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Machine Learning in Modern Applications

Machine learning (ML) is rapidly becoming a cornerstone in both current and futuristic applications
across various industries. It underpins the development of advanced systems and technologies.

Fundamental Concept: At its core, ML involves using optimization techniques to learn model
parameters from data, enabling the creation of predictive models that adapt and improve over time.

Bajwa (Rutgers) 3 / 35

Image credit(s): Google; Finance Brokerage; dormakaba



Sample Size and Generalization Error in Machine Learning

Key Concept: For independent and identically distributed (i.i.d.) training samples, the generalization
error in machine learning typically scales as O(1/

√
N) with sample size N .

Implication: Larger datasets enhance model accuracy and generalization.
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The Importance of Diverse Data in Machine Learning

• In many applications, datasets often come from limited regions of the underlying distribution,
leading to non-diverse datasets.

• Diverse datasets are crucial for exploring the entire distribution space, often requiring the integration
of data from various sources.

Bajwa (Rutgers) 5 / 35

Image credit(s): MIT News; May 7, 2019



Data Integration Strategies in Machine Learning

Machine Learning data integration can utilize distributed systems (with central server) or decentralized systems
(without central server), influenced by the problem structure and privacy concerns.

Applications Necessitating Distributed /
Decentralized Systems

• Multi-agent systems

• Internet-of-Things systems

• Smart grids

• Sensor networks

Privacy-Sensitive Data Sources

• Smartphone data

• Social network data

• Healthcare data
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Handling Failures in Decentralized Machine Learning Algorithms

Potential Security Risks: What happens if a device in the network, like Mark’s phone, is
compromised?

Impact of Malicious Nodes: [Su and Vaidya, 2016] have demonstrated
that even a single malicious node, employing basic disruptive strategies, can
lead to the failure of a decentralized consensus or learning algorithm. This
highlights the vulnerability of decentralized systems to targeted attacks.

Key Consideration: Robust security measures and fault tolerance mechanisms are essential in
decentralized ML to mitigate the risk of system failure due to compromised nodes.
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Consequences of Algorithmic Failure in Real Life

Critical Importance of Accurate Classification: A misclassification of street signs by automated
systems can have dire consequences, such as severe car accidents.

This emphasizes the need for robust and reliable algorithms in critical applications, where errors can
have life-threatening consequences.
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Addressing Security in Decentralized ML Systems

In light of the critical importance of algorithmic reliability, our focus shifts to addressing security
threats in decentralized machine learning systems.

Understanding Byzantine Failures

In a decentralized environment, Byzantine failures (Lamport, Shostak, and Pease, 1982) refer to nodes
that deviate arbitrarily from the agreed-upon protocol, potentially compromising the entire network.

Aim of Byzantine-Resilient Decentralized Learning Algorithms

• Efficiently using data in a decentralized manner

• Ensuring robustness against Byzantine failures within the network

Goal: To develop decentralized ML algorithms that are not only efficient in data utilization but also
resilient to the unpredictable nature of Byzantine failures.
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The Empirical Risk Minimization (ERM) Framework of Learning

The loss function (w, z) 7→ f(w, z), with w ∈ Rd and z ∼ (Ω,F ,P), defines our optimization
objective in ML—find w∗ that minimizes the expected loss (statistical risk):

w∗ ∈ argmin
w∈Rd

EP[f(w, z)].

Empirical Risk Minimization (ERM)

Use data samples Z := {zn}Nn=1 to approximate the (statistical) risk and solve:

w∗
erm ∈ argmin

w∈Rd

1

N

N∑
n=1

f(w, zn).

Objectives

• Fast algorithmic convergence (w(t,N)→ w∗
erm) to a stationary point

• Fast statistical convergence (w(t,N)→ w∗) to the Bayes optimal solution (when possible)
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The Decentralized ERM Framework of Learning

Consider a network of M nodes and a connected graph G(J , E)
• Nodes receive messages only from connected peers

• Local i.i.d. training dataset Zj := {zjn}
|Zj |
n=1 at each node

• Local loss function fj(w) := 1
|Zj |

∑|Zj |
n=1 f(w, zjn) for each node

• Original Goal: Collaboratively solve the decentralized ERM problem

min
{w1,...,wM}

1

M

M∑
j=1

fj(wj) s.t. ∀i, j, wi = wj

• Potential Byzantine failures at some nodes

• Revised Goal: Collaboratively solve the decentralized ERM problem at
non-compromised nodes

min
{w1,...,wM}

1

r

∑
j∈R

fj(wj) s.t. ∀i, j ∈ R, wi = wj
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Relationship to Prior Works

• Distributed / federated learning: [M. Li et al., 2014; Konečný et al., 2016]

• Decentralized Gradient Descent (DGD): [Nedić and Ozdaglar, 2009; Ram, Nedić, and Veeravalli, 2010; Nedić and
Olshevsky, 2015; Pu and Nedić, 2021]

• Byzantine-resilient averaging consensus: [LeBlanc et al., 2013; Vaidya, Tseng, and Liang, 2014]

• Scalar-valued models: [Su and Vaidya, 2016; Sundaram and Gharesifard, 2019]

Algorithm Nonconvex Byzantine failures Algorithmic convergence rate Statistical convergence rate

ByRDiE1 ×
√ √ √

Kuwaranancharoen et. al2 ×
√

× ×

Peng and Ling3 ×
√ √

×

MOZI4 ×
√ √

×

ICwTM5 √ √ √
×

DGD6 × ×
√

×

NEXT7 √
× × ×

Nonconvex DGD8 √
×

√
×

D-GET9 √
×

√ √

GT-SARAH10 √
×

√ √

BRIDGE (This Talk)
√ √ √ √
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The BRIDGE Framework in Decentralized ML

The DGD method [Nedić and Ozdaglar, 2009] updates the local variable wj(t) as

wj(t+ 1) =
∑

i∈Nj∪{j}

ajiwi(t)− ρ(t)∇fj(wj(t)).

Overview of the BRIDGE Framework

• Requires local datasets Zj , maximum Byzantine nodes b, step size sequence {ρ(t)}, and max
iterations tmax.

• Initialization: t← 0 and wj(0) for all non-faulty nodes

• Iterative Process:

• Regular nodes broadcast wj(t) to neighbors
• Regular nodes receive wi(t) from neighbors
• Screening of incoming values: yj(t)← screen({wi(t)}i∈Nj )
• Update step: wj(t+ 1)← yj(t)− ρ(t)∇fj(wj(t))
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Different Variants of the BRIDGE Framework

The BRIDGE-T variant employs the coordinate-wise trimmed mean for screening [D. Yin et al., 2018]. For
each iteration t and coordinate k ∈ {1, . . . , d}, it computes:

N k
j (t) := argmin

X :X⊂Nj ,|X|=b

∑
i∈X

[wi(t)]k,

N k
j (t) := argmax

X :X⊂Nj ,|X|=b

∑
i∈X

[wi(t)]k,

Ck
j (t) := Nj \

{
N k

j (t)
⋃

N k
j (t)

}
.

Filtered value computation:

[yj(t)]k =
1

|Nj | − 2b+ 1

∑
i∈Ck

j (t)∪{j}

[wi(t)]k.

The BRIDGE-M variant uses the coordinate-wise median as the filtered value:

[yj(t)]k = median
(
{[wi(t)]k}i∈Nj∪{j}

)
.
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Different Variants of the BRIDGE Framework

The BRIDGE-K variant employs the so-called Krum function for screening [Blanchard, Guerraoui, and Stainer,
2017]. It identifies i∗j (t), the node with the minimum sum of Euclidean distances to its closest neighbors,
excluding (b+ 2) extreme values:

i∗j (t) = argmin
i∈Nj

∑
h∈Nj∪{j}

h∼i

∥wh(t)−wi(t)∥, and yj(t) = wi∗j
(t).

• Notation: h ∼ i if wh(t) is one of the |Nj | − b− 2 vectors with the smallest Euclidean distance from wi(t).

• The iterate value of neighbor index i∗j (t) can be thought of as the central point, determined after removing
the most extreme values based on Euclidean distance, in the neighborhood cluster.

The BRIDGE-B variant uses the so-called Bulyan function [Mhamdi, Guerraoui, and Rouault, 2018], which
combines the Krum and coordinate-wise trimmed mean screening rules:

• Select θ = |Nj | − (2b+ 1) “Krum” vectors within the neighborhood.

• Apply trimmed-mean screening rule to the selected vectors.
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Illustrative Example: Comparing Screening Methods

Output Comparison (with b = 1 Byzantine node)

• BRIDGE-T: Average of middle values = (5.4, 4.2)

• BRIDGE-M: Median of values = (5, 5)

• BRIDGE-K: Krum selected values = (5, 6)

• BRIDGE-B: Trimmed mean of selected values = (4.5, 5.5)
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Numerical Results: Screening Methods on MNIST Dataset

• Experiment conducted on the MNIST dataset

• Network of 50 nodes following an Erdos-Renyi model with p = 0.5

• Linear classifier with squared hinge loss (convex), under i.i.d. data distribution
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Comparative Summary of Different BRIDGE Variants

Variant Screening Method Min. Neighborhood Size Avg. Computational Complexity

BRIDGE-T Coordinate-wise 2b+ 1 O(nd), n := maxj |Nj |

BRIDGE-M Coordinate-wise 1 O(nd)

BRIDGE-K Vector-based b+ 3 O(n2d)

BRIDGE-B Vector + Coordinate-wise max(4b, 3b+ 2) + 1 O(n2d)
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Assumptions: Loss Function Characteristics

• Bounded and Lipschitz Gradients: ∀w ∈ Rd, ∥∇f(w, z)∥ ≤ L a.s., and ∀w1,w2 ∈ Rd,
∥∇f(w1, z)−∇f(w2, z)∥ ≤ L′∥w1 −w2∥ a.s.

• Bounded Training Loss: There exists a constant C such that supw∈Rd,z∈Z f(w, z) ≤ C a.s.

• Strong Convexity (Convex): f(w1, z) ≥ f(w2, z) + ⟨∇f(w2, z),w1 −w2⟩+ λ
2 ∥w1 −w2∥2 a.s.

• Local Strong Convexity (Nonconvex): f(w, z) is nonconvex, a.s. twice differentiable, and there exist
positive constants λ and β such that ∀w ∈ B(w∗

s , β),∇2F (w) ⪰ λI.
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Assumption: Sufficient Network Connectivity in Decentralized Systems

Each reduced graph Gred(b) of the original network G(J , E) must include at least one source
component with a size greater than or equal to (b+ 1).
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Analyzing BRIDGE-T: Focusing on Local Updates

Expressing BRIDGE-T Updates: The BRIDGE-T update can be expressed using only values from
nonfaulty nodes. For [g(t)]j = [∇fj(wj(t))]k, j ∈ R, the update is:

Ω(t+ 1) = Y(t)Ω(t)− ρ(t)g(t).

Definitions and Cases: Define N r
j := R∩Nj , N b

j := Nj \ N r
j , b

∗ := |B|, and bkj as the count of

Byzantine nodes in Ckj . Consider qkj := b− b∗ + bkj with two scenarios: (i) qkj = 0 and (ii) qkj > 0.

Case (i) – Exact Filtering: If b− b∗ = 0 and bkj = 0, Y can be described as:

[Y]ji =


1

|Nj |−2b+1 , i ∈ {j} ∪ Ckj ,

0, otherwise.
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Further Analysis of BRIDGE-T: Focusing on Local Updates

Case (ii) – Over and Miss Filtering: This involves either over filtering (b− b∗ > 0) and/or miss

filtering (bkj > 0). Given N k

j ∩N r
j ̸= ∅ and N

k
j ∩N r

j ̸= ∅, there exist m′
j ,m

′′
j such that for all i ∈ Ckj ,

[wi]k = θi[wm′
j
]k + (1− θi)[wm′′

j
]k with θi ∈ (0, 1).

Matrix Y Elements:

[Y]ji =



1
2(|Nj |−2b+1)

, i ∈ N r
j ∩ Ck

j ,

1
|Nj |−2b+1

, i = j,

∑
i′∈Nb

j ∩Ck
j

θi′
qkj (|Nj |−2b+1)

+
∑

i′∈Nr
j ∩Ck

j

θi′
qkj (|Nj |−2b+1)

, i ∈ N k
j ∩N r

j ,

∑
i′∈Nb

j ∩Ck
j

1−θi′
qkj (|Nj |−2b+1)

+
∑

i′∈Nr
j ∩Ck

j

1−θi′
qkj (|Nj |−2b+1)

, i ∈ N k
j ∩N r

j ,

0, otherwise.
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Main Result: Achieving Consensus in the Network

Consensus Vector Definition: A “consensus vector” v(t) ∈ Rd is defined as one whose k-th entry
[v(t)]k is given by any element from v̄(t) = lim

T→∞
Ω(t+ T + 1).

Theorem (Consensus; Fang et al., 2022)

Given a step-size sequence ρ(t) satisfying ρ(t+ 1) ≤ ρ(t), ρ(t)→ 0,
∑∞

t=0 ρ(t) =∞, and∑∞
t=0 ρ

2(t) <∞, with ρ(t) = 1
λ(t0+t) and t0 ≥ L

λ , under bounded and Lipschitz gradients and

sufficient network connectivity conditions, the gap between wj(t) for all j ∈ R and v(t) diminishes
over time:

lim
t→∞

max
j∈R
∥wj(t)− v(t)∥ ≤ lim

t→∞

[
√
drCwµ

t
ν +
√
drL

t∑
τ=0

ρ(τ)µ
t−τ+1

ν

]
= 0.
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Conditions and Rate of Consensus Convergence

Convergence Conditions

• Bounded Initialization: Ensure |[wj(0)]k| ≤ Cw for the initial iterates.

• Independent of the assumptions of strong convexity or local strong convexity.

Rate of Convergence

• Dominated by
√
drL

t∑
τ=0

ρ(τ)µ
t−τ+1

ν , particularly by the subterm ρ(τ).

• Attains a rate of O(
√
dρ(t)) = O(

√
d/t), assuming ρ(t) is chosen as O(1/t).
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Main Result: Statistical Convergence for Strongly Convex Loss Functions

Theorem (Strongly Convex Loss Functions; Fang et al., 2022)

Under the assumptions of bounded and Lipschitz gradients, bounded training loss, strong convexity,
sufficient network connectivity, and i.i.d. training data, for any ϵ > ϵ′′

λ > 0, and for all j ∈ R, with
probability at least 1− δ and for sufficiently large t:

∥wj(t+ 1)−w∗∥ ≤ ϵ, (1)

where δ and ϵ′′ are defined as:

δ = 2 exp

(
− 4rNϵ′′

2

16L2rd∥αm∥2 + ϵ′′2
+ r log

(
12L
√
rd

ϵ′′

)
+ d log

(
12L′β

√
d

ϵ′′

))
,

ϵ′′= O

√d∥αm∥2 log 2
δ

N

.
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Main Result: Statistical Convergence for Nonconvex Loss Functions

Lemma (Behavior of Iterates; Fang et al., 2022)

Under the assumptions of bounded and Lipschitz gradients, bounded training loss, local strong convexity, and sufficient
network connectivity, with i.i.d. training data, and initialization vector v(0) ∈ B(w∗, β0) for an appropriate β0 < β, the
iterates wj(t) will not escape from B(w∗, β) for all j ∈ R, t ∈ R.

Theorem (Locally Strongly Convex Loss Functions; Fang et al., 2022)

Given the aforementioned assumptions and i.i.d. training data, with appropriate initialization, for any ϵ > ϵ′′

λ
> 0 and

sufficiently large t, all j ∈ R will satisfy with probability at least 1− δ:

∥wj(t+ 1)−w∗∥ ≤ ϵ, (2)

where δ and ϵ′′ are defined as:

δ = 2 exp
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+ r log
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Algorithmic and Statistical Learning Rates Comparison

Method Centralized GD DGD BRIDGE-T

Convexity Strongly Convex Convex Locally Strongly Convex

Step Size Constant Diminishing Diminishing

Algorithmic Rate O(ct) O
(

1√
t

)
O
(
ln t
t

)
Statistical Rate O

(√
1
N

)
O
(√

1
MN

)
O
(√

∥αm∥2

N

)

Note: The vector αm ∈ Rr is problem-dependent, with [αm]j ≥ 0 and
∑r

j=1[αm]j = 1.
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Convex Case with MNIST Dataset
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Convex Case with MNIST Dataset
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Convex Case with CIFAR10 Dataset
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Nonconvex Case with MNIST Dataset

• Experiment conducted on the MNIST dataset with a 50-node network (p = 0.5).

• Utilized a convolutional neural network (nonconvex) with i.i.d. data distribution.
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Convex Case with MNIST Dataset: Non-I.I.D. Data Distribution

Experiments conducted on the MNIST dataset, within a 50-node network (connectivity p = 0.5; BRDSO [Peng,
W. Li, and Ling, 2021]).

Performance under Extreme Non-I.I.D. Scenario Performance under Moderate Non-I.I.D. Scenario
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Conclusion and Future Work

Summary of Work

• Developed and analyzed the BRIDGE framework for decentralized machine learning, emphasizing
resilience to Byzantine failures.

• Demonstrated efficacy through numerical results with various datasets and network conditions.

Future Work

• Explore faster convergence rates in strongly convex settings using accelerated methods.

• Theoretical analysis of alternative screening methods beyond the trimmed-mean approach.

• Analyze second-order convergence guarantees for general nonconvex loss functions.

• Investigate the impact of various factors like asynchronous communication, non-i.i.d. data
distribution, non-smooth objective functions, and diverse network topologies.
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