×10^{-5}	1.000	21322.247
	GRAPHEM	0.049	0.892	0.857	NA	NA	NA	NA	1.055×10^{-5}	1.641×10^{-5}	3.912×10^{-4}	29023.369
	DGLASSO	0.073	0.835	0.575	0.083	1.000	0.598	0.080	5.127×10^{-7}	8.243×10^{-7}	3.373×10^{-4}	7911.943
	MLEM	0.098	0.808	0.500	0.095	1.000	0.500	0.084	6.296×10^{-7}	1.027×10^{-6}	4.219×10^{-4}	7923.850
	GLASSO	NA	NA	NA	0.964	0.941	0.550	187.823	2.348×10^{-5}	3.701×10^{-5}	1.000	23684.178
	rGLASSO	NA	NA	NA	0.882	0.956	0.645	28.703	1.886×10^{-5}	3.239×10^{-5}	1.000	20100.491
	GRAPHEM	0.061	0.892	0.864	NA	NA	NA	NA	2.503×10^{-5}	3.839×10^{-5}	3.743×10^{-4}	29016.321

Performance of DGLASSO (climate model)

	method	RMSE	accur.	prec.	recall	spec.	F1	Time (s.)
WeathN5a	DGLASSO	0.108	0.937	0.894	0.998	0.894	0.937	0.608
	MLEM	0.140	0.413	0.413	1.000	0.000	0.584	0.596
	GRAPHEM	0.127	0.703	0.595	1.000	0.496	0.742	0.606
	PGC	-	0.772	0.902	0.515	0.953	0.652	0.019
	CGC	-	0.672	0.828	0.285	0.945	0.415	0.026
WeathN5b	DGLASSO	0.166	0.773	0.668	0.992	0.619	0.788	0.630
	MLEM	0.197	0.413	0.413	1.000	0.000	0.584	0.376
	GRAPHEM	0.186	0.629	0.536	1.000	0.368	0.694	0.470
	PGC	-	0.675	0.677	0.469	0.819	0.544	0.017
	CGC	-	0.634	0.659	0.263	0.895	0.369	0.023
WeathN10a	DGLASSO	0.202	0.948	0.898	0.925	0.954	0.890	1.363
	MLEM	0.264	0.219	0.219	1.000	0.000	0.359	0.834
	GRAPHEM	0.224	0.511	0.311	1.000	0.374	0.473	1.445
	PGC	-	0.879	0.904	0.504	0.983	0.644	0.232
	CGC	-	0.773	0.539	0.211	0.932	0.278	0.358
WeathN10b	DGLASSO	0.192	0.866	0.633	0.994	0.829	0.769	0.557
	MLEM	0.342	0.219	0.219	1.000	0.000	0.359	0.989
	GRAPHEM	0.219	0.855	0.620	0.994	0.816	0.757	0.655
	PGC	-	0.799	0.558	0.473	0.890	0.506	0.154
	CGC	-	0.750	0.407	0.218	0.900	0.265	0.178

Convergence of SpaRJ and GarphEM with data

Figure: 3×3 system with known isotropic state covariance.

Convergence of SpaRJ with iterations

Figure: Progression of sample metrics in a 12×12.

Real-world applications

- cardiology application of finding rotors in atrial fibrillation
- topology discovery is the key
- climate models
- already tested over realistic climate synthetic data (the Causality for Climate Competition, NeurIPS 2019)
- preliminary work "Graphs in State-Space Models for Granger Causality in Climate Science" at CausalStats 2023
- networks, neuroscience, ..., ideas? :-)

Outline

```
Introduction
Linear-Gaussian model and Kalman filter
A doubly graphical perspective on SSMs
Point-wise estimation: GraphEM and DGLASSO algorithms
Point-wise estimation: extensions
Probabilistic estimation
Experimental evaluation
```

Conclusion

Conclusion

- Novel graphical interpretation on matrices \mathbf{A} and \mathbf{Q} in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
- GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
- SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
\rightarrow strong model interpretation
- sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
\rightarrow This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

Conclusion

- Novel graphical interpretation on matrices A and \mathbf{Q} in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
- GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
- SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
- strong model interpretation
- sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

Conclusion

- Novel graphical interpretation on matrices A and \mathbf{Q} in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
- GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
- SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse \mathbf{A} and \mathbf{Q} : DGLASSO (point-wise)
- strong model interpretation
- sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

Conclusion

- Novel graphical interpretation on matrices A and Q in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
- GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
- SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse \mathbf{A} and \mathbf{Q} : DGLASSO (point-wise)
- strong model interpretation
- sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

Conclusion

- Novel graphical interpretation on matrices A and Q in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
- GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
- SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse \mathbf{A} and \mathbf{Q} : DGLASSO (point-wise)
- strong model interpretation
- sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

Thank you for your attention!

GraphEM paper: V. Elvira, É. Chouzenoux, "Graphical Inference in Linear-Gaussian State-Space Models", IEEE Transactions on Signal Processing, Vol. 70, pp. 4757-4771, 2022.

SpaRJ: B. Cox and V. Elvira, "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models", IEEE Transactions on Signal Processing, vol. 71, pp. 1922-1937, 2023.

GraphIT paper: E. Chouzenoux and V. Elvira, "Iterative reweighted ℓ_{1} algorithm for sparse graph inference in state-space models", IEEE International Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2023), Rhodes, Greece, June, 2023.

Non-Markovian models: E. Chouzenoux and V. Elvira, "Graphical Inference in Non-Markovian Linear-Gaussian State-space Models", IEEE International Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2024), Seoul, Korea, April, 2024.

Under review:

- DGLASSO: E. Chouzenoux and V. Elvira, "Sparse Graphical Linear Dynamical Systems, submitted, 2023. https://arxiv.org/abs/2307.03210
- Application to climate: V. Elvira, E. Chouzenoux, J. Cerda, and G. Camps-Valls "Graphs in State-Space Models for Granger Causality in Climate Science", CausalStats Workshop, 2023.
- Community detection paper: B. Cox and V. Elvira, "Community Detection for structural Parameter Estimation in Linear-Gaussian State-Space Models", 2024.

GraphEM in a nutshell

- Goal. MAP estimate of A:

$$
\mathbf{A}^{*}=\operatorname{argmax}_{\mathbf{A}} p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)=\operatorname{argmax}_{\mathbf{A}} p(\mathbf{A}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)
$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A})=-\log p(\mathbf{A})-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$.
\Rightarrow Challenges: evaluating $\mathcal{L}_{1: T}(\mathbf{A}) \equiv-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$ requires to run the $K F$:

- Function $\mathcal{L}_{0}(\mathbf{A}) \equiv-\log p(\mathbf{A})$ might be complicated (e.g., non smooth)
- Non tractable minimization.
\rightarrow Simplest version of GraphEM: ${ }^{12}$ an EM strategy to minimize a sequence of (tractable) majorizing approximations of \mathcal{L}.
- Lasso regularization (Laplace prior) to promote a sparse matrix A. $\left(\forall \mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}\right) \quad \mathcal{L}_{0}(\mathbf{A})=\gamma\|\mathbf{A}\|_{1}, \quad \gamma>0$.

[^12]
GraphEM in a nutshell

- Goal. MAP estimate of \mathbf{A} :

$$
\mathbf{A}^{*}=\operatorname{argmax}_{\mathbf{A}} p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)=\operatorname{argmax}_{\mathbf{A}} p(\mathbf{A}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)
$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A})=-\log p(\mathbf{A})-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$.
- Challenges: evaluating $\mathcal{L}_{1: T}(\mathbf{A}) \equiv-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$ requires to run the KF :

$$
\mathcal{L}_{1: T}(\mathbf{A})=\sum_{t=1}^{T} \frac{1}{2} \log \left|2 \pi \mathrm{~S}_{t}(\mathbf{A})\right|+\frac{1}{2} \mathrm{z}_{t}(\mathbf{A})^{\top} \mathrm{S}_{t}(\mathbf{A})^{-1} \mathbf{z}_{t}(\mathbf{A})
$$

- Function $\mathcal{L}_{0}(\mathbf{A}) \equiv-\log p(\mathbf{A})$ might be complicated (e.g., non smooth).
- Non tractable minimization.
\rightarrow Simplest version of GraphEM: ${ }^{12}$ an EM strategy to minimize a sequence of (tractable) majorizing approximations of \mathcal{L}.
- Lasso regularization (Laplace prior) to promote a sparse matrix A.

[^13]
GraphEM in a nutshell

- Goal. MAP estimate of \mathbf{A} :

$$
\mathbf{A}^{*}=\operatorname{argmax}_{\mathbf{A}} p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)=\operatorname{argmax}_{\mathbf{A}} p(\mathbf{A}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)
$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A})=-\log p(\mathbf{A})-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$.
- Challenges: evaluating $\mathcal{L}_{1: T}(\mathbf{A}) \equiv-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$ requires to run the KF :

$$
\mathcal{L}_{1: T}(\mathbf{A})=\sum_{t=1}^{T} \frac{1}{2} \log \left|2 \pi \mathrm{~S}_{t}(\mathbf{A})\right|+\frac{1}{2} \mathrm{z}_{t}(\mathbf{A})^{\top} \mathrm{S}_{t}(\mathbf{A})^{-1} \mathbf{z}_{t}(\mathbf{A})
$$

- Function $\mathcal{L}_{0}(\mathbf{A}) \equiv-\log p(\mathbf{A})$ might be complicated (e.g., non smooth).
- Non tractable minimization.
- Simplest version of GraphEM: ${ }^{12}$ an EM strategy to minimize a sequence of (tractable) majorizing approximations of \mathcal{L}.
\rightarrow Lasso regularization (Laplace prior) to promote a sparse matrix A:

[^14]
GraphEM in a nutshell

- Goal. MAP estimate of \mathbf{A} :

$$
\mathbf{A}^{*}=\operatorname{argmax}_{\mathbf{A}} p\left(\mathbf{A} \mid \mathbf{y}_{1: T}\right)=\operatorname{argmax}_{\mathbf{A}} p(\mathbf{A}) p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)
$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A})=-\log p(\mathbf{A})-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$.
- Challenges: evaluating $\mathcal{L}_{1: T}(\mathbf{A}) \equiv-\log p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)$ requires to run the KF :

$$
\mathcal{L}_{1: T}(\mathbf{A})=\sum_{t=1}^{T} \frac{1}{2} \log \left|2 \pi \mathrm{~S}_{t}(\mathbf{A})\right|+\frac{1}{2} \mathrm{z}_{t}(\mathbf{A})^{\top} \mathrm{S}_{t}(\mathbf{A})^{-1} \mathbf{z}_{t}(\mathbf{A})
$$

- Function $\mathcal{L}_{0}(\mathbf{A}) \equiv-\log p(\mathbf{A})$ might be complicated (e.g., non smooth).
- Non tractable minimization.
- Simplest version of GraphEM: ${ }^{12}$ an EM strategy to minimize a sequence of (tractable) majorizing approximations of \mathcal{L}.
- Lasso regularization (Laplace prior) to promote a sparse matrix \mathbf{A} :

$$
\left(\forall \mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}\right) \quad \mathcal{L}_{0}(\mathbf{A})=\gamma\|\mathbf{A}\|_{1}, \quad \gamma>0
$$

[^15]
Expression of EM steps

- Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to \mathbf{A}^{\prime} and define ${ }^{13}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s}+\mathbf{m}_{t}^{s}\left(\mathbf{m}_{t}^{s}\right)^{\top} \\
& \mathbf{\Phi}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s}+\mathbf{m}_{t-1}^{s}\left(\mathbf{m}_{t-1}^{s}\right)^{\top} \\
& \mathbf{C}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top}+\mathbf{m}_{t}^{s}\left(\mathbf{m}_{t-1}^{s}\right)^{\top}
\end{aligned}
$$

and build

$$
\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\boldsymbol{\Sigma}-\mathbf{C} \mathbf{A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}\right)\right)+\mathcal{L}_{0}(\mathbf{A})+\mathrm{ct} / \mathbf{A}
$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}$:

$$
\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right) \geq \mathcal{L}(\mathbf{A}), \quad \text { and } \quad \mathcal{Q}\left(\mathbf{A}^{\prime} ; \mathbf{A}^{\prime}\right)=\mathcal{L}\left(\mathbf{A}^{\prime}\right)
$$

- Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)$ with respect to $\mathbf{A}\left(\mathbf{A}^{\prime}\right.$ being fixed).

[^16]
Expression of EM steps

- Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to \mathbf{A}^{\prime} and define ${ }^{13}$

$$
\begin{aligned}
& \boldsymbol{\Sigma}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s}+\mathbf{m}_{t}^{s}\left(\mathbf{m}_{t}^{s}\right)^{\top} \\
& \mathbf{\Phi}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s}+\mathbf{m}_{t-1}^{s}\left(\mathbf{m}_{t-1}^{s}\right)^{\top} \\
& \mathbf{C}=\frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top}+\mathbf{m}_{t}^{s}\left(\mathbf{m}_{t-1}^{s}\right)^{\top}
\end{aligned}
$$

and build

$$
\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\boldsymbol{\Sigma}-\mathbf{C} \mathbf{A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}\right)\right)+\mathcal{L}_{0}(\mathbf{A})+\mathrm{ct} / \mathbf{A}
$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}$:

$$
\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right) \geq \mathcal{L}(\mathbf{A}), \quad \text { and } \quad \mathcal{Q}\left(\mathbf{A}^{\prime} ; \mathbf{A}^{\prime}\right)=\mathcal{L}\left(\mathbf{A}^{\prime}\right)
$$

- Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)$ with respect to $\mathbf{A}\left(\mathbf{A}^{\prime}\right.$ being fixed).

[^17]
Computation of the M-step

- Convex non-smooth minimization problem
$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)}_{f(\mathbf{A})}=\operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\boldsymbol{\Sigma}-\mathbf{C} \mathbf{A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}\right)\right)}_{f_{1}(\mathbf{A})=\text { upper bound of }-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)}+\underbrace{\gamma\|\mathbf{A}\|_{1}}_{\substack{f_{2}(\mathbf{A})=-\log p(\mathbf{A}) \\ \text { (prior) }}}$

Proximal splitting approach: The proximity operator of $f: \mathbb{R}^{N_{x} \times N_{x}} \rightarrow \mathbb{R}$ is
defined

$$
\operatorname{prox}_{f}(\tilde{\mathbf{A}})=\operatorname{argmin}_{\mathbf{A}}\left(f(\mathbf{A})+\frac{1}{2}\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{F}^{2}\right)
$$

Douglas-Rachford algorithm in GraphEM

Set $Z_{0} \in \mathbb{R}^{N_{x} \times N_{x}}$ and $\theta \in(0,2)$.
\rightarrow For $n=1,2$,

$\checkmark\left\{\mathbf{A}_{n}\right\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=f_{1}+f_{2}$
\checkmark Both involved proximity operators have closed form solution.

Computation of the M-step

- Convex non-smooth minimization problem
$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)}_{f(\mathbf{A})}=\operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\mathbf{\Sigma}-\mathbf{C} \mathbf{A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \mathbf{\Phi} \mathbf{A}^{\top}\right)\right)}_{f_{1}(\mathbf{A})=\text { upper bound of }-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)}+\underbrace{\gamma\|\mathbf{A}\|_{1}}_{\substack{f_{2}(\mathbf{A})=-\log p(\mathbf{A}) \\ \text { (prior) }}}$

Proximal splitting approach: The proximity operator of $f: \mathbb{R}^{N_{x} \times N_{x}} \rightarrow \mathbb{R}$ is defined

$$
\operatorname{prox}_{f}(\widetilde{\mathbf{A}})=\operatorname{argmin}_{\mathbf{A}}\left(f(\mathbf{A})+\frac{1}{2}\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{F}^{2}\right) .
$$

Douglas-Rachford algorithm in GraphEM

- Set $\mathbf{Z}_{0} \in \mathbb{R}^{N_{x} \times N_{x}}$ and $\theta \in(0,2)$.
- For $n=1,2, \ldots$

$$
\begin{aligned}
& \mathbf{A}_{n}=\operatorname{prox}_{\theta f_{2}}\left(\mathbf{Z}_{n}\right) \\
& \mathbf{V}_{n}=\operatorname{prox}_{\theta f_{1}}\left(2 \mathbf{A}_{n}-\mathbf{Z}_{n}\right) \\
& \mathbf{Z}_{n+1}=\mathbf{Z}_{n}+\theta\left(\mathbf{V}_{n}-\mathbf{A}_{n}\right)
\end{aligned}
$$

[^18]
Computation of the M-step

- Convex non-smooth minimization problem
$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)}_{f(\mathbf{A})}=\operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr}\left(\mathbf{Q}^{-1}\left(\boldsymbol{\Sigma}-\mathbf{C} \mathbf{A}^{\top}-\mathbf{A} \mathbf{C}^{\top}+\mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}\right)\right)}_{f_{1}(\mathbf{A})=\text { upper bound of }-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)}+\underbrace{\gamma\|\mathbf{A}\|_{1}}_{f_{2}(\mathbf{A})=-\log p(\mathbf{A})}$

Proximal splitting approach: The proximity operator of $f: \mathbb{R}^{N_{x} \times N_{x}} \rightarrow \mathbb{R}$ is defined

$$
\operatorname{prox}_{f}(\widetilde{\mathbf{A}})=\operatorname{argmin}_{\mathbf{A}}\left(f(\mathbf{A})+\frac{1}{2}\|\mathbf{A}-\widetilde{\mathbf{A}}\|_{F}^{2}\right) .
$$

Douglas-Rachford algorithm in GraphEM

- Set $\mathbf{Z}_{0} \in \mathbb{R}^{N_{x} \times N_{x}}$ and $\theta \in(0,2)$.
- For $n=1,2, \ldots$

$$
\begin{aligned}
& \mathbf{A}_{n}=\operatorname{prox}_{\theta f_{2}}\left(\mathbf{Z}_{n}\right) \\
& \mathbf{V}_{n}=\operatorname{prox}_{\theta f_{1}}\left(2 \mathbf{A}_{n}-\mathbf{Z}_{n}\right) \\
& \mathbf{Z}_{n+1}=\mathbf{Z}_{n}+\theta\left(\mathbf{V}_{n}-\mathbf{A}_{n}\right)
\end{aligned}
$$

$\checkmark\left\{\mathbf{A}_{n}\right\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=f_{1}+f_{2}$
\checkmark Both involved proximity operators have closed form solution.

Generic GraphEM algorithm

- generic GraphEM allows for a larger family of priors (and several): ${ }^{14}$

$$
\begin{equation*}
\left(\forall \mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}\right) \quad \mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=\sum_{m=1}^{M} f_{m}(\mathbf{A}) \tag{2}
\end{equation*}
$$

- $f_{1}(\mathbf{A})$ is still an upper bound of $-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)$
- $f_{M}(\mathbf{A})=\gamma\|\mathbf{A}\|_{1}$ (sparsity promoter)
- other losses $\left\{f_{m}(\mathbf{A})\right\}_{m=2}^{M-1}$ promote properties in \mathbf{A} (e.g., stability)

\rightarrow The inference now requires a more sophisticated optimization algorithm in the M-step, the monotone+skew algorithm

MS algonthm for a generic GraphelMs (M-step)

[^19]
Generic GraphEM algorithm

- generic GraphEM allows for a larger family of priors (and several): ${ }^{14}$

$$
\begin{equation*}
\left(\forall \mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}\right) \quad \mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=\sum_{m=1}^{M} f_{m}(\mathbf{A}), \tag{2}
\end{equation*}
$$

- $f_{1}(\mathbf{A})$ is still an upper bound of $-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)$
- $f_{M}(\mathbf{A})=\gamma\|\mathbf{A}\|_{1}$ (sparsity promoter)
- other losses $\left\{f_{m}(\mathbf{A})\right\}_{m=2}^{M-1}$ promote properties in \mathbf{A} (e.g., stability)
- The inference now requires a more sophisticated optimization algorithm in the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)

[^20] Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.

Generic GraphEM algorithm

- generic GraphEM allows for a larger family of priors (and several): ${ }^{14}$

$$
\begin{equation*}
\left(\forall \mathbf{A} \in \mathbb{R}^{N_{x} \times N_{x}}\right) \quad \mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=\sum_{m=1}^{M} f_{m}(\mathbf{A}), \tag{2}
\end{equation*}
$$

- $f_{1}(\mathbf{A})$ is still an upper bound of $-\log \left(p\left(\mathbf{y}_{1: T} \mid \mathbf{A}\right)\right)$
- $f_{M}(\mathbf{A})=\gamma\|\mathbf{A}\|_{1}$ (sparsity promoter)
- other losses $\left\{f_{m}(\mathbf{A})\right\}_{m=2}^{M-1}$ promote properties in \mathbf{A} (e.g., stability)
- The inference now requires a more sophisticated optimization algorithm in the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)

- Set $\mathbf{V}_{0}^{m}=\mathbf{A}^{\prime} \forall m \in\{1, \ldots, M\}$, and stepsizes $\lambda \in\left(0, \frac{1}{M}\right), \gamma \in\left[\lambda, \frac{1-\lambda}{M-1}\right]$.
- For $n=1,2, \ldots$.

$$
\begin{aligned}
& \mathbf{W}_{n}^{m}=\mathbf{V}_{n}^{m}+\gamma \mathbf{V}_{n}^{M}(\forall m \in\{1, \ldots, M-1\}) \\
& \mathbf{W}_{n}^{M}=\mathbf{V}_{n}^{M}-\gamma \sum_{m=1}^{M-1} \mathbf{V}_{n}^{m} \\
& \mathbf{A}_{n}^{m}=\mathbf{W}_{n}^{m}-\gamma \operatorname{prox}_{f m} / \mathbf{p r}_{n}^{m}(\forall m \in\{1, \ldots, M-1\}) \\
& \mathbf{A}_{n}^{M}=\operatorname{prox}_{\gamma f_{M}}\left(\mathbf{W}_{n}^{M}\right) \\
& \mathbf{Z}_{n}^{m}=\mathbf{A}_{n}^{m}+\gamma \mathbf{A}_{n}^{M}(\forall m \in\{1, \ldots, M-1\}) \\
& \mathbf{Z}_{n}^{M}=\mathbf{A}_{n}^{M}-\gamma \sum_{m-1}^{M=1} \mathbf{A}_{n}^{m} \\
& \mathbf{V}_{n+1}^{m}=\mathbf{V}_{n}^{m}-\mathbf{W}_{n}^{m}+\mathbf{Z}_{n}^{m}(\forall m \in\{1, \ldots, M\})
\end{aligned}
$$

[^21]
Theoretical guarantees

Theorem

Assume that the prior term \mathcal{L}_{0} is proper, convex, lower semicontinuous. Under mild technical assumptions (qualification conditions),

- $\left\{\mathcal{L}\left(\mathbf{A}^{(i)}\right)\right\}_{i \in \mathbb{N}}$ is a decreasing sequence converging to a finite limit \mathcal{L}^{*}.
- The sequence of iterates $\left\{\mathbf{A}^{(i)}\right\}_{i \in \mathbb{N}}$ has a cluster point (i.e., one can extract a converging subsequence)
- Let \mathbf{A}^{*} a cluster point (i.e., the limit of a converging subsequence) of $\left\{\mathbf{A}^{(i)}\right\}_{i \in \mathbb{N}}$. Then, $\mathcal{L}\left(\mathbf{A}^{*}\right)=\mathcal{L}^{*}$ and \mathbf{A}^{*} is a critical point of \mathcal{L}, i.e., $\nabla \mathcal{L}_{1: T}\left(\mathbf{A}^{*}\right) \in \partial \mathcal{L}_{0}\left(\mathbf{A}^{*}\right)$.

Data description and numerical settings

- Four synthetic datasets with $\mathbf{H}=\mathbf{I d}$, size $N_{x}=N_{y}=9$, and randomly generated ground truth sparse matrices \mathbf{A}^{*} and \mathbf{P}^{*} (block diagonal 3×3) with varying conditioning for $\mathbf{Q}^{*}=\left(\mathbf{P}^{*}\right)^{-1}$. We set $K=10^{3}$ and $\mathbf{R}=\sigma_{\mathbf{R}}^{2} \mathbf{I d}, \mathbf{P}_{0}=\sigma_{0}^{2} \mathbf{I d}$ with $\left(\sigma_{\mathbf{R}}, \sigma_{0}\right)=\left(10^{-1}, 10^{-4}\right)$.
- Goal: (i) Given $\left\{\mathbf{y}_{k}\right\}_{k=1}^{K}$, and $\left(\mathbf{H}, \mathbf{R}, \mathbf{P}_{0}\right)$, provide estimates $(\widehat{\mathbf{A}}, \widehat{\mathbf{P}})$ of ($\mathbf{A}^{*}, \mathbf{P}^{*}$), evaluated by RMSE and \mathbf{F}_{1} metrics, (ii) Given a new test data, compute the the predictive distribution means by KF/RTS using the estimated model parameters, evaluated by cNMSE and loss metrics.
- DGLASSO, is compared with:
- Maximum likelihood EM (MLEM): DGLASSO model with $\lambda_{A}=\lambda_{P}=0$.
- GRAPHEM approach [Elvira et al., 2022]: MAP estimate of A, while fixing $\widehat{\mathbf{Q}}=\sigma_{Q}^{2}$ Id with finetuned σ_{Q}.
- GLASSO approach [Friedman et al., 2008]: MAP estimate of \mathbf{P}, fixing $\widehat{\mathbf{A}}=\mathbf{0}$ and neglecting \mathbf{R}.
- rGLASSO approach [Benfenati et al., 2020]: MAP estimate of \mathbf{P}, fixing $\widehat{\mathrm{A}}=\mathbf{0}$.
- Pairwise Granger Causality (PGC) / conditional Granger Causality (CGC) based on sparse vector autoregressive (VAR) models [Luengo et al., 2019].
- Manual finetuning of hyperparameters (e.g., ℓ_{1} penalty weight) on a single realization (see more details in paper). Results are averaged on 50

[^0]: ${ }^{1}$ R. H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4):253-264, 1982.

[^1]: ${ }^{2}$ L. T. K. Tien, D. N. Phan, and N. Gillis. An inertial block majorization minimization framework for nonsmooth nonconvex optimization. Technical report, 2020. https://arxiv.org/abs/2010.12133.
 ${ }^{3}$ H. H. Bauschke and P. L. Combettes. A Dykstra-like algorithm for two monotone operators. Pacific Journal of Optimization, 4:383-391, 2008

[^2]: ${ }^{4}$ V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.

[^3]: ${ }^{5}$ E. Chouzenoux and V. Elvira. "GraphlT: Iterative reweighted ℓ_{1} algorithm for sparse graph inference in state-space models". In: ICASSP. 2023.

[^4]: ${ }^{6}$ D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: IEEE journal of biomedical and health informatics 23.1 (2018), pp. 143-155.

[^5]: ${ }^{7}$ B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.

[^6]: ${ }^{7}$ B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.

[^7]: ${ }^{7}$ B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
 ${ }^{8}$ P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination". In: Biometrika 82.4 (1995), pp. 711-732.

[^8]: ${ }^{7}$ B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 71 (2023), pp. 1922-1937.
 ${ }^{8}$ P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination". In: Biometrika 82.4 (1995), pp. 711-732.

[^9]: ${ }^{9}$ S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
 ${ }^{10}$ D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms'

[^10]: ${ }^{9}$ S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
 ${ }^{10}$ D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: IEEE journal of biomedical and health informatics 23.1 (2018), pp. 143-155.

[^11]: ${ }^{11}$ J. Runge, X.-A. Tibau, M. Bruhns, J. Muoz-Mar, and G. Camps-Valls. The causality for climate competition. In Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume 123, pages 110-120, 2020.

[^12]: ${ }^{12}$ E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints'

[^13]: ${ }^{12}$ E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints"

[^14]: ${ }^{12}$ E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 5840-5844.

[^15]: ${ }^{12}$ E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 5840-5844.

[^16]: ${ }^{13}$ R. H. Shumway and D. S. Stoffer. "An approach to time series smoothing and forecasting using the EM algorithm". In: Journal of Time Series Analysis 3.4 (1982), pp. 253-264.

[^17]: ${ }^{13}$ R. H. Shumway and D. S. Stoffer. "An approach to time series smoothing and forecasting using the EM algorithm". In: Journal of Time Series Analysis 3.4 (1982), pp. 253-264.

[^18]: $\checkmark\left\{\mathbf{A}_{n}\right\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}\left(\mathbf{A} ; \mathbf{A}^{\prime}\right)=f_{1}+f_{2}$
 \& Both involved proximity operators have closed form solution

[^19]: ${ }^{14}$ V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.

[^20]: ${ }^{14}$ V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space

[^21]: ${ }^{14}$ V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757-4771.

