

State-space models as graphs (part II)

Víctor Elvira School of Mathematics University of Edinburgh

Joint work with E. Chouzenoux (INRIA Saclay, France) and B. Cox (University of Edinburgh, UK)

Bellairs Research Institute of McGill University, Barbados January 22, 2024

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

Motivation

A large class of problems in statistics, machine learning, and signal processing requires sequential processing of observed data with temporal structure.

- geophysical systems (atmosphere, oceans)
- robotics
- target tracking, positioning, navigation
- communications
- biomedical signal processing
- financial engineering
- ecology
- Goals:
 - prediction (with uncertainty quantification)
 - parameter estimation (with interpretability)

Inference in State-Space Models (SSM)

- Let us consider:
 - a set of hidden states $\mathbf{x}_t \in \mathbb{R}^{N_x}$, t = 1, ..., T.
 - a set of observations $\mathbf{y}_t \in \mathbb{R}^{N_y}$, t = 1, ..., T.
- An SSM is an underlying hidden process of x_t that evolves and that, partially and noisily, expresses itself through y_t.

The estimation problem

• We sequentially observe data \mathbf{y}_t related to the hidden state \mathbf{x}_t .

At time t, we have accumulated t observations, $\mathbf{y}_{1:t} \equiv {\mathbf{y}_1, ..., \mathbf{y}_t}$.

lnteresting problems (when θ is known):

- Filtering: $p_{\theta}(\mathbf{x}_t | \mathbf{y}_{1:t})$
- State prediction: $p_{\theta}(\mathbf{x}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
- Observation prediction: $p_{\theta}(\mathbf{y}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
- **Smoothing**: $p_{\theta}(\mathbf{x}_{t-\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
- We want a sequential, efficient, and probabilistic filtering of the observations.
 - At time t, we want to process only yt, but not reprocess all y1:t-1 (that were already processed!)

The estimation problem

• We sequentially observe data \mathbf{y}_t related to the hidden state \mathbf{x}_t .

- At time t, we have accumulated t observations, $\mathbf{y}_{1:t} \equiv {\mathbf{y}_1, ..., \mathbf{y}_t}$.
- Interesting problems (when θ is known):
 - Filtering: $p_{\theta}(\mathbf{x}_t | \mathbf{y}_{1:t})$
 - State prediction: $p_{\theta}(\mathbf{x}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
 - Observation prediction: $p_{\theta}(\mathbf{y}_{t+\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
 - **Smoothing**: $p_{\theta}(\mathbf{x}_{t-\tau}|\mathbf{y}_{1:t}), \quad \tau \geq 1$
- We want a sequential, efficient, and probabilistic filtering of the observations.
 - At time t, we want to process only yt, but not reprocess all y1:t-1 (that were already processed!)

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Functional notation:
 - Unobserved state $\rightarrow \mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
 - Observations \rightarrow $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$
 - where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.
- Probabilistic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \boldsymbol{H}_t \mathbf{x}_t, \mathbf{R}_t)$
- **Kalman filter**: obtains the filtering pdfs $p(\mathbf{x}_t | \mathbf{y}_{1:t})$, at each t
 - \blacktriangleright Gaussian pdfs, with means and covariances matrices are calculated at each t
 - Efficient processing of y_t , obtaining $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ from $p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1})$
- **Rauch-Tung-Striebel (RTS) smoother**: obtains $p(\mathbf{x}_t | \mathbf{y}_{1:T})$
 - requires a backward reprocessing, refining the Kalman estimates

The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Functional notation:
 - Unobserved state $\rightarrow \mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
 - Observations \rightarrow $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$
 - where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.
- Probabilistic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \mathbf{H}_t \mathbf{x}_t, \mathbf{R}_t)$
- **Kalman filter**: obtains the filtering pdfs $p(\mathbf{x}_t | \mathbf{y}_{1:t})$, at each t
 - Gaussian pdfs, with means and covariances matrices are calculated at each t
 - Efficient processing of y_t , obtaining $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ from $p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1})$
- **Rauch-Tung-Striebel (RTS) smoother**: obtains $p(\mathbf{x}_t | \mathbf{y}_{1:T})$
 - requires a backward reprocessing, refining the Kalman estimates

The linear-Gaussian Model

- The linear-Gaussian model is arguably the most relevant SSM:
- Functional notation:
 - Unobserved state $\rightarrow \mathbf{x}_t = \mathbf{A}_t \mathbf{x}_{t-1} + \mathbf{q}_t$
 - Observations \rightarrow $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$
 - where $\mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q}_t)$ and $\mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R}_t)$.
- Probabilistic notation:
 - $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
 - Observations $\rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \boldsymbol{H}_t \mathbf{x}_t, \mathbf{R}_t)$
- **•** Kalman filter: obtains the filtering pdfs $p(\mathbf{x}_t | \mathbf{y}_{1:t})$, at each t
 - \blacktriangleright Gaussian pdfs, with means and covariances matrices are calculated at each t
 - Efficient processing of y_t , obtaining $p(\mathbf{x}_t | \mathbf{y}_{1:t})$ from $p(\mathbf{x}_{t-1} | \mathbf{y}_{1:t-1})$
- **Rauch-Tung-Striebel (RTS) smoother**: obtains $p(\mathbf{x}_t | \mathbf{y}_{1:T})$
 - requires a backward reprocessing, refining the Kalman estimates

Kalman summary and RTS smoother

- $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
- $\blacktriangleright \text{ Observations } \rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \boldsymbol{H}_t \mathbf{x}_t, \mathbf{R}_t)$

Kalman filter

- Initialize: m₀, P₀
- $\blacktriangleright \ \text{For} \ t = 1, \dots, T$

Predict stage:

$$\mathbf{x}_t^- = \mathbf{A}_t \mathbf{m}_{t-1} \\ \mathbf{P}_t^- = \mathbf{A}_t \mathbf{P}_{t-1} \mathbf{A}_t^\top + \mathbf{Q}_t$$

Update stage:

$$\begin{aligned} \mathbf{z}_t &= \mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^- \\ \mathbf{S}_t &= \mathbf{H} \mathbf{P}_t^- \mathbf{H}_t^\top + \mathbf{R}_t \\ \mathbf{K}_t &= \mathbf{P}_t^- \mathbf{H}_t^\top \mathbf{S}_t^{-1} \\ \mathbf{m}_t &= \mathbf{x}_t^- + \mathbf{K}_t \mathbf{z}_t \\ \mathbf{P}_t &= \mathbf{P}_t^- - \mathbf{K}_t \mathbf{S}_t \mathbf{K}_t^\top \end{aligned}$$

RTS smoother

► For t = T,...,1 Smoothing stage:

$$\begin{aligned} \mathbf{x}_{t+1}^- &= \mathbf{A}_t \mathbf{m}_t \\ \mathbf{P}_{t+1}^- &= \mathbf{A}_t \mathbf{P}_t \mathbf{A}_t^\top + \mathbf{Q}_t \\ \mathbf{G}_t &= \mathbf{P}_t \mathbf{A}_t^\top (\mathbf{P}_{t+1}^-)^{-1} \\ \mathbf{m}_t^s &= \mathbf{m}_t + \mathbf{G}_t (\mathbf{m}_{t+1}^s - \mathbf{x}_{t+1}^-) \\ \mathbf{P}_t^s &= \mathbf{P}_t + \mathbf{G}_t (\mathbf{P}_{t+1}^s - \mathbf{P}_{t+1}^-) \mathbf{G}_t^\top \end{aligned}$$

✓ Filtering distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t, \mathbf{P}_t)$

✓ Smoothing distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:T}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t^s, \mathbf{P}_t^s)$

X How to proceed if some model parameters are unknown ?

Kalman summary and RTS smoother

- $\blacktriangleright \text{ Hidden state } \rightarrow p(\mathbf{x}_t | \mathbf{x}_{t-1}) \equiv \mathcal{N}(\mathbf{x}_t; \mathbf{A}_t \mathbf{x}_{t-1}, \mathbf{Q}_t)$
- $\blacktriangleright \text{ Observations } \rightarrow p(\mathbf{y}_t | \mathbf{x}_t) \equiv \mathcal{N}(\mathbf{y}_t; \boldsymbol{H}_t \mathbf{x}_t, \mathbf{R}_t)$

Kalman filter

- Initialize: m₀, P₀
- For $t = 1, \ldots, T$

Predict stage:

$$\mathbf{x}_t^- = \mathbf{A}_t \mathbf{m}_{t-1} \\ \mathbf{P}_t^- = \mathbf{A}_t \mathbf{P}_{t-1} \mathbf{A}_t^\top + \mathbf{Q}_t$$

Update stage:

$$\begin{aligned} \mathbf{z}_t &= \mathbf{y}_t - \mathbf{H}_t \mathbf{x}_t^- \\ \mathbf{S}_t &= \mathbf{H} \mathbf{P}_t^- \mathbf{H}_t^\top + \mathbf{R}_t \\ \mathbf{K}_t &= \mathbf{P}_t^- \mathbf{H}_t^\top \mathbf{S}_t^{-1} \\ \mathbf{m}_t &= \mathbf{x}_t^- + \mathbf{K}_t \mathbf{z}_t \\ \mathbf{P}_t &= \mathbf{P}_t^- - \mathbf{K}_t \mathbf{S}_t \mathbf{K}_t^\top \end{aligned}$$

RTS smoother

► For t = T,...,1 Smoothing stage:

$$\begin{aligned} \mathbf{x}_{t+1}^- &= \mathbf{A}_t \mathbf{m}_t \\ \mathbf{P}_{t+1}^- &= \mathbf{A}_t \mathbf{P}_t \mathbf{A}_t^\top + \mathbf{Q}_t \\ \mathbf{G}_t &= \mathbf{P}_t \mathbf{A}_t^\top (\mathbf{P}_{t+1}^-)^{-1} \\ \mathbf{m}_t^s &= \mathbf{m}_t + \mathbf{G}_t (\mathbf{m}_{t+1}^s - \mathbf{x}_{t+1}^-) \\ \mathbf{P}_t^s &= \mathbf{P}_t + \mathbf{G}_t (\mathbf{P}_{t+1}^s - \mathbf{P}_{t+1}^-) \mathbf{G}_t^\top \end{aligned}$$

- ✓ Filtering distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:t}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t, \mathbf{P}_t)$
- ✓ Smoothing distribution: $p(\mathbf{x}_t | \mathbf{y}_{1:T}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t^s, \mathbf{P}_t^s)$
- X How to proceed if some model parameters are unknown ?

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

Goal of the talk

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{q}_t, \qquad \mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q})$$

This talk: DGLASSO model and inference approach

- Joint estimation of two matrices describing the hidden state dynamics in the linear Gaussian state-space model.
- Sparse graphical model to represent (i) the (Granger) causal dependencies among the states, and (ii) the correlation among the state noises.
- Majorization-minimization methodology for graphical inference.

A graphical perspective on \mathbf{A}

Goal. Estimation of matrix A (a) introducing prior knowledge, and (b) under a novel interpretation of A:

 $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{q}_t, \qquad \mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q})$

Graph discovery perspective: A can be seen as sparse directed graph

- x_t ∈ ℝ^{Nx} contains N_x time-series
 each of them represents the latent process in a node in the graph
- A(i, j) is the linear effect from node j at time t − 1 to node i at time t:

$$x_{t,i} = \sum_{j=1}^{N_x} A(i,j) x_{t-1,j} + q_{t,i}$$

• $A(i,j) \neq 0 \Rightarrow x_{t-1,j}$ Granger-causes $x_{t,i}$.

A graphical perspective on \mathbf{A}

Goal. Estimation of matrix A (a) introducing prior knowledge, and (b) under a novel interpretation of A:

 $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{q}_t, \qquad \mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q})$

Graph discovery perspective: A can be seen as sparse directed graph

- x_t ∈ ℝ^{N_x} contains N_x time-series
 each of them represents the latent process in a node in the graph
- A(i, j) is the linear effect from node j at time t − 1 to node i at time t:

$$x_{t,i} = \sum_{j=1}^{N_x} A(i,j) x_{t-1,j} + q_{t,i}$$

• $A(i,j) \neq 0 \Rightarrow x_{t-1,j}$ Granger-causes $x_{t,i}$.

A graphical perspective on \mathbf{A}

Goal. Estimation of matrix A (a) introducing prior knowledge, and (b) under a novel interpretation of A:

 $\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{q}_t, \qquad \mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q})$

Graph discovery perspective: A can be seen as sparse directed graph

- x_t ∈ ℝ^{Nx} contains N_x time-series
 each of them represents the latent process in a node in the graph
- A(i, j) is the linear effect from node j at time t − 1 to node i at time t:

$$x_{t,i} = \sum_{j=1}^{N_x} A(i,j) x_{t-1,j} + q_{t,i}$$

• $A(i,j) \neq 0 \Rightarrow x_{t-1,j}$ Granger-causes $x_{t,i}$.

$$\mathbf{A} = \begin{pmatrix} 0.9 & 0.7 & 0 & 0 & 0 \\ 0 & 0 & -0.3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.8 \\ 0 & -0.1 & 0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 & 0 \end{pmatrix}$$

A graphical modeling $\mathbf{P} = \mathbf{Q}^{-1}$

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{q}_t, \qquad \mathbf{q}_t \sim \mathcal{N}(0, \mathbf{Q})$$

• Gaussian graphical model (GGM) perspective: $\mathbf{P} = \mathbf{Q}^{-1}$ can be seen as an sparse undirected graph.

$$\mathbf{q}(n) \perp \mathbf{q}(\ell) | \{ \mathbf{q}(j), j \in 1, \dots, N_x \setminus \{n, \ell\} \} \Longleftrightarrow P(n, \ell) = P(\ell, n) = 0.$$

$$\mathbf{P} = \mathbf{Q}^{-1} = \begin{pmatrix} 2 & 0 & -0.1 & 0 & 0 \\ 0 & 0.9 & 0.3 & -0.2 & 0.5 \\ -0.1 & 0.3 & 0.8 & 0 & 0 \\ 0 & -0.2 & 0 & 2 & 0 \\ 0 & 0.5 & 0 & 0 & 1.5 \end{pmatrix}$$

Summary of DGLASSO model

Summary representation of the DGLASSO graphical model, for the example graphs A and P from the two previous slides.

DGLASSO (dynamic graphical lasso): maximum a posteriori (MAP) estimator of A and P under lasso sparsity regularization on both matrices, given the observed sequence $y_{1:T}$.

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

Goal. MAP estimate of **A** and **P** ($\mathbf{P} = \mathbf{Q}^{-1}$):

$$\mathbf{A}^{*}, \mathbf{P}^{*} = \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P} | \mathbf{y}_{1:T}) = \underset{\mathbf{A}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P}) p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})$$
$$= \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \quad \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})}_{\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P})} = \mathcal{L}(\mathbf{A}, \mathbf{P})$$

• Lasso penalty (prior): we promote sparse matrices (\mathbf{A}, \mathbf{P}) for interpretable and compact network of connections:

$$\mathcal{L}_0(\mathbf{A}, \mathbf{P}) = \lambda_A \|\mathbf{A}\|_1 + \lambda_P \|\mathbf{P}\|_1,$$

• log likelihood:

$$\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A}, \mathbf{P})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A}, \mathbf{P})^\top \mathbf{S}_t(\mathbf{A}, \mathbf{P})^{-1} \mathbf{z}_t(\mathbf{A}, \mathbf{P}).$$

• requires to run KF using (\mathbf{A}, \mathbf{P})

- Joint minimization with non-smooth and non-convex implicit loss.
- gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Goal. MAP estimate of **A** and **P** ($\mathbf{P} = \mathbf{Q}^{-1}$):

$$\mathbf{A}^{*}, \mathbf{P}^{*} = \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P} | \mathbf{y}_{1:T}) = \underset{\mathbf{A}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P}) p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})$$
$$= \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \quad \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})}_{\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P})} = \mathcal{L}(\mathbf{A}, \mathbf{P})$$

 \bullet Lasso penalty (prior): we promote sparse matrices $({\bf A}, {\bf P})$ for interpretable and compact network of connections:

$$\mathcal{L}_0(\mathbf{A}, \mathbf{P}) = \lambda_A \|\mathbf{A}\|_1 + \lambda_P \|\mathbf{P}\|_1,$$

• log likelihood:

$$\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A}, \mathbf{P})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A}, \mathbf{P})^\top \mathbf{S}_t(\mathbf{A}, \mathbf{P})^{-1} \mathbf{z}_t(\mathbf{A}, \mathbf{P}).$$

• requires to run KF using (\mathbf{A}, \mathbf{P})

- Joint minimization with non-smooth and non-convex implicit loss.
- gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Goal. MAP estimate of **A** and **P** ($\mathbf{P} = \mathbf{Q}^{-1}$):

$$\mathbf{A}^{*}, \mathbf{P}^{*} = \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P} | \mathbf{y}_{1:T}) = \underset{\mathbf{A}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P}) p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})$$
$$= \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \quad \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})}_{\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P})} = \mathcal{L}(\mathbf{A}, \mathbf{P})$$

• Lasso penalty (prior): we promote sparse matrices (\mathbf{A}, \mathbf{P}) for interpretable and compact network of connections:

$$\mathcal{L}_0(\mathbf{A}, \mathbf{P}) = \lambda_A \|\mathbf{A}\|_1 + \lambda_P \|\mathbf{P}\|_1,$$

• log likelihood:

$$\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A}, \mathbf{P})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A}, \mathbf{P})^\top \mathbf{S}_t(\mathbf{A}, \mathbf{P})^{-1} \mathbf{z}_t(\mathbf{A}, \mathbf{P}).$$

 \blacktriangleright requires to run KF using $({\bf A},{\bf P})$

- Joint minimization with non-smooth and non-convex implicit loss.
- gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Goal. MAP estimate of **A** and **P** ($\mathbf{P} = \mathbf{Q}^{-1}$):

$$\mathbf{A}^{*}, \mathbf{P}^{*} = \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P} | \mathbf{y}_{1:T}) = \underset{\mathbf{A}}{\operatorname{argmax}} \quad p(\mathbf{A}, \mathbf{P}) p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})$$
$$= \underset{\mathbf{A}, \mathbf{P}}{\operatorname{argmin}} \quad \underbrace{-\log p(\mathbf{A}, \mathbf{P})}_{\mathcal{L}_{0}(\mathbf{A}, \mathbf{P})} \underbrace{-\log p(\mathbf{y}_{1:T} | \mathbf{A}, \mathbf{P})}_{\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P})} = \mathcal{L}(\mathbf{A}, \mathbf{P})$$

 \bullet Lasso penalty (prior): we promote sparse matrices $({\bf A}, {\bf P})$ for interpretable and compact network of connections:

$$\mathcal{L}_0(\mathbf{A}, \mathbf{P}) = \lambda_A \|\mathbf{A}\|_1 + \lambda_P \|\mathbf{P}\|_1,$$

• log likelihood:

$$\mathcal{L}_{1:T}(\mathbf{A}, \mathbf{P}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A}, \mathbf{P})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A}, \mathbf{P})^\top \mathbf{S}_t(\mathbf{A}, \mathbf{P})^{-1} \mathbf{z}_t(\mathbf{A}, \mathbf{P}).$$

 \blacktriangleright requires to run KF using $({\bf A},{\bf P})$

- **Joint** minimization with non-smooth and non-convex implicit loss.
- gradient-based solutions are challenging (unrolling KF recursion) and numerically unstable

Construction of the majorant function

EM-like approach:¹

▶ Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{P}}) \in \mathbb{R}^{N_x \times N_x} \times S_{N_x}$ and build the majorizing approximation $(\mathcal{Q}(\mathbf{A}, \mathbf{P}; \widetilde{\mathbf{A}}, \widetilde{\mathbf{P}}) \geq \mathcal{L}(\mathbf{A}, \mathbf{P}), \forall (\mathbf{A}, \mathbf{P}))$:

$$\mathcal{Q}(\mathbf{A}, \mathbf{P}; \widetilde{\mathbf{A}}, \widetilde{\mathbf{P}}) = \frac{T}{2} \operatorname{tr} \left(\mathbf{P}(\mathbf{\Psi} - \mathbf{\Delta}\mathbf{A}^{\top} - \mathbf{A}\mathbf{\Delta}^{\top} + \mathbf{A}\mathbf{\Phi}\mathbf{A}^{\top}) \right) - \frac{T}{2} \log \det(2\pi\mathbf{P}),$$

where, for every $t \in \{1, \dots, T\}$, $\mathbf{G}_t = \mathbf{\Sigma}_t(\widetilde{\mathbf{A}})^{\top} (\widetilde{\mathbf{A}}\mathbf{\Sigma}_t(\widetilde{\mathbf{A}})^{\top} + \widetilde{\mathbf{P}}^{-1})^{-1}$, and

$$\begin{split} \boldsymbol{\Psi} &= \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{t}^{s} + \boldsymbol{\mu}_{t}^{s} (\boldsymbol{\mu}_{t}^{s})^{\top}, \\ \boldsymbol{\Phi} &= \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{t-1}^{s} + \boldsymbol{\mu}_{t-1}^{s} (\boldsymbol{\mu}_{t-1}^{s})^{\top}, \\ \boldsymbol{\Delta} &= \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\Sigma}_{t}^{s} \mathbf{G}_{t-1}^{\top} + \boldsymbol{\mu}_{t}^{s} (\boldsymbol{\mu}_{t-1}^{s})^{\top}, \end{split}$$

using RTS outputs $(\boldsymbol{\mu}_t^s, \boldsymbol{\Sigma}_t^s)_{1 \leq t \leq T}$ using $(\widetilde{\mathbf{A}}, \widetilde{\mathbf{P}})$.

 $^{^{1}}R.$ H. Shumway and D. S. Stoffer. An approach to time series smoothing and forecasting using the EM algorithm. Journal of Time Series Analysis, 3(4):253–264, 1982.

DGLASSO minimization procedure

- Block alternating majorization-minimization technique: Set $(\mathbf{A}^{(0)}, \mathbf{P}^{(0)})$. At each iteration $i \in \mathbb{N}$, (a) Run RTS to build function $Q(\mathbf{A}, \mathbf{P}; \mathbf{A}^{(i)}, \mathbf{P}^{(i)})$ (E-step)

 - (b) Update transition matrix (M-step):

$$\mathbf{A}^{(i+1)} = \underset{\mathbf{A}}{\operatorname{argmin}} \quad \mathcal{Q}(\mathbf{A}, \mathbf{P}^{(i)}; \mathbf{A}^{(i)}, \mathbf{P}^{(i)}) + \lambda_A \|\mathbf{A}\|_1 + \frac{1}{2\theta_A} \|\mathbf{A} - \mathbf{A}^{(i)}\|_F^2$$

- (c) Run RTS to build function $Q(\mathbf{A}, \mathbf{P}; \mathbf{A}^{(i+1)}, \mathbf{P}^{(i)})$ (E-step)
- (d) Update precision matrix (M-step):

 $\mathbf{P}^{(i+1)} = \operatorname{argmin}_{\mathbf{P}} \mathcal{Q}(\mathbf{A}^{(i+1)}, \mathbf{P}; \mathbf{A}^{(i+1)}, \mathbf{P}^{(i)}) + \lambda_P \|\mathbf{P}\|_1 + \frac{1}{2\theta_T} \|\mathbf{P} - \mathbf{P}^{(i)}\|_F^2$

- **Proximal terms**, with stepsizes $(\theta_A, \theta_P) > 0$, to stabilize the minimization process and guarantee convergence of iterates.
- Convenient **bi-convex** structure of $\mathcal{Q}(\cdot, \cdot; \widetilde{\mathbf{A}}, \widetilde{\mathbf{P}})$
 - Step (b) is a lasso-like regression problem
 - Step (d) is a GLASSO-like problem.

Convergence theorem

Consider the sequence $\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\}_{i \in \mathbb{N}}$ generated by DGLASSO, assuming exact resolution of both inner steps (b) and (d). Denote $\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{1:T}$ the loss function.

▶ The sequence $\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\}_{i \in \mathbb{N}}$ produced by DGLASSO algorithm satisfies

$$(\forall i \in \mathbb{N}) \quad \mathcal{L}(\mathbf{A}^{(i+1)}, \mathbf{P}^{(i+1)}) \leq \mathcal{L}(\mathbf{A}^{(i)}, \mathbf{P}^{(i)}).$$

▶ If the sequence $\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\}_{i \in \mathbb{N}}$ is bounded, then $\{\mathbf{A}^{(i)}, \mathbf{P}^{(i)}\}_{i \in \mathbb{N}}$ converges to a critical point of \mathcal{L} .

• Proof based on the recent work.²

 \bullet In practice, inner minimization steps (b) and (d) using a Dykstra proximal splitting solver. 3

²L. T. K. Tien, D. N. Phan, and N. Gillis. An inertial block majorization minimization framework for nonsmooth nonconvex optimization. Technical report, 2020. https://arxiv.org/abs/2010.12133.

³H. H. Bauschke and P. L. Combettes. A Dykstra-like algorithm for two monotone operators. Pacific Journal of Optimization, 4:383–391, 2008

Summary of the GraphEM algorithm

DGLASSO generalises our previous GraphEM,⁴ where only A is unknown.

GraphEM algorithm

- Initialization of A⁽⁰⁾.
- For i = 1, 2, ...
- E-step Run the Kalman filter and RTS smoother by setting $\mathbf{A}' := \mathbf{A}^{(i-1)}$ and construct $\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)})$.
- M-step Update $\mathbf{A}^{(i)} = \operatorname{argmin}_{\mathbf{A}} \left(\mathcal{Q}(\mathbf{A}; \mathbf{A}^{(i-1)}) \right)$ using Douglas-Rachford algorithm (simpler version) or monotone+skew (MS) algorithm (generalized version).
- ▶ Flexible approach, valid as long as the proximity operators of $(f_m)_{2 \le m \le M}$ are available, with $\mathcal{L}_0 = \sum_{m=1}^M f_m$

⁴V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: *IEEE Transactions on Signal Processing* 70 (2022), pp. 4757–4771.

State-space models as graphs	Víctor Elvira	University of Edinburgh	19/41
------------------------------	---------------	-------------------------	-------

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

Ongoing extensions: beyond ℓ_1 norm (1/3)

- ► GraphEM requires the penalty term L₀(A) to be convex (e.g., ℓ₁ norm).
- However, for very sparse graphs, non-convex penalties such as SCAD, MCP, CEL0 have shown to be more suited than l₁ norm (closer to pseudo-norm l₀).

- GraphIT algorithm⁵ implements an iterative reweighted (IR) scheme
 - MM framework: $\mathcal{L}_0(\mathbf{A})$ is approximated by a surrogate convex function
 - optimization via modern solvers with strong convergence gurantees

State-space models as graphs	Víctor Elvira	University of Edinburgh	21/41

Ongoing extensions: beyond Markovianity (2/3)

Non-Markovian LG-SSM:

$$lacksim ext{Unobserved state} o extbf{x}_t = \sum_{i=1}^P \mathbf{A}_i \mathbf{x}_{t-i} + \mathbf{q}_t$$

• Observations
$$\rightarrow$$
 $\mathbf{y}_t = \mathbf{H}_t \mathbf{x}_t + \mathbf{r}_t$

Standard filtering and smoothing approach with known $\{A_i\}_{i=1}^{P}$

- \blacktriangleright stacking (columnwise) the *p* consecutive states into $\mathbf{z}_t = [\mathbf{x}_t; \mathbf{x}_{t-1}; \dots; \mathbf{x}_{t-p+1}] \in \mathbb{R}^{pN_x}$ run KF and RTS in the extended model

$$\begin{cases} \mathbf{z}_t = \check{\mathbf{A}} \mathbf{z}_{t-1} + \check{\mathbf{q}}_t, \\ \mathbf{y}_t = \check{\mathbf{H}} \mathbf{z}_t + \mathbf{r}_t, \end{cases}$$
(1)

where we define

 $\check{\mathbf{q}}_t \sim$

$$\check{\mathbf{A}} = \begin{bmatrix} \mathbf{A}_1 & \cdots & \cdots & \mathbf{A}_p \\ \mathbf{I} & 0 & \cdots & 0 \\ & \ddots & \ddots & \vdots \\ (0) & \mathbf{I} & 0 \end{bmatrix} \in \mathbb{R}^{pN_x \times pN_x},$$
$$\check{\mathbf{H}} = [\mathbf{H} (0)] \in \mathbb{R}^{N_y \times pN_x}, \quad \check{\mathbf{Q}} = \begin{bmatrix} \mathbf{Q} & (0) \\ (0) & (0) \end{bmatrix} \in \mathbb{R}^{pN_x \times pN_x},$$
$$\mathcal{N}(0, \check{\mathbf{Q}}), \text{ and } \mathbf{r}_t \sim \mathcal{N}(0, \mathbf{R})$$

Ongoing extensions: beyond Markovianity (2/3)

$$\mathbf{A}_1 = \left(\begin{array}{ccc} 0.9 & 0.7 & 0\\ 0 & 0 & -0.3\\ 0 & 0 & 0 \end{array}\right), \ \mathbf{A}_2 = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0.8 & 0 \end{array}\right).$$

Ongoing extensions: beyond Markovianity (2/3)

- LaGrangEM (ICASSP 2024): a GraphEM-type algorithm that operates in non-Markovian models including desirable properties and interpretability, e.g.,
 - acyclic graph
 - sparsity
 - only one-lag interaction at maximum betwen nodes (more sparsity!)
 - reasonable in some physical models
 - one input arrow at maximum at each node (even more sparsity!)
 - strong connection with modern Granger causality models⁶

- So far, great results but with intermediate/post-processing mapping steps which may compromise the theoretical guarantees (?)
 - ongoing work in bridging the gap between well-perorming methods and solid theory

⁶D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: *IEEE journal of biomedical and health informatics* 23.1 (2018), pp. 143–155.

Ongoing extensions: beyond linearity (3/3)

Models of this type:

$$\mathbf{x}_t = \sum_{j=1}^J \mathbf{A}_j \mathbf{\Phi}_j(\mathbf{x}_{t-1}) + \mathbf{q}_t$$

e.g., with J = 3:

$$\mathbf{x}_t = \mathbf{A}_1 \mathbf{x}_{t-1} + \mathbf{A}_2 \mathbf{x}_{t-1}^2 + \mathbf{A}_3 \mathbf{x}_{t-1}^2 + \mathbf{q}_t$$

possible to include cross-terms

- Functional learning (Taylor-expansion perspective)
- Ongoing work with several challenges:
 - too high-dimensional space
 - identifiability issues
 - even more complicated for fully Bayesian approaches

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Conclusion

SpaRJ algorithm

SpaRJ⁷ (*sparse reversible jump*) is a fully probabilistic algorithm for the estimation of A, i.e., obtains samples from p(A|y_{1:T}).

The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:

- $M_n \in \{0,1\}^{N_x \times N_x}$: sparsity pattern sample
- A_n: matrix A sample, with non-zero elements, A(i, j) for $\{(i, j) : M_n(i, j) = 1\}$

• We use reversible jump MCMC (RJ-MCMC) to explore $p(\mathbf{A}|\mathbf{y}_{1:T})$.⁸

• MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, $|M_n|$.

It requires to define:

transition kernels for the model jumps

mechanism to set values when jumping to a more complex model.

⁷B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: *IEEE Transactions on Signal Processing* 71 (2023), pp. 1922–1937.
 ⁸P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination". In: *Biometrika* 82.4 (1995), pp. 711–732.

State-space models as graphs

Víctor Elvira University of Edinburgh 27/41
SpaRJ algorithm

- ► SpaRJ⁷ (sparse reversible jump) is a fully probabilistic algorithm for the estimation of A, i.e., obtains samples from p(A|y_{1:T}).
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
 - $M_n \in \{0,1\}^{N_x \times N_x}$: sparsity pattern sample
 - A_n : matrix **A** sample, with non-zero elements, A(i, j) for $\{(i, j) : M_n(i, j) = 1\}$
- We use reversible jump MCMC (RJ-MCMC) to explore $p(\mathbf{A}|\mathbf{y}_{1:T})$.⁸
 - MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, $|M_n|$.
- It requires to define:
 - transition kernels for the model jumps
 - mechanism to set values when jumping to a more complex model.

⁷B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: *IEEE Transactions on Signal Processing* 71 (2023), pp. 1922–1937.
 ⁸P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination". In: *Biometrika* 82.4 (1995), pp. 711–732.

State-space models as graphs

Víctor Elvira University of Edinburgh 27/41

SpaRJ algorithm

- ► SpaRJ⁷ (sparse reversible jump) is a fully probabilistic algorithm for the estimation of A, i.e., obtains samples from p(A|y_{1:T}).
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
 - $M_n \in \{0,1\}^{N_x \times N_x}$: sparsity pattern sample
 - A_n : matrix **A** sample, with non-zero elements, A(i, j) for $\{(i, j) : M_n(i, j) = 1\}$
- We use reversible jump MCMC (RJ-MCMC) to explore $p(\mathbf{A}|\mathbf{y}_{1:T})$.⁸
 - MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, |M_n|.

It requires to define:

- transition kernels for the model jumps
- mechanism to set values when jumping to a more complex model.

State-space models as graphs

Víctor Elvira University of Edinburgh

27/41

⁷B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: *IEEE Transactions on Signal Processing* 71 (2023), pp. 1922–1937.

⁸P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination". In: *Biometrika* 82.4 (1995), pp. 711–732.

SpaRJ algorithm

- ► SpaRJ⁷ (sparse reversible jump) is a fully probabilistic algorithm for the estimation of A, i.e., obtains samples from p(A|y_{1:T}).
- The sparsity is imposed by transitioning among models of different complexity, defined hierarchically:
 - $M_n \in \{0,1\}^{N_x \times N_x}$: sparsity pattern sample
 - A_n : matrix **A** sample, with non-zero elements, A(i, j) for $\{(i, j) : M_n(i, j) = 1\}$
- We use reversible jump MCMC (RJ-MCMC) to explore $p(\mathbf{A}|\mathbf{y}_{1:T})$.⁸
 - MCMC algorithm to simulate in spaces of varying dimension, e.g., the number of ones in the sparsity pattern, |M_n|.
- It requires to define:
 - transition kernels for the model jumps
 - mechanism to set values when jumping to a more complex model.

State-space models as graphs

Víctor Elvira University of Edinburgh

27/41

⁷B. Cox and V. Elvira. "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models". In: *IEEE Transactions on Signal Processing* 71 (2023), pp. 1922–1937.

⁸P. J. Green. "Reversible jump Markov chain Monte Carlo computation and Bayesian model determination". In: *Biometrika* 82.4 (1995), pp. 711–732.

Input: Known SSM parameters { $\bar{\mathbf{x}}_0$, \mathbf{P}_0 , \mathbf{Q} , \mathbf{R} , \mathbf{H} }, observations { y_t } $_{t=1}^T$, hyper-parameters, number of iterations N, initial value \mathbf{A}_0 **Output:** Set of sparse samples { \mathbf{A}_n } $_{n=1}^N$

Input: Known SSM parameters { $\bar{\mathbf{x}}_0$, \mathbf{P}_0 , \mathbf{Q} , \mathbf{R} , \mathbf{H} }, observations { y_t } $_{t=1}^T$, hyper-parameters, number of iterations N, initial value \mathbf{A}_0 **Output:** Set of sparse samples { \mathbf{A}_n } $_{n=1}^N$

Initialization

```
Initialize M_0 as fully dense (all ones) and \mathbf{A}_0
Run Kf obtaining l_0 := \log(p(\mathbf{y}_{1:T}|\mathbf{A}_0))p(\mathbf{A}_0)
for n = 1, ..., N do
    Step 1: Propose model
    Propose a new sparsity pattern M', obtaining a symmetry correction of c.
```

Input: Known SSM parameters $\{\bar{\mathbf{x}}_0, \mathbf{P}_0, \mathbf{Q}, \mathbf{R}, \mathbf{H}\}$, observations $\{y_t\}_{t=1}^T$, hyper-parameters, number of iterations N, initial value A_0 **Output**: Set of sparse samples $\{\mathbf{A}_n\}_{n=1}^N$ Initialization Initialize M_0 as fully dense (all ones) and \mathbf{A}_0 Run Kf obtaining $l_0 := \log(p(\mathbf{y}_{1:T}|\mathbf{A}_0))p(\mathbf{A}_0)$ for n = 1, ..., N do Step 1: Propose model Propose a new sparsity pattern M', obtaining a symmetry correction of c. Step 2: Propose A' Propose \mathbf{A}' using an MCMC sampler conditional on M'

Input: Known SSM parameters $\{\bar{\mathbf{x}}_0, \mathbf{P}_0, \mathbf{Q}, \mathbf{R}, \mathbf{H}\}$, observations $\{y_t\}_{t=1}^T$, hyper-parameters, number of iterations N, initial value A_0 **Output**: Set of sparse samples $\{\mathbf{A}_n\}_{n=1}^N$ Initialization Initialize M_0 as fully dense (all ones) and \mathbf{A}_0 Run Kf obtaining $l_0 := \log(p(\mathbf{y}_{1:T}|\mathbf{A}_0))p(\mathbf{A}_0)$ for n = 1, ..., N do Step 1: Propose model Propose a new sparsity pattern M', obtaining a symmetry correction of c. Step 2: Propose A' Propose \mathbf{A}' using an MCMC sampler conditional on M'Step 3: MH accept-reject Evaluate Kalman filter with $\mathbf{A} := \mathbf{A}'$ Set $l' := \log(p(\mathbf{y}_{1:T}|\mathbf{A}'))p(\mathbf{A}')$ Compute $\log(a_r) := l' - l_{n-1} + c$ and Accept w.p. a_r :

Input: Known SSM parameters $\{\bar{\mathbf{x}}_0, \mathbf{P}_0, \mathbf{Q}, \mathbf{R}, \mathbf{H}\}$, observations $\{y_t\}_{t=1}^T$, hyper-parameters, number of iterations N, initial value A_0 **Output**: Set of sparse samples $\{\mathbf{A}_n\}_{n=1}^N$ Initialization Initialize M_0 as fully dense (all ones) and \mathbf{A}_0 Run Kf obtaining $l_0 := \log(p(\mathbf{y}_{1:T}|\mathbf{A}_0))p(\mathbf{A}_0)$ for n = 1, ..., N do Step 1: Propose model Propose a new sparsity pattern M', obtaining a symmetry correction of c. Step 2: Propose A' Propose \mathbf{A}' using an MCMC sampler conditional on M'Step 3: MH accept-reject Evaluate Kalman filter with $\mathbf{A} := \mathbf{A}'$ Set $l' := \log(p(\mathbf{y}_{1:T}|\mathbf{A}'))p(\mathbf{A}')$ Compute $\log(a_r) := l' - l_{n-1} + c$ and Accept w.p. a_r : if Accept then Set $M_n := M'$, $\mathbf{A}_n := \mathbf{A}'$, $l_n := \log(p(\mathbf{y}_{1:T} | \mathbf{A}'))p(\mathbf{A}')$ else Set $M_n := M_{n-1}, \mathbf{A}_n := \mathbf{A}_{n-1}, l_n := l_{n-1}$ end if end for

Outline

Introduction

Linear-Gaussian model and Kalman filter

A doubly graphical perspective on SSMs

Point-wise estimation: GraphEM and DGLASSO algorithms

Point-wise estimation: extensions

Probabilistic estimation

Experimental evaluation

Data description and numerical settings

• Four synthetic datasets with $\mathbf{H} = \mathbf{Id}$ and block-diagonal matrix \mathbf{A} , composed with b blocks of size $(b_j)_{1 \le j \le b}$, so that $N_y = N_x = \sum_{j=1}^{b} b_j$. We set $T = 10^3$, $\mathbf{Q} = \sigma_{\mathbf{Q}}^2 \mathbf{Id}$, $\mathbf{R} = \sigma_{\mathbf{R}}^2 \mathbf{Id}$, $\mathbf{P}_0 = \sigma_{\mathbf{P}}^2 \mathbf{Id}$.

Dataset	N_x	$(b_j)_{1 \le j \le b}$	$(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}})$
A	9	(3, 3, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$
В	9	(3, 3, 3)	$(1, 1, 10^{-4})$
C	16	(3, 5, 5, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$
D	16	(3, 5, 5, 3)	$(1, 1, 10^{-4})$

- GraphEM is compared with:
 - Maximum likelihood EM (MLEM)⁹
 - Granger-causality approaches: pairwise Granger Causality (PGC) and conditional Granger Causality (CGC)¹⁰

⁹S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.
¹⁰D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: *IEEE journal of biomedical and health informatics* 23.1 (2018), pp. 143–155.

State-space models as graphs

Data description and numerical settings

• Four synthetic datasets with $\mathbf{H} = \mathbf{Id}$ and block-diagonal matrix \mathbf{A} , composed with b blocks of size $(b_j)_{1 \le j \le b}$, so that $N_y = N_x = \sum_{j=1}^{b} b_j$. We set $T = 10^3$, $\mathbf{Q} = \sigma_{\mathbf{Q}}^2 \mathbf{Id}$, $\mathbf{R} = \sigma_{\mathbf{R}}^2 \mathbf{Id}$, $\mathbf{P}_0 = \sigma_{\mathbf{P}}^2 \mathbf{Id}$.

Dataset	N_x	$(b_j)_{1 \le j \le b}$	$(\sigma_{\mathbf{Q}}, \sigma_{\mathbf{R}}, \sigma_{\mathbf{P}})$
A	9	(3, 3, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$
В	9	(3, 3, 3)	$(1, 1, 10^{-4})$
С	16	(3, 5, 5, 3)	$(10^{-1}, 10^{-1}, 10^{-4})$
D	16	(3, 5, 5, 3)	$(1, 1, 10^{-4})$

- GraphEM is compared with:
 - Maximum likelihood EM (MLEM)⁹
 - Granger-causality approaches: pairwise Granger Causality (PGC) and conditional Granger Causality (CGC)¹⁰

⁹S. Sarkka. Bayesian Filtering and Smoothing. Ed. by C. U. Press. 2013.

¹⁰D. Luengo, G. Rios-Munoz, V. Elvira, C. Sanchez, and A. Artes-Rodriguez. "Hierarchical algorithms for causality retrieval in atrial fibrillation intracavitary electrograms". In: *IEEE journal of biomedical and health informatics* 23.1 (2018), pp. 143–155.

State-space models as graphs

30/41

Experimental results of GraphEM

True graph (left) and GraphEM estimate (right) for dataset C.

Experimental results of GraphEM

	method	RMSE	accur.	prec.	recall	spec.	F1
	GraphEM	0.081	0.9104	0.9880	0.7407	0.9952	0.8463
	MLEM	0.149	0.3333	0.3333	1	0	0.5
A	PGC	-	0.8765	0.9474	0.6667	0.9815	0.7826
	CGC	-	0.8765	1	0.6293	1	0.7727
	GraphEM	0.082	0.9113	0.9914	0.7407	0.9967	0.8477
D	MLEM	0.148	0.3333	0.3333	1	0	0.5
В	PGC	-	0.8889	1	0.6667	1	0.8
	CGC	-	0.8889	1	0.6667	1	0.8
	GraphEM	0.120	0.9231	0.9401	0.77	0.9785	0.8427
C	MLEM	0.238	0.2656	0.2656	1	0	0.4198
	PGC	-	0.9023	0.9778	0.6471	0.9949	0.7788
	CGC	-	0.8555	0.9697	0.4706	0.9949	0.6337
	GraphEM	0.121	0.9247	0.9601	0.7547	0.9862	0.8421
	MLEM	0.239	0.2656	0.2656	1	0	0.4198
	PGC	-	0.8906	0.9	0.6618	0.9734	0.7627
	CGC	-	0.8477	0.9394	0.4559	0.9894	0.6139

Experimental results: Realistic weather datasets

Graph inference results on an example from WeathN5a dataset.¹¹

¹¹ J. Runge, X.-A. Tibau, M. Bruhns, J. Muoz-Mar, and G. Camps-Valls. The causality for climate competition. In Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume 123, pages 110–120, 2020.

State-space	models	as	graphs
-------------	--------	----	--------

Computational complexity of DGLASSO

Figure 6: Evolution of the complexity time (left), RMSE($\mathbf{A}^*, \widehat{\mathbf{A}}$) (middle) and cNMSE($\boldsymbol{\mu}^*, \widehat{\boldsymbol{\mu}}$) (right) metrics, as a function of the time series length K, for experiments on dataset A averaged over 50 runs.

Performance of DGLASSO (toy example)

		Esti	mation of	A	Esti	mation o	t P	Estim. Q	State distrib.		Predictive distrib.	
	Method	RMSE	AUC	F1	RMSE	AUC	F1	RMSE	$cNMSE(\mu^*, \hat{\mu})$	$cNMSE(\mu^{**}, \hat{\mu}^{*})$	$cNMSE(\nu^*, \hat{\nu})$	$\mathcal{L}_{1:K}(\mathbf{A}, \mathbf{P})$
V	DGLASSO	0.061	0.843	0.641	0.082	0.778	0.698	0.083	6.394×10^{-8}	1.050×10^{-7}	2.984×10^{-4}	12 307.169
÷	MLEM	0.076	0.817	0.500	0.105	0.857	0.500	0.102	1.095×10^{-7}	1.803×10^{-7}	4.843×10^{-4}	12341.205
2	GLASSO	NA	NA	NA	0.818	0.804	0.496	1 073.510	4.485×10^{-6}	7.180×10^{-6}	1.000	28 459.294
Dat	rGLASSO	NA	NA	NA	0.764	0.924	0.598	31.689	2.826×10^{-6}	5.492×10^{-6}	1.000	22957.693
П	GRAPHEM	0.045	0.895	0.847	NA	NA	NA	NA	4.364×10^{-6}	6.944×10^{-6}	2.980×10^{-4}	29 035.030
В	DGLASSO	0.068	0.833	0.603	0.070	0.893	0.835	0.071	7.490×10^{-8}	1.236×10^{-7}	3.281×10^{-4}	11 806.744
÷	MLEM	0.080	0.815	0.500	0.106	0.898	0.500	0.100	1.299×10^{-7}	2.133×10^{-7}	4.619×10^{-4}	11833.448
8	GLASSO	NA	NA	NA	0.827	0.826	0.505	341.873	5.069×10^{-6}	8.072×10^{-6}	1.000	27744.964
Dat	rGLASSO	NA	NA	NA	0.734	0.930	0.608	33.896	3.215×10^{-6}	6.187×10^{-6}	1.000	22530.036
г	GRAPHEM	0.047	0.893	0.848	NA	NA	NA	NA	5.158×10^{-6}	8.036×10^{-6}	2.912×10^{-4}	29 031.412
U	DGLASSO	0.070	0.829	0.581	0.090	0.954	0.830	0.078	1.896×10^{-7}	2.994×10^{-7}	3.956×10^{-4}	10 311.104
÷	MLEM	0.081	0.810	0.500	0.097	0.974	0.500	0.094	2.583×10^{-7}	4.180×10^{-7}	5.053×10^{-4}	10326.410
8	GLASSO	NA	NA	NA	0.901	0.805	0.489	3.926×10^{17}	0.012	0.012	1.000	26 634.892
Dat	rGLASSO	NA	NA	NA	0.805	0.928	0.614	29.530	7.195×10^{-6}	1.320×10^{-5}	1.000	21 322.247
г	GRAPHEM	0.049	0.892	0.857	NA	NA	NA	NA	1.055×10^{-5}	1.641×10^{-5}	3.912×10^{-4}	29 023.369
0	DGLASSO	0.073	0.835	0.575	0.083	1.000	0.598	0.080	5.127×10^{-7}	8.243×10^{-7}	3.373×10^{-4}	7911.943
*	MLEM	0.098	0.808	0.500	0.095	1.000	0.500	0.084	6.296×10^{-7}	1.027×10^{-6}	4.219×10^{-4}	7 923.850
8	GLASSO	NA	NA	NA	0.964	0.941	0.550	187.823	2.348×10^{-5}	3.701×10^{-5}	1.000	23684.178
Dat	rGLASSO	NA	NA	NA	0.882	0.956	0.645	28.703	1.886×10^{-5}	3.239×10^{-5}	1.000	20100.491
	GRAPHEM	0.061	0.892	0.864	NA	NA	NA	NA	2.503×10^{-5}	3.839×10^{-5}	3.743×10^{-4}	29016.321

Performance of DGLASSO (climate model)

	method	RMSE	accur.	prec.	recall	spec.	F1	Time (s.)
	DGLASSO	0.108	0.937	0.894	0.998	0.894	0.937	0.608
WeathN5a	MLEM	0.140	0.413	0.413	1.000	0.000	0.584	0.596
	GRAPHEM	0.127	0.703	0.595	1.000	0.496	0.742	0.606
	PGC	-	0.772	0.902	0.515	0.953	0.652	0.019
	CGC	-	0.672	0.828	0.285	0.945	0.415	0.026
	DGLASSO	0.166	0.773	0.668	0.992	0.619	0.788	0.630
	MLEM	0.197	0.413	0.413	1.000	0.000	0.584	0.376
WeathN5b	GRAPHEM	0.186	0.629	0.536	1.000	0.368	0.694	0.470
	PGC	-	0.675	0.677	0.469	0.819	0.544	0.017
	CGC	-	0.634	0.659	0.263	0.895	0.369	0.023
	DGLASSO	0.202	0.948	0.898	0.925	0.954	0.890	1.363
WeathN10a	MLEM	0.264	0.219	0.219	1.000	0.000	0.359	0.834
	GRAPHEM	0.224	0.511	0.311	1.000	0.374	0.473	1.445
	PGC	-	0.879	0.904	0.504	0.983	0.644	0.232
	CGC	-	0.773	0.539	0.211	0.932	0.278	0.358
	DGLASSO	0.192	0.866	0.633	0.994	0.829	0.769	0.557
	MLEM	0.342	0.219	0.219	1.000	0.000	0.359	0.989
WeathN10b	GRAPHEM	0.219	0.855	0.620	0.994	0.816	0.757	0.655
	PGC	-	0.799	0.558	0.473	0.890	0.506	0.154
	CGC	-	0.750	0.407	0.218	0.900	0.265	0.178

Convergence of SpaRJ and GarphEM with data

Figure: 3×3 system with known isotropic state covariance.

Convergence of SpaRJ with iterations

Figure: Progression of sample metrics in a 12×12 .

Real-world applications

cardiology application of finding rotors in atrial fibrillation

- topology discovery is the key
- climate models
 - already tested over realistic climate synthetic data (the Causality for Climate Competition, NeurIPS 2019)
 - preliminary work "Graphs in State-Space Models for Granger Causality in Climate Science" at CausalStats 2023

networks, neuroscience, ..., ideas? :-)

Outline

Introduction

- Linear-Gaussian model and Kalman filter
- A doubly graphical perspective on SSMs
- Point-wise estimation: GraphEM and DGLASSO algorithms
- Point-wise estimation: extensions
- Probabilistic estimation
- Experimental evaluation

\blacktriangleright Novel graphical interpretation on matrices A and Q in LG-SSMs.

- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
 - GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
 - SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
 - strong model interpretation
 - sophisticated optimization scheme
- ▶ All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

- Novel graphical interpretation on matrices A and Q in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
 - GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
 - SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
 - strong model interpretation
 - sophisticated optimization scheme
- ▶ All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

- Novel graphical interpretation on matrices A and Q in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
 - GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
 - SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
 - strong model interpretation
 - sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

- Novel graphical interpretation on matrices A and Q in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
 - GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
 - SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
 - strong model interpretation
 - sophisticated optimization scheme
- All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

- Novel graphical interpretation on matrices A and Q in LG-SSMs.
- Algorithms to estimate only a sparse A: GraphEM (point-wise) and SpaRJ (fully Bayesian).
 - GraphEM is faster and allows explicit penalty functions (prior knowledge) beyond sparsity.
 - SpaRJ provides samples of the posterior allowing for uncertainty quantification.
- Algorithm to estimate both sparse A and Q: DGLASSO (point-wise)
 - strong model interpretation
 - sophisticated optimization scheme
- ► All have solid theoretical guarantees and show good performance.
- This is a challenging problem with many exciting ongoing methodological and applied avenues ahead!

Thank you for your attention!

GraphEM paper: V. Elvira, É. Chouzenoux, "Graphical Inference in Linear-Gaussian State-Space Models", *IEEE Transactions on Signal Processing*, Vol. 70, pp. 4757-4771, 2022.

SpaRJ: B. Cox and V. Elvira, "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models", IEEE Transactions on Signal Processing, vol. 71, pp. 1922-1937, 2023.

GraphIT paper: E. Chouzenoux and V. Elvira, "Iterative reweighted ℓ_1 algorithm for sparse graph inference in state-space models", IEEE International Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2023), Rhodes, Greece, June, 2023.

Non-Markovian models: E. Chouzenoux and V. Elvira, "Graphical Inference in Non-Markovian Linear-Gaussian State-space Models", IEEE International Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2024), Seoul, Korea, April, 2024.

Under review:

- DGLASSO: E. Chouzenoux and V. Elvira, "Sparse Graphical Linear Dynamical Systems, submitted, 2023. https://arxiv.org/abs/2307.03210
- Application to climate: V. Elvira, E. Chouzenoux, J. Cerda, and G. Camps-Valls "Graphs in State-Space Models for Granger Causality in Climate Science", CausalStats Workshop, 2023.
- Community detection paper: B. Cox and V. Elvira, "Community Detection for structural Parameter Estimation in Linear-Gaussian State-Space Models", 2024.

• Goal. MAP estimate of A:

$$\mathbf{A}^* = \mathrm{argmax}_{\mathbf{A}} p(\mathbf{A}|\mathbf{y}_{1:T}) = \mathrm{argmax}_{\mathbf{A}} \frac{p(\mathbf{A})p(\mathbf{y}_{1:T}|\mathbf{A})}{p(\mathbf{y}_{1:T}|\mathbf{A})}$$

• Equivalent to minimizing $\mathcal{L}(\mathbf{A}) = -\log p(\mathbf{A}) - \log p(\mathbf{y}_{1:T}|\mathbf{A})$.

Challenges: evaluating $\mathcal{L}_{1:T}(\mathbf{A}) \equiv -\log p(\mathbf{y}_{1:T}|\mathbf{A})$ requires to run the KF:

$$\mathcal{L}_{1:T}(\mathbf{A}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A})^\top \mathbf{S}_t(\mathbf{A})^{-1} \mathbf{z}_t(\mathbf{A}).$$

Function $\mathcal{L}_0(\mathbf{A}) \equiv -\log p(\mathbf{A})$ might be complicated (e.g., non smooth).

Non tractable minimization.

Simplest version of GraphEM:¹² an EM strategy to minimize a sequence of (tractable) majorizing approximations of *L*.

Lasso regularization (Laplace prior) to promote a sparse matrix A:

 $(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{L}_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0.$

¹²E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 5840–5844.

• Goal. MAP estimate of A:

$$\mathbf{A}^{*} = \mathrm{argmax}_{\mathbf{A}} p(\mathbf{A} | \mathbf{y}_{1:T}) = \mathrm{argmax}_{\mathbf{A}} \frac{p(\mathbf{A}) p(\mathbf{y}_{1:T} | \mathbf{A})}{p(\mathbf{y}_{1:T} | \mathbf{A})}$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A}) = -\log p(\mathbf{A}) \log p(\mathbf{y}_{1:T}|\mathbf{A})$.
- Challenges: evaluating $\mathcal{L}_{1:T}(\mathbf{A}) \equiv -\log p(\mathbf{y}_{1:T}|\mathbf{A})$ requires to run the KF:

$$\mathcal{L}_{1:T}(\mathbf{A}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A})^\top \mathbf{S}_t(\mathbf{A})^{-1} \mathbf{z}_t(\mathbf{A}).$$

Function L₀(A) ≡ -log p(A) might be complicated (e.g., non smooth).
 Non tractable minimization.

Simplest version of GraphEM:¹² an EM strategy to minimize a sequence of (tractable) majorizing approximations of L.

Lasso regularization (Laplace prior) to promote a sparse matrix A:

 $(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{L}_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0.$

¹²E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020, pp. 5840–5844.

• Goal. MAP estimate of A:

$$\mathbf{A}^{*} = \mathrm{argmax}_{\mathbf{A}} p(\mathbf{A} | \mathbf{y}_{1:T}) = \mathrm{argmax}_{\mathbf{A}} \frac{p(\mathbf{A}) p(\mathbf{y}_{1:T} | \mathbf{A})}{p(\mathbf{y}_{1:T} | \mathbf{A})}$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A}) = -\log p(\mathbf{A}) \log p(\mathbf{y}_{1:T}|\mathbf{A})$.
- Challenges: evaluating $\mathcal{L}_{1:T}(\mathbf{A}) \equiv -\log p(\mathbf{y}_{1:T}|\mathbf{A})$ requires to run the KF:

$$\mathcal{L}_{1:T}(\mathbf{A}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A})^\top \mathbf{S}_t(\mathbf{A})^{-1} \mathbf{z}_t(\mathbf{A}).$$

- Function $\mathcal{L}_0(\mathbf{A}) \equiv -\log p(\mathbf{A})$ might be complicated (e.g., non smooth).
- Non tractable minimization.
- Simplest version of GraphEM:¹² an EM strategy to minimize a sequence of (tractable) majorizing approximations of *L*.

Lasso regularization (Laplace prior) to promote a sparse matrix A: $(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{L}_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0.$

¹²E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. 2020, pp. 5840–5844.

• Goal. MAP estimate of A:

$$\mathbf{A}^{*} = \mathrm{argmax}_{\mathbf{A}} p(\mathbf{A}|\mathbf{y}_{1:T}) = \mathrm{argmax}_{\mathbf{A}} \frac{p(\mathbf{A})p(\mathbf{y}_{1:T}|\mathbf{A})}{p(\mathbf{y}_{1:T}|\mathbf{A})}$$

- Equivalent to minimizing $\mathcal{L}(\mathbf{A}) = -\log p(\mathbf{A}) \log p(\mathbf{y}_{1:T}|\mathbf{A})$.
- Challenges: evaluating $\mathcal{L}_{1:T}(\mathbf{A}) \equiv -\log p(\mathbf{y}_{1:T}|\mathbf{A})$ requires to run the KF:

$$\mathcal{L}_{1:T}(\mathbf{A}) = \sum_{t=1}^{T} \frac{1}{2} \log |2\pi \mathbf{S}_t(\mathbf{A})| + \frac{1}{2} \mathbf{z}_t(\mathbf{A})^\top \mathbf{S}_t(\mathbf{A})^{-1} \mathbf{z}_t(\mathbf{A}).$$

- Function $\mathcal{L}_0(\mathbf{A}) \equiv -\log p(\mathbf{A})$ might be complicated (e.g., non smooth).
- Non tractable minimization.
- Simplest version of GraphEM:¹² an EM strategy to minimize a sequence of (tractable) majorizing approximations of *L*.
 - Lasso regularization (Laplace prior) to promote a sparse matrix A:

 $(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{L}_0(\mathbf{A}) = \gamma \|\mathbf{A}\|_1, \qquad \gamma > 0.$

¹²E. Chouzenoux and V. Elvira. "GraphEM: EM algorithm for blind Kalman filtering under graphical sparsity constraints". In: *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. 2020, pp. 5840–5844.

Expression of EM steps

• Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to ${\bf A}'$ and define^{13}

$$\begin{split} \boldsymbol{\Sigma} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t}^{s})^{\top}, \\ \boldsymbol{\Phi} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s} + \mathbf{m}_{t-1}^{s} (\mathbf{m}_{t-1}^{s})^{\top} \\ \mathbf{C} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t-1}^{s})^{\top}. \end{split}$$

and build
$$\mathcal{Q}(\mathbf{A};\mathbf{A}') = \frac{T}{2} \mathsf{tr} \left(\mathbf{Q}^{-1} (\boldsymbol{\Sigma} - \mathbf{C} \mathbf{A}^{\top} - \mathbf{A} \mathbf{C}^{\top} + \mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}) \right) + \mathcal{L}_0(\mathbf{A}) + \mathsf{ct}_{/\mathbf{A}},$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_x imes N_x}$:

 $\mathcal{Q}(\mathbf{A};\mathbf{A}') \geq \mathcal{L}(\mathbf{A}), \qquad \text{and} \qquad \mathcal{Q}(\mathbf{A}';\mathbf{A}') = \mathcal{L}(\mathbf{A}').$

• Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $\mathcal{Q}(\mathbf{A}; \mathbf{A}')$ with respect to \mathbf{A} (\mathbf{A}' being fixed).

¹³R. H. Shumway and D. S. Stoffer. "An approach to time series smoothing and forecasting using the EM algorithm". In: *Journal of Time Series Analysis* 3.4 (1982), pp. 253–264.

State-space models as graphs	Víctor Elvira	University of Edinburgh	41/41
------------------------------	---------------	-------------------------	-------

Expression of EM steps

• Majorizing approximation (E-step): Run the Kalman filter/RTS smoother by setting the state matrix to ${\bf A}'$ and define^{13}

$$\begin{split} \boldsymbol{\Sigma} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t}^{s})^{\top}, \\ \boldsymbol{\Phi} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t-1}^{s} + \mathbf{m}_{t-1}^{s} (\mathbf{m}_{t-1}^{s})^{\top} \\ \mathbf{C} &= \frac{1}{T} \sum_{t=1}^{T} \mathbf{P}_{t}^{s} \mathbf{G}_{t-1}^{\top} + \mathbf{m}_{t}^{s} (\mathbf{m}_{t-1}^{s})^{\top}. \end{split}$$

$$\mathcal{Q}(\mathbf{A};\mathbf{A}') = \frac{T}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\boldsymbol{\Sigma} - \mathbf{C}\mathbf{A}^{\top} - \mathbf{A}\mathbf{C}^{\top} + \mathbf{A}\boldsymbol{\Phi}\mathbf{A}^{\top}) \right) + \mathcal{L}_{0}(\mathbf{A}) + \operatorname{ct}_{/\mathbf{A}},$$

such that, for every $\mathbf{A} \in \mathbb{R}^{N_x imes N_x}$:

$$\mathcal{Q}(\mathbf{A};\mathbf{A}') \geq \mathcal{L}(\mathbf{A}), \qquad \text{and} \qquad \mathcal{Q}(\mathbf{A}';\mathbf{A}') = \mathcal{L}(\mathbf{A}').$$

• Upper bound optimization (M-step): The M-step consists in searching for a minimizer of $\mathcal{Q}(\mathbf{A}; \mathbf{A}')$ with respect to \mathbf{A} (\mathbf{A}' being fixed).

¹³R. H. Shumway and D. S. Stoffer. "An approach to time series smoothing and forecasting using the EM algorithm". In: *Journal of Time Series Analysis* 3.4 (1982), pp. 253–264.

Computation of the M-step

• Convex non-smooth minimization problem

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}(\mathbf{A}; \mathbf{A}')}_{f(\mathbf{A})} = \operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\mathbf{\Sigma} - \mathbf{C}\mathbf{A}^{\top} - \mathbf{A}\mathbf{C}^{\top} + \mathbf{A}\boldsymbol{\Phi}\mathbf{A}^{\top}) \right)}_{f_1(\mathbf{A}) = \operatorname{upper bound of} - \log \left(p(\mathbf{y}_{1:T} | \mathbf{A}) \right)} + \underbrace{\gamma \| \mathbf{A} \|_1}_{f_2(\mathbf{A}) = -\log p(\mathbf{A})}$$

Proximal splitting approach: The proximity operator of $f : \mathbb{R}^{N_x \times N_x} \to \mathbb{R}$ is defined $\operatorname{prox}_f(\widetilde{\mathbf{A}}) = \operatorname{argmin}_{\mathbf{A}} \left(f(\mathbf{A}) + \frac{1}{2} \| \mathbf{A} - \widetilde{\mathbf{A}} \|_F^2 \right).$

Douglas-Rachford algorithm in GraphEM

• Set
$$\mathbf{Z}_0 \in \mathbb{R}^{N_x \times N_x}$$
 and $\theta \in (0, 2)$.

For
$$n = 1, 2, ...$$

$$\mathbf{A}_{n} = \operatorname{prox}_{\theta f_{2}}(\mathbf{Z}_{n})$$
$$\mathbf{V}_{n} = \operatorname{prox}_{\theta f_{1}}(2\mathbf{A}_{n} - \mathbf{Z}_{n})$$
$$\mathbf{Z}_{n+1} = \mathbf{Z}_{n} + \theta(\mathbf{V}_{n} - \mathbf{A}_{n})$$

✓ $\{A_n\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}(A; A') = f_1 + f_2$ ✓ Both involved proximity operators have closed form solution.

Computation of the M-step

Convex non-smooth minimization problem

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}(\mathbf{A}; \mathbf{A}')}_{f(\mathbf{A})} = \operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\boldsymbol{\Sigma} - \mathbf{C}\mathbf{A}^{\top} - \mathbf{A}\mathbf{C}^{\top} + \mathbf{A}\boldsymbol{\Phi}\mathbf{A}^{\top}) \right)}_{f_1(\mathbf{A}) = \operatorname{upper bound of} - \log \left(p(\mathbf{y}_{1:T} | \mathbf{A}) \right)} + \underbrace{\frac{\gamma \|\mathbf{A}\|_1}{f_2(\mathbf{A}) = -\log p(\mathbf{A})}}_{(\operatorname{prior})}$$

Proximal splitting approach: The proximity operator of $f : \mathbb{R}^{N_x \times N_x} \to \mathbb{R}$ is defined

$$\mathsf{prox}_f(\widetilde{\mathbf{A}}) = \mathsf{argmin}_{\mathbf{A}} \left(f(\mathbf{A}) + \frac{1}{2} \| \mathbf{A} - \widetilde{\mathbf{A}} \|_F^2 \right).$$

Douglas-Rachford algorithm in GraphEM

• Set
$$\mathbf{Z}_0 \in \mathbb{R}^{N_x \times N_x}$$
 and $\theta \in (0, 2)$.

For
$$n = 1, 2, ...$$

 $\mathbf{A}_n = \operatorname{prox}_{\theta f_2}(\mathbf{Z}_n)$
 $\mathbf{V}_n = \operatorname{prox}_{\theta f_1}(2\mathbf{A}_n - \mathbf{Z}_n)$
 $\mathbf{Z}_{n+1} = \mathbf{Z}_n + \theta(\mathbf{V}_n - \mathbf{A}_n)$

✓ $\{A_n\}_{n \in \mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}(\mathbf{A}; \mathbf{A}') = f_1 + f_2$ ✓ Both involved proximity operators have closed form solution.

Computation of the M-step

• Convex non-smooth minimization problem

$$\operatorname{argmin}_{\mathbf{A}} \underbrace{\mathcal{Q}(\mathbf{A}; \mathbf{A}')}_{f(\mathbf{A})} = \operatorname{argmin}_{\mathbf{A}} \underbrace{\frac{T}{2} \operatorname{tr} \left(\mathbf{Q}^{-1} (\boldsymbol{\Sigma} - \mathbf{C} \mathbf{A}^{\top} - \mathbf{A} \mathbf{C}^{\top} + \mathbf{A} \boldsymbol{\Phi} \mathbf{A}^{\top}) \right)}_{f_1(\mathbf{A}) = \operatorname{upper bound of} - \log \left(p(\mathbf{y}_{1:T} | \mathbf{A}) \right)} + \underbrace{\frac{\gamma \| \mathbf{A} \|_1}{f_2(\mathbf{A}) = -\log p(\mathbf{A})}}_{(\operatorname{prior})}$$

Proximal splitting approach: The proximity operator of $f : \mathbb{R}^{N_x \times N_x} \to \mathbb{R}$ is defined

$$\mathsf{prox}_f(\widetilde{\mathbf{A}}) = \mathsf{argmin}_{\mathbf{A}} \left(f(\mathbf{A}) + \frac{1}{2} \| \mathbf{A} - \widetilde{\mathbf{A}} \|_F^2 \right).$$

Douglas-Rachford algorithm in GraphEM

• Set
$$\mathbf{Z}_0 \in \mathbb{R}^{N_x \times N_x}$$
 and $\theta \in (0, 2)$.

For
$$n = 1, 2, ...$$

 $\mathbf{A}_n = \operatorname{prox}_{\theta f_2}(\mathbf{Z}_n)$
 $\mathbf{V}_n = \operatorname{prox}_{\theta f_1}(2\mathbf{A}_n - \mathbf{Z}_n)$
 $\mathbf{Z}_{n+1} = \mathbf{Z}_n + \theta(\mathbf{V}_n - \mathbf{A}_n)$

- ✓ $\{\mathbf{A}_n\}_{n\in\mathbb{N}}$ guaranteed to converge to a minimizer of $\mathcal{Q}(\mathbf{A};\mathbf{A}') = f_1 + f_2$
- $\checkmark\,$ Both involved proximity operators have closed form solution.
Generic GraphEM algorithm

generic GraphEM allows for a larger family of priors (and several):¹⁴

$$(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{Q}(\mathbf{A}; \mathbf{A}') = \sum_{m=1}^M f_m(\mathbf{A}),$$
 (2)

- $f_1(\mathbf{A})$ is still an upper bound of $-\log(p(\mathbf{y}_{1:T}|\mathbf{A}))$
- $f_M(\mathbf{A}) = \gamma \|\mathbf{A}\|_1$ (sparsity promoter)
- other losses $\{f_m(\mathbf{A})\}_{m=2}^{M-1}$ promote properties in **A** (e.g., stability)

The inference now requires a more sophisticated optimization algorithm in the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)

▶ Set
$$\mathbf{V}_0^m = \mathbf{A}' \ \forall m \in \{1, \dots, M\}$$
, and stepsizes $\lambda \in (0, \frac{1}{M})$, $\gamma \in [\lambda, \frac{1-\lambda}{M-1}]$.
▶ For $n = 1, 2, \dots$
 $\mathbf{W}_n^m = \mathbf{V}_n^m + \gamma \mathbf{V}_n^M (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{W}_n^M = \mathbf{V}_n^m - \gamma \sum_{m=1}^{M-1} \mathbf{V}_n^m$

$$\mathbf{A}_{n}^{m} = \mathbf{W}_{n}^{m} - \gamma \operatorname{prox}_{f_{m}/\gamma}(\mathbf{W}_{n}^{m}) (\forall m \in \{1, \dots, M-1\})$$
$$\mathbf{A}_{n}^{M} = \operatorname{prox}_{\gamma f_{M}}(\mathbf{W}_{n}^{M})$$
$$\mathbf{Z}^{m} = \mathbf{A}^{m} + \gamma \mathbf{A}^{M} (\forall m \in \{1, \dots, M-1\})$$

$$\mathbf{Z}_{n}^{M} = \mathbf{A}_{n}^{M} - \gamma \sum_{m=1}^{M-1} \mathbf{A}_{n}^{m}$$
$$\mathbf{V}_{n+1}^{m} = \mathbf{V}_{n}^{m} - \mathbf{W}_{n}^{m} + \mathbf{Z}_{n}^{m} (\forall m \in \{1, \dots, M\})$$

¹⁴V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.

State-space models as graphs	Víctor Elvira	University of Edinburgh	41/41
------------------------------	---------------	-------------------------	-------

Generic GraphEM algorithm

generic GraphEM allows for a larger family of priors (and several):¹⁴

$$(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{Q}(\mathbf{A}; \mathbf{A}') = \sum_{m=1}^M f_m(\mathbf{A}),$$
 (2)

- $f_1(\mathbf{A})$ is still an upper bound of $-\log(p(\mathbf{y}_{1:T}|\mathbf{A}))$
- $f_M(\mathbf{A}) = \gamma \|\mathbf{A}\|_1$ (sparsity promoter)
- other losses $\{f_m(\mathbf{A})\}_{m=2}^{M-1}$ promote properties in **A** (e.g., stability)

The inference now requires a more sophisticated optimization algorithm in the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)

▶ Set
$$\mathbf{V}_0^m = \mathbf{A}' \ \forall m \in \{1, \dots, M\}$$
, and stepsizes $\lambda \in (0, \frac{1}{M}), \ \gamma \in [\lambda, \frac{1-\lambda}{M-1}]$.
▶ For $n = 1, 2, \dots$
 $\mathbf{W}_n^m = \mathbf{V}_n^m + \gamma \mathbf{V}_n^M (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{W}_n^m = \mathbf{W}_n^m - \gamma \sum_{m=1}^{M-1} \mathbf{V}_n^m$
 $\mathbf{A}_n^m = \mathbf{W}_n^m - \gamma \operatorname{prox}_{fm} \gamma(\mathbf{W}_n^m) (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{A}_n^M = \operatorname{prox}_{\gamma f_M} (\mathbf{W}_n^M)$
 $\mathbf{Z}_n^m = \mathbf{A}_n^m + \gamma \mathbf{A}_n^M (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{Z}_n^M = \mathbf{A}_n^m - \gamma \sum_{m=1}^{M-1} \mathbf{A}_m^m$
 $\mathbf{V}_{n+1}^m = \mathbf{V}_n^m - \mathbf{W}_m^m + \mathbf{Z}_n^m (\forall m \in \{1, \dots, M\})$

¹⁴V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.

State-space models as graphs	Víctor Elvira	University of Edinburgh	41/41
------------------------------	---------------	-------------------------	-------

Generic GraphEM algorithm

generic GraphEM allows for a larger family of priors (and several):¹⁴

$$(\forall \mathbf{A} \in \mathbb{R}^{N_x \times N_x}) \quad \mathcal{Q}(\mathbf{A}; \mathbf{A}') = \sum_{m=1}^M f_m(\mathbf{A}),$$
 (2)

- $f_1(\mathbf{A})$ is still an upper bound of $-\log(p(\mathbf{y}_{1:T}|\mathbf{A}))$
- $f_M(\mathbf{A}) = \gamma \|\mathbf{A}\|_1$ (sparsity promoter)
- other losses $\{f_m(\mathbf{A})\}_{m=2}^{M-1}$ promote properties in **A** (e.g., stability)

The inference now requires a more sophisticated optimization algorithm in the M-step, the monotone+skew algorithm.

MS algorithm for a generic GraphEMs (M-step)

► Set
$$\mathbf{V}_0^m = \mathbf{A}' \ \forall m \in \{1, \dots, M\}$$
, and stepsizes $\lambda \in (0, \frac{1}{M}), \ \gamma \in [\lambda, \frac{1-\lambda}{M-1}]$.
► For $n = 1, 2, \dots$
 $\mathbf{W}_n^m = \mathbf{V}_n^m + \gamma \mathbf{V}_n^M (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{W}_n^m = \mathbf{W}_n^m - \gamma \sum_{m=1}^{M-1} \mathbf{V}_n^m$
 $\mathbf{A}_n^m = \mathbf{W}_n^m - \gamma \operatorname{prox}_{fm} \gamma(\mathbf{W}_n^m) (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{A}_n^M = \operatorname{prox}_{\gamma fM} (\mathbf{W}_n^M)$
 $\mathbf{Z}_n^m = \mathbf{A}_n^m + \gamma \mathbf{A}_n^M (\forall m \in \{1, \dots, M-1\})$
 $\mathbf{Z}_n^M = \mathbf{A}_n^M - \gamma \sum_{m=1}^{M-1} \mathbf{A}_m^m$
 $\mathbf{V}_{n+1}^m = \mathbf{V}_n^m - \mathbf{W}_n^m + \mathbf{Z}_n^m (\forall m \in \{1, \dots, M\})$

¹⁴V. Elvira and É. Chouzenoux. "Graphical Inference in Linear-Gaussian State-Space Models". In: IEEE Transactions on Signal Processing 70 (2022), pp. 4757–4771.

State-space models as graphs	Víctor Elvira	University of Edinburgh	41/41
------------------------------	---------------	-------------------------	-------

Theorem

Assume that the prior term \mathcal{L}_0 is proper, convex, lower semicontinuous. Under mild technical assumptions (qualification conditions),

- $\{\mathcal{L}(\mathbf{A}^{(i)})\}_{i\in\mathbb{N}}$ is a decreasing sequence converging to a finite limit \mathcal{L}^* .
- ► The sequence of iterates {A⁽ⁱ⁾}_{i∈ℕ} has a cluster point (i.e., one can extract a converging subsequence)
- ▶ Let \mathbf{A}^* a cluster point (i.e., the limit of a converging subsequence) of $\{\mathbf{A}^{(i)}\}_{i\in\mathbb{N}}$. Then, $\mathcal{L}(\mathbf{A}^*) = \mathcal{L}^*$ and \mathbf{A}^* is a critical point of \mathcal{L} , i.e., $\nabla \mathcal{L}_{1:T}(\mathbf{A}^*) \in \partial \mathcal{L}_0(\mathbf{A}^*)$.

Data description and numerical settings

- Four synthetic datasets with $\mathbf{H} = \mathbf{Id}$, size $N_x = N_y = 9$, and randomly generated ground truth sparse matrices \mathbf{A}^* and \mathbf{P}^* (block diagonal 3×3) with varying conditioning for $\mathbf{Q}^* = (\mathbf{P}^*)^{-1}$. We set $K = 10^3$ and $\mathbf{R} = \sigma_{\mathbf{R}}^2 \mathbf{Id}$, $\mathbf{P}_0 = \sigma_0^2 \mathbf{Id}$ with $(\sigma_{\mathbf{R}}, \sigma_0) = (10^{-1}, 10^{-4})$.
- Goal: (i) Given $\{\mathbf{y}_k\}_{k=1}^K$, and $(\mathbf{H}, \mathbf{R}, \mathbf{P}_0)$, provide estimates $(\widehat{\mathbf{A}}, \widehat{\mathbf{P}})$ of $(\mathbf{A}^*, \mathbf{P}^*)$, evaluated by RMSE and F₁ metrics, (ii) Given a new test data, compute the **the predictive distribution means** by KF/RTS using the estimated model parameters, evaluated by cNMSE and loss metrics.
- DGLASSO, is compared with:
 - Maximum likelihood EM (MLEM): DGLASSO model with $\lambda_A = \lambda_P = 0$.
 - GRAPHEM approach [Elvira et al., 2022]: MAP estimate of A, while fixing $\widehat{\mathbf{Q}} = \sigma_Q^2 \operatorname{Id}$ with finetuned σ_Q .
 - ▶ GLASSÕ approach [Friedman et al., 2008]: MAP estimate of P, fixing $\widehat{A} = 0$ and neglecting R.
 - ▶ rGLASSO approach [Benfenati et al., 2020]: MAP estimate of P, fixing $\widehat{A} = 0$.
 - Pairwise Granger Causality (PGC) / conditional Granger Causality (CGC) based on sparse vector autoregressive (VAR) models [Luengo et al., 2019].
- Manual finetuning of hyperparameters (e.g., ℓ_1 penalty weight) on a single realization (see more details in paper). Results are averaged on 50