

Tabular Models for Chaotic Time Series Prediction

Chiara Roverato

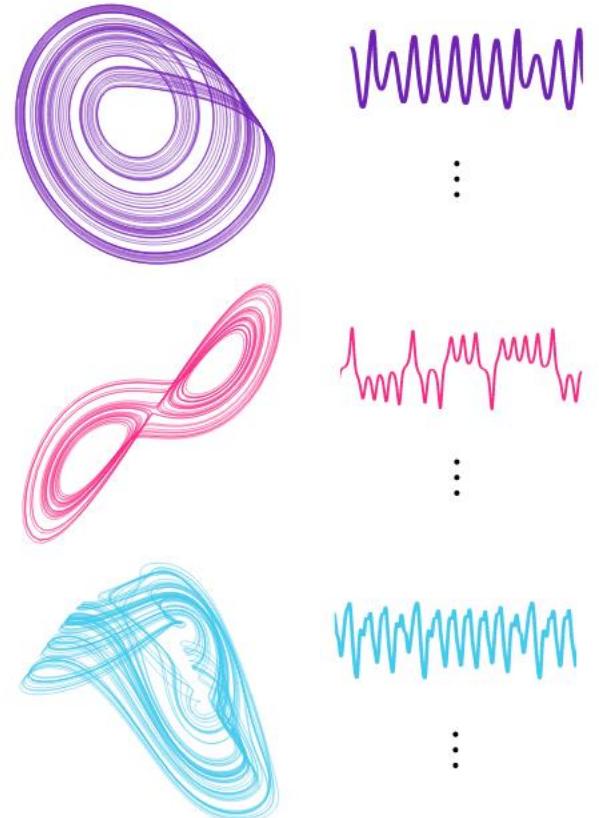
McGill – Electrical and Computer Engineering

Supervisors: Mark Coates & Pablo Piantanida

Chaotic Time Series

- from a **deterministic** system,
- appears **random**,
- **Never repeats**,
- **highly sensitive** to initial conditions,
- but still has **underlying structure**.

135 chaotic systems 20 different initial conditions



Dysts dataset [1]

[1] William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling. NeurIPS, 34, 2021

Problem Statement

Objective: Evaluate the zero-shot capabilities of *time series* foundational models

Motivation: No need to retrain for specialized tasks

Dataset: Chaotic Time Series

- Independent test set
- Invariant statistical and geometric properties (fractal dimensions, Lyapunov exponents, power spectra)
- Out-of-distribution generalization ability

Which model to choose ?

- Current state of the art methods include Chronos [2], Panda [3], ChaosNexus [4] : Time series transformers
- According to Gilpin [5]: Large, domain-agnostic time series models forecast diverse chaotic systems better

→ We choose TabPFN for its strong zero-shot and generalization capabilities

[2] Fatir Ansari et al, . Chronos: Learning the Language of Time Series, 2024.

[3] Jeffrey Lai, Anthony Bao, and William Gilpin. Panda: A pretrained forecast model for universal representation of chaotic dynamics, 2025.

[4] Chang Liu, Bohao Zhao, Jingtao Ding, and Yong Li. ChaosNexus: A Foundation Model for Universal Chaotic System Forecasting with Multi-scale Representations, 2025.

[5] William Gilpin. Model scale versus domain knowledge in statistical forecasting of chaotic systems, 2023.

TabPFN for Chaotic Time Series

Time	Target Dim 0	Target Dim 1	Target Dim 2
0	$t_{0,0}$	$t_{0,1}$	$t_{0,2}$
1	$t_{1,0}$	$t_{1,1}$	$t_{1,2}$
...
T	$t_{T,0}$	$t_{T,1}$	$t_{T,2}$

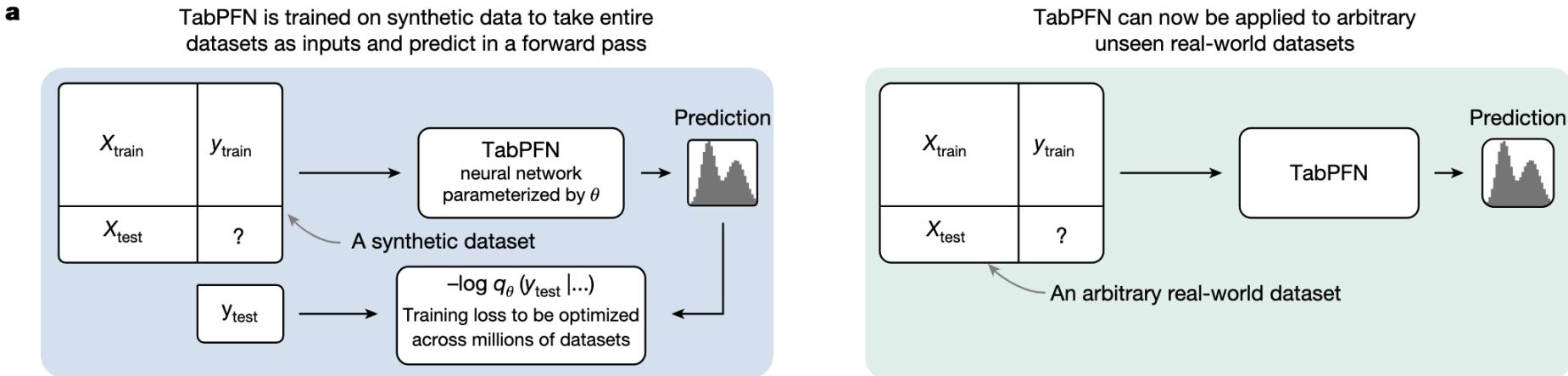
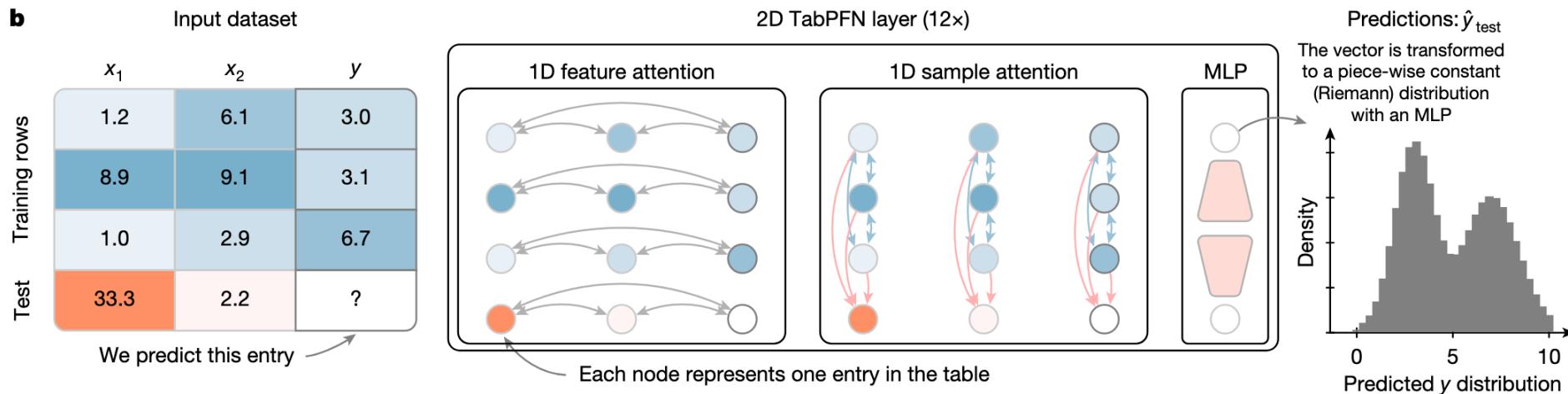
Time	Dim	Target
0	Dim 0	$t_{0,0}$
0	Dim 1	$t_{0,1}$
0	Dim 2	$t_{0,2}$
1	Dim 0	$t_{1,0}$
1	Dim 1	$t_{1,1}$
1	Dim 2	$t_{1,2}$
...
T	Dim 0	$t_{T,0}$
T	Dim 1	$t_{T,1}$
T	Dim 2	$t_{T,2}$

Dataset

X_{train}

y_{train}

TabPFN [6,7]



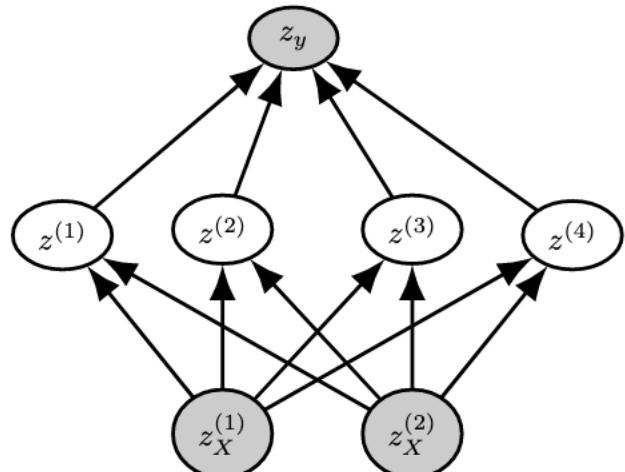
[6] N. Hollmann, S. Müller, K. Eggensperger, and F. Hutter. Tabpfn: A transformer that solves small tabular classification problems in a second. In The Eleventh International Conference on Learning Representations, 2023.

[7] N. Hollmann, S. Müller, L. Purucker, A. Krishnakumar, M. Körfer, S. B. Hoo, R. T. Schirrmeister, and F. Hutter. Accurate predictions on small data with a tabular foundation model. Nature, 637 (8045):319–326, 2025.

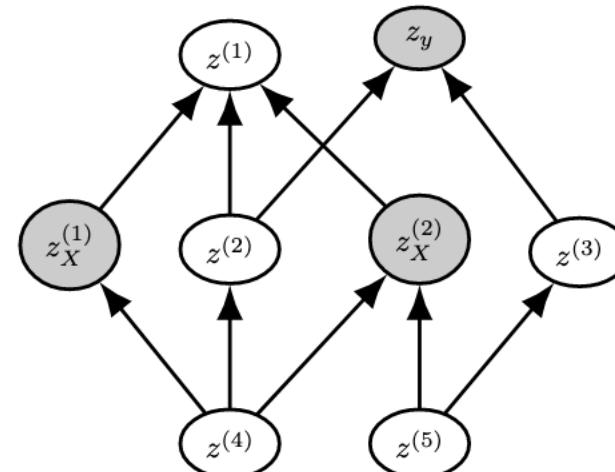
PFN: Prior-Data Fitted Network [8]

With $\phi \in \Phi$ a hypothesis on a relationship between input x and its label y ,
The predictive distribution of label y for input x is:

$$p(y|x, D) \propto \int_{\Phi} p(y|x, \phi) p(D|\phi) p(\phi) d\phi.$$



(a) A BNN



(b) A SCM

[8] S. Müller, N. Hollmann, S. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian inference. In Proceedings of the International Conference on Learning Representations (ICLR 22), 2022.

PFN: Prior-Data Fitted Network [8]

How to train it ?

1. Sample hypothesis $\phi \sim p(\phi)$,
2. Sample datasets $D \sim p(D | \phi)$ and $p(D) = \mathbb{E}_{\phi \sim p(\phi)} p(D | \phi)$
3. Minimize cross-entropy loss

$$L_{PFN} = \mathbb{E} [-\log q_{\theta}(y_{test} | x_{test}, D_{train})].$$

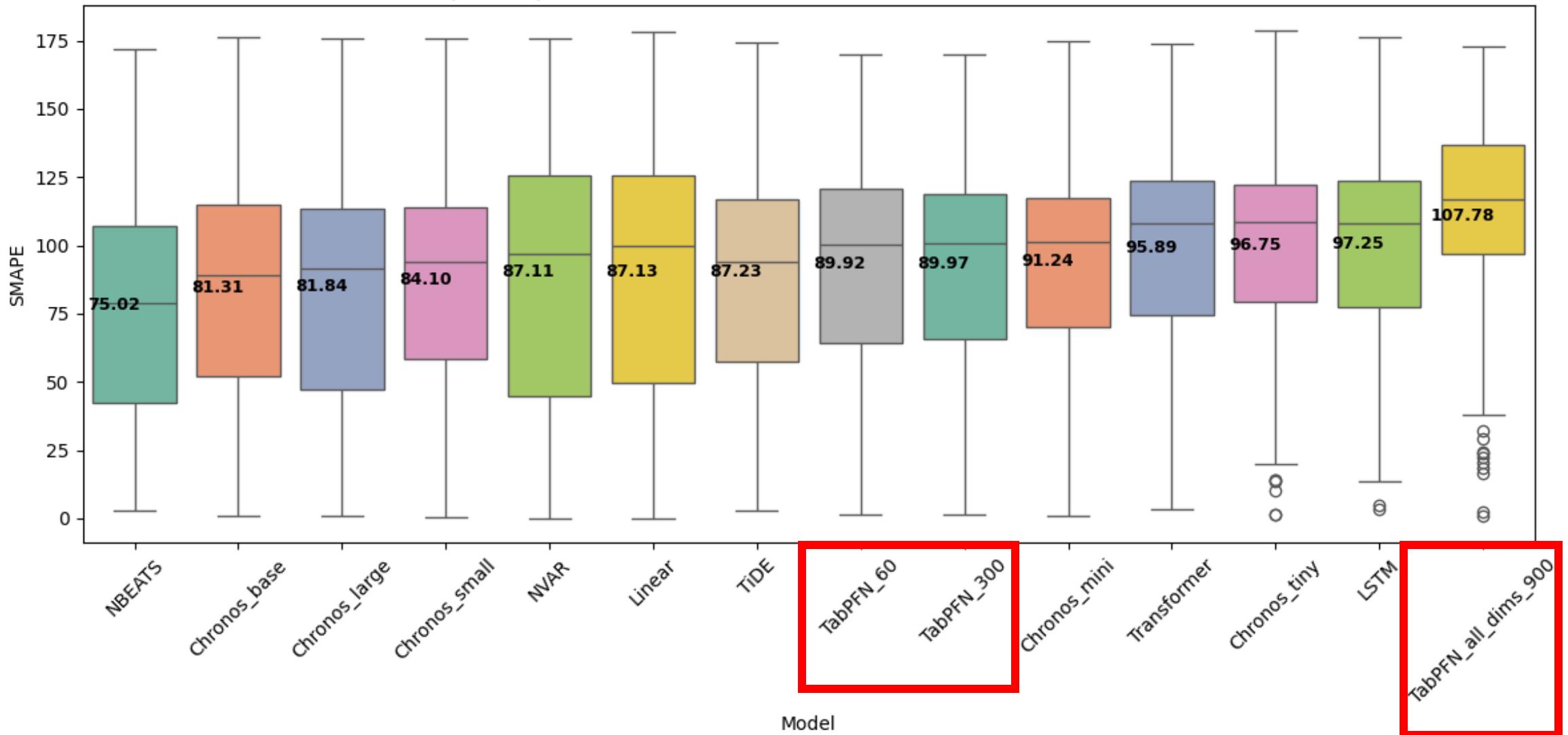
What about inference ?

One single forward pass $q_{\theta}(y_{test} | x_{test}, D_{real})$

[8] S. Müller, N. Hollmann, S. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian inference. In Proceedings of the International Conference on Learning Representations (ICLR 22), 2022.

Results - TabPFN

Smape Comparison: TabPFN vs. other models with filtered outliers <1000



Disappointing but ...

We can add some features !

Disappointing but ...

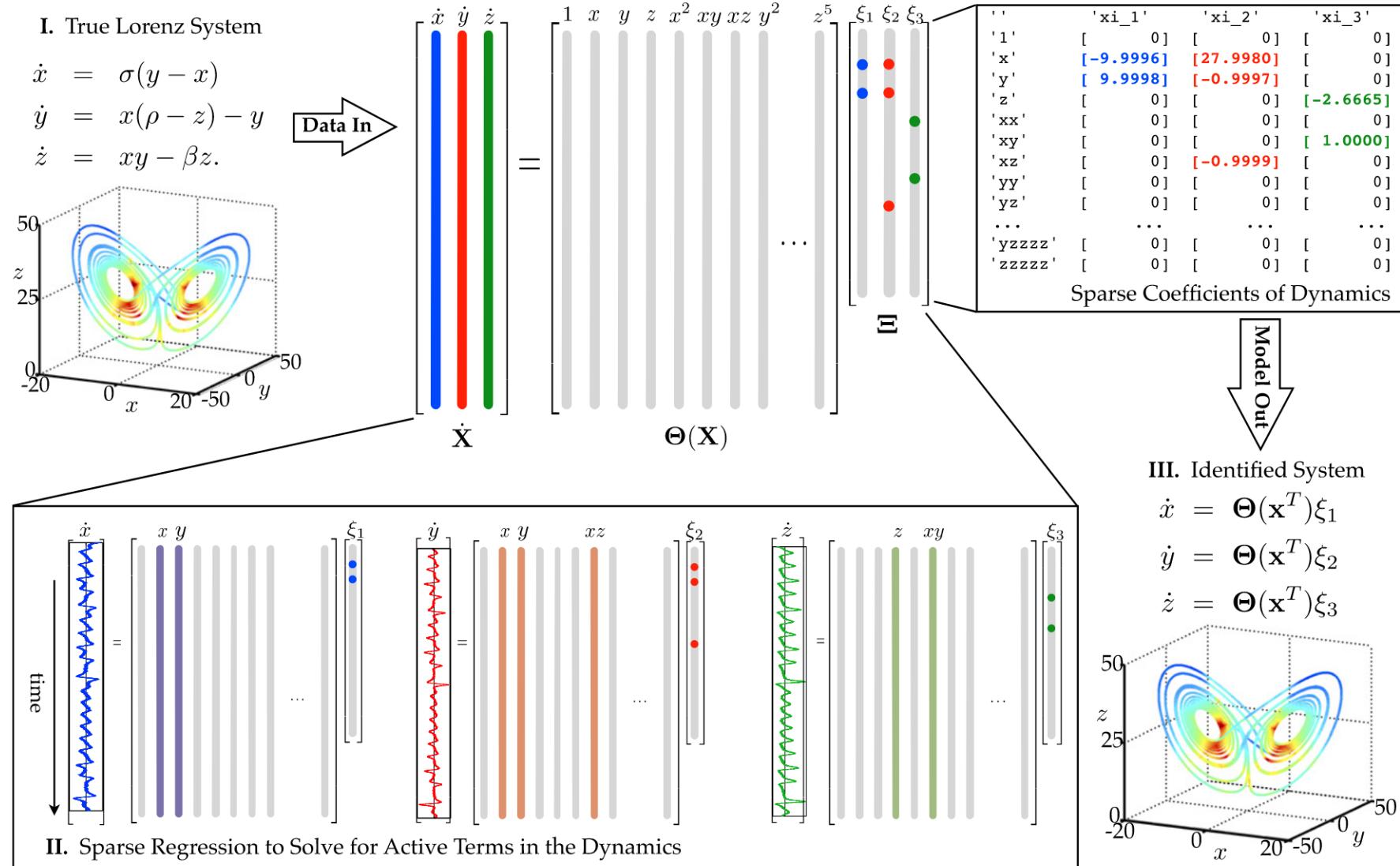
We can add some features !

Or like Florence said:

~~Cross entropy~~ + ML Researcher = ❤

Nice
features

Sparse Identification of Nonlinear Dynamics [9]



[9] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A., 113(15): 3932–3937, 2016.

Great features but ...

TabPFN requires the same features for X_{train} and X_{test}

Time	Dim	\dot{X}	X^2	Cos(X)	Target
0	Dim 0	$\dot{x}_{0,0}$	$x_{0,0}^2$	$\cos x_{0,0}$	$t_{0,0}$
0	Dim 1	$\dot{x}_{0,1}$	$x_{0,1}^2$	$\cos x_{0,1}$	$t_{0,1}$
0	Dim 2	$\dot{x}_{0,2}$	$x_{0,2}^2$	$\cos x_{0,2}$	$t_{0,2}$
1	Dim 0	$\dot{x}_{1,0}$	$x_{1,0}^2$	$\cos x_{1,0}$	$t_{1,0}$
1	Dim 1	$\dot{x}_{1,1}$	$x_{1,1}^2$	$\cos x_{1,1}$	$t_{1,1}$
1	Dim 2	$\dot{x}_{1,2}$	$x_{1,2}^2$	$\cos x_{1,2}$	$t_{1,2}$
...
T	Dim 0	$\dot{x}_{T,0}$	$x_{T,0}^2$	$\cos x_{T,0}$	$t_{T,0}$
T	Dim 1	$\dot{x}_{T,1}$	$x_{T,1}^2$	$\cos x_{T,1}$	$t_{T,1}$
T	Dim 2	$\dot{x}_{T,2}$	$x_{T,2}^2$	$\cos x_{T,2}$	$t_{T,2}$

TabPFN for Chaotic Time Series

Time	Dim	\dot{X}	X^2	$\text{Cos}(X)$	Target
0	Dim 0	$\dot{x}_{0,0}$	$x_{0,0}^2$	$\cos x_{0,0}$	$t_{0,0}$
0	Dim 1	$\dot{x}_{0,1}$	$x_{0,1}^2$	$\cos x_{0,1}$	$t_{0,1}$
0	Dim 2	$\dot{x}_{0,2}$	$x_{0,2}^2$	$\cos x_{0,2}$	$t_{0,2}$
1	Dim 0	$\dot{x}_{1,0}$	$x_{1,0}^2$	$\cos x_{1,0}$	$t_{1,0}$
1	Dim 1	$\dot{x}_{1,1}$	$x_{1,1}^2$	$\cos x_{1,1}$	$t_{1,1}$
1	Dim 2	$\dot{x}_{1,2}$	$x_{1,2}^2$	$\cos x_{1,2}$	$t_{1,2}$
...
T	Dim 0	$\dot{x}_{T,0}$	$x_{T,0}^2$	$\cos x_{T,0}$	$t_{T,0}$
T	Dim 1	$\dot{x}_{T,1}$	$x_{T,1}^2$	$\cos x_{T,1}$	$t_{T,1}$
T	Dim 2	$\dot{x}_{T,2}$	$x_{T,2}^2$	$\cos x_{T,2}$	$t_{T,2}$

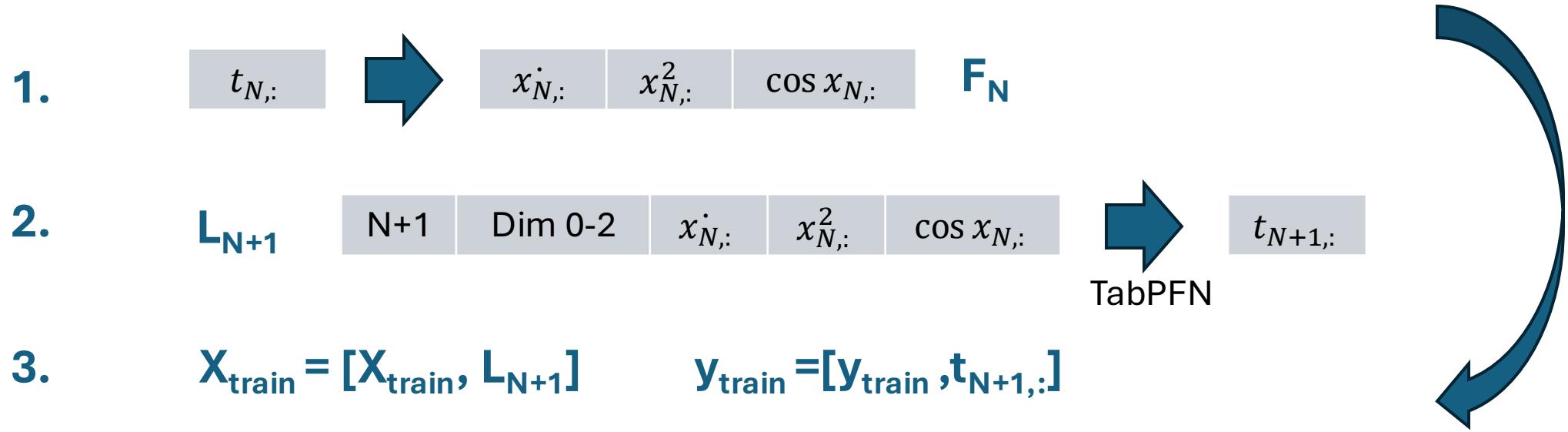
Shift
Up

Time	Dim	\dot{X}	X^2	$\text{Cos}(X)$	Target
1	Dim 0	$\dot{x}_{0,0}$	$x_{0,0}^2$	$\cos x_{0,0}$	$t_{1,0}$
1	Dim 1	$\dot{x}_{0,1}$	$x_{0,1}^2$	$\cos x_{0,1}$	$t_{1,1}$
1	Dim 2	$\dot{x}_{0,2}$	$x_{0,2}^2$	$\cos x_{0,2}$	$t_{1,2}$
2	Dim 0	$\dot{x}_{1,0}$	$x_{1,0}^2$	$\cos x_{1,0}$	$t_{2,0}$
2	Dim 1	$\dot{x}_{1,1}$	$x_{1,1}^2$	$\cos x_{1,1}$	$t_{2,1}$
2	Dim 2	$\dot{x}_{1,2}$	$x_{1,2}^2$	$\cos x_{1,2}$	$t_{2,2}$
...
T	Dim 0	$\dot{x}_{T-1,0}$	$x_{T-1,0}^2$	$\cos x_{T-1,0}$	$t_{T,0}$
T	Dim 1	$\dot{x}_{T-1,1}$	$x_{T-1,1}^2$	$\cos x_{T-1,1}$	$t_{T,1}$
T	Dim 2	$\dot{x}_{T-1,2}$	$x_{T-1,2}^2$	$\cos x_{T-1,2}$	$t_{T,2}$

$\mathbf{X}_{\text{train}}$

$\mathbf{y}_{\text{train}}$

TabPFN for Chaotic Time Series



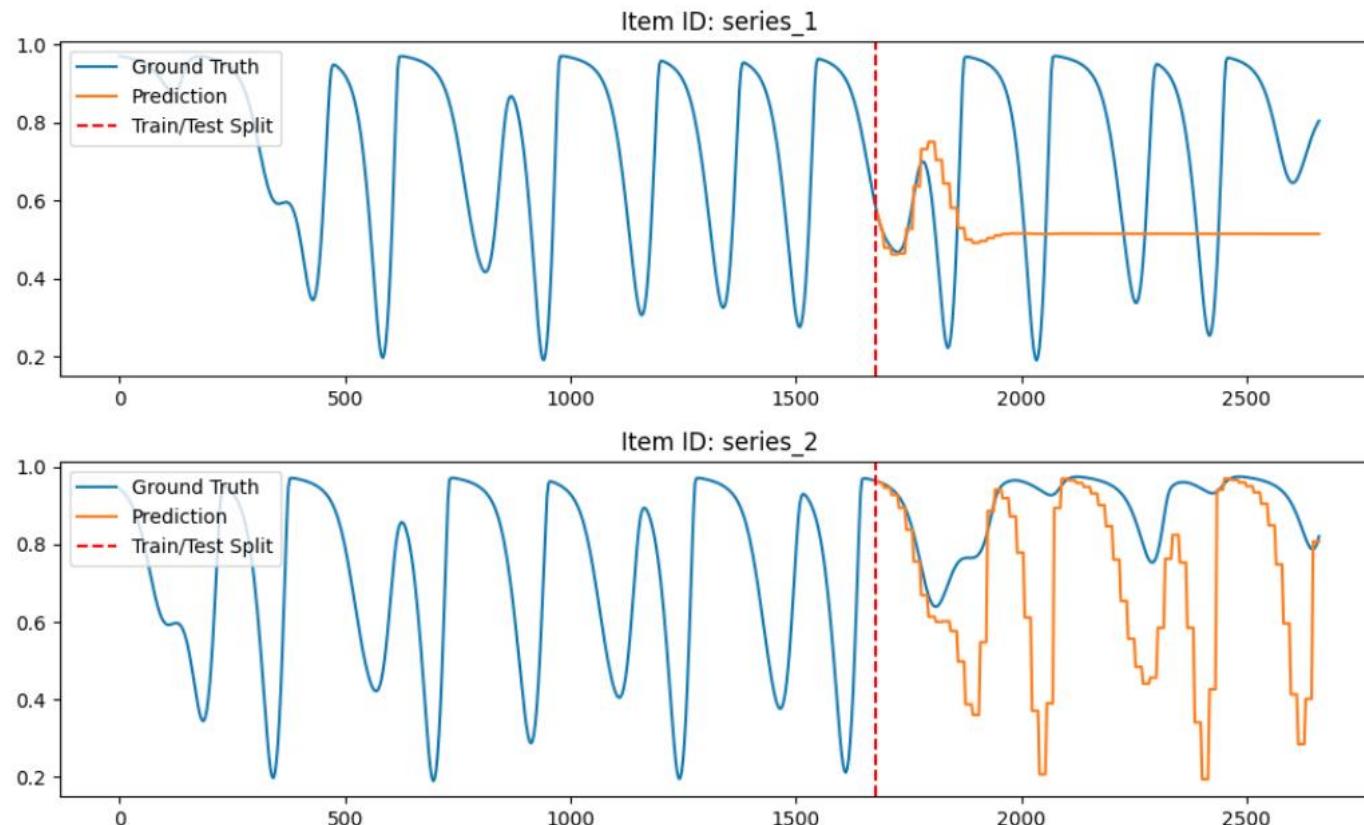
F_N : Features at time N

L_N : Line in X_{train} at time N

t_N : target at time N

Results

- fails to predict: we observe **context parrotting**, flat lines
- fails to model the **coupling** between dimensions: **line independance**



Discussion

- **Takens' theorem:** states that time-delayed copies of a low-dimensional measurement of a dynamical system result in a multivariate time series that preserves key topological features of the true attractor.
- **Koopman theory**, stating that nonlinear dynamics can be linearized by lifting them to a suitable high-dimensional space of observables.
- Introduce **channel attention?** (Panda or ChaosNaxus paper)
- Introduce multi-dimensional regression tabular model?