ACCO:
Accumulate While You Communicate

for Communication-Overlapped Sharded
LLM Training

S/gMila S S
2
) : . - e
Adel Dr. Louis Dr. Pierre Dr. Louis Pr. Eugene
Nabli Fournier Erbacher Serrano Belilovsky

Fdouard Oyallon

@ edouard.ovallon@cnrs.fr

mailto:edouard.oyallon@cnrs.fr

Communication Bottlenecks
in Modern Clusters

@Specialized Hardware for Inter--

3

and Intra-Node Communication.

P100 - P100 F100- - F100|

P100/ P1D0 F100 P100

2016

DGX-1 (P100)

140GB/s Bisection BW
40GB /s AllReduce BW

Nl—(l)i:
vioo
viso |
V100 |
m_oo{j A
vioo

V100!

2018
DGX-2 (V100)

V100

=
9

3

i
'"H H.
a
. .
= -
k3 z
g 2

V100

Vioo

| N100

V100

V100

V100

V100

2.4TB/s Bisection BW
75GB/s AllIReduce BW

2020

DGX A100

2.4TB/s Bisection BW
150GB/s AlIReduce BW

H1DO\

5 NVLinks ————+ ' 20 NVLink
Hioo |\ B Network
4 NVLinkKs ———+r% \ Ports
P A0 |\ P 16 NVLink
Lo " S Network
Hioo || E Parts
SNVYLinks ————— |\
Wioo | P4 16 NVLink
—] Network
H100 \5 g Ports
— 20 NVLink
s Network
- ~ Ports
H100
2022
DGX H100

3.6TB/s Bisection BW
450GB/s AllReduce BW

o

Overlapping Communication and

Computation: Why It Matters

e Despite specialized hardware, inter- and intra-node

communication remains a challenge.

e« Experiment: JeanZay (the national French AT GPUs-
cluster) ; 8x A100 per node; 100 Gb/s inter-node, 300 Gb/s
NVLink intra-node; using All-Reduce (no optimizer

sharding) on a Llama-7B.

8 16 24 32

V comp./comm.

--e-- V computation
All-Reduce V

64 128
workers

Past one worker,
communication dominates.

o Sharding Strategies 8

e To reduce memory footprint, optimizer sharding (FSDP /ZeRO) is
common— but it increases communication volume.

e With AdamW, optimizer states (first/second moments in float32,
etc.) add 6 X the parameter memory.

e Approach: shard states across workers and gather /scatter on

demand. Feasible because optimizer updates are pointwise.
Node-1 Node-2 Node-n

" Optimizer

| Parameter
Baseline

0 Gradient

Optimizer
Sharding

@ No Algorithmic Changes: Implementatioﬁ;"°-6.._
Level Comms/Compute Overlap

e Let a network perform a forward pass via F1i, Fo, a backward pass B 1, Bs
and an optimizer step via Opt.

Time
oA [00|[F2(02)][B=0=)|[B1 0| [0pt (01, 02 [F (61| [F (0
e
tream L1 (01)][Fo(02)|[B2 (02)|| B1 (0] 1 (01)][F2 (02)|| B2 (02)]
CUDA '
stream 2 ‘Dpt (02)‘ ‘Dpt (01)‘

e Overlap via hooks. Using backward hooks, a standard technique is
to launch communication for a layer’s gradients immediately after that
layer’s backward computation completes, overlapping communication

with remaining compute.

o Local SGD T

e In local SGD, workers run forward/backward locally and

periodically all-reduce parameters (overlapping

communication with compute at the implementation level)
Time

S;izri [F|B]F]B]F]B]com®:,0.) £| B] #] 5] #] 5] com

B
CUDA \Comm(91)\ ‘COmm(Qz)‘

stream 2

e A strategy is “streaming DiLoCo”: periodically
synchronize different subsets of parameters, to reduce local

bandwidth, leading to stale updates.

@ Local SGD is incompatible with Sharding .

e Local SGD requires full state per worker: Each

Y,

worker must hold (or rematerialize) the entire model’s
parameters, gradients, and optimizer state between global
SYNCS.

e Shardingé&zlocal SGD: Partitioning these states across
replicas prevents true local SGD steps - unless workers
have exceptionally fast interconnects.

e Practicality varies by cluster: This can work on very
large, well-connected clusters (e.g., Google TPU pods) but
is impractical on typical setups like a single node with 8
well-connected GPUs.

Toward a principled overlapping of Comm.
and Comp.:

ACCO

.10

cr From Sequential to
Overlapped Comm. & Comp.

CUDA stream

of worker 1 _
CUDA stream I I I

of worker 2 INNEN S S

> Tlme

Worker 1 "

Worker 2 strea

o

Formal Setting -l

e Objective. Minimize [: R? — R with access only to an

unbiased stochastic gradient oracle:

L [VE(0,8)] = Vf(0)

e Workers & heterogeneity. We have N workers which

process V; samples in parallel:

VE;(6,& ZVF (60,&4) with €8 = (€1,...,€4) ~ 2

e Fac]

n worker has two concurrent blocking streams with

read

/write access to both memory buffers § and 6.

e This implies that we will study updates of the type:

P+ = By (01, (M)
H(t+1) — FQ(Q(t)’é(t))

@ Baseline 1:
All-Reduce GD

e« Compute local gradients on each worker; all-

reduce to average them: apply the Optimizer step:

Fi(0,¢) = szwgk

(ﬂ):: §7}7«:(ﬁ) g(t))

t+1) — gpt | 6@ Ni (t)
v P (ZZ N

The algorithm uses a synchronous all-reduce (no overlap) with good

convergence.

12

@ Baseline 2: =S
DPU

e« Delayer Parameter Updates (1-step): two weight buffers—
compute on t—1, write to t, then swap; overlap with one-step staleness.

gD = VE[ID] 1)

9(t+1) — 91

plt+1) _ Opt (6,(75) Z N (t))
Z] 1N

/!\ However, it degrades convergence.

@ Baseline 3: il
WP

e Weight Prediction (WP): two buffers; one predicts a
subset of parameters one step ahead.

g§t—|—1) _ VFZ- g(t))

N
0t =opt [01, g’
’ 71:1 Zz Nigz |

/!\ However, it degrades convergence.

@ Toward ACCO

e Idea. ACCO starts from a decoupled formulation and shows

that updates 6,60 can be decoupled:

inf £(6) = inf > (f(6) + /()

0=6
e Dynamic. Straightforward derivations yield a simple update
rule in the Gradient-Descent setting:

pt+1) — g(t) _ g(vf (Q(t)> + VT (é(t))) ’

e 0] 5(6).
e Consistency. If 99 = 90 ACCO reduces to standard GD:
o) _ G(t)

15

“ ACCO implementation

glt+1) _ g(t) _ g(v f (9(?5)) LV (g@))) |
g+l — g _ 77 (9’@)) |

e We can rewrite ACCO in our setting as:

9" = VE(0,60), = VE(0*),E0).
oy @ .
= Opt (@(t)7 Zi\;l Z:Z]V'Z]’\fj gz(t))) H(t—H) = Opt (9(t)7 Zi\il QZ]\;LNJ'(z(

e Observe the effective parallelisation:

-

Zr::::r; Vo Vo Vi Vi Vs Vo Vs V3
— — —
comm./opt.
streamp 01 01 0 02 03 03 04
L J J J J

®Convergence for GD and SGD:’

e The proof relies on introducing the Lyapunov function:

V(0,0) = f(0) — f(0°) + nL(f(0) — £(6)) + L]0 — 0||> > 0

1
e Theorem: If fis L-smooth, and if 0 <7 < —,1" > 0, then:

2L
1 T—1 , N ,] ~) -
- ; (V@) + IV F(B)]?) < T (£(80) + F(Bo) — 2£(6") + LIi6o — 0%
olt+1) — gt) _ g(gt + Gy)

are conditionally independent with variance o2 and if

Wge | 0D] = VF(OW),E[g: | V] = VF(OD),

then:

7 3 E[IV50)1 19001 < 17

77T((0p) — f(H*))+802L77.

Numerical analysis of

ACCO

18

@ Caution: Local SGD Can Bite™

K: memory multiplier of the optimizer
N: numbers of workers

W: numbers of parameters

We must communicate state to perform optimizer steps — this undermines
the gains from sharing settings.

Overlap Hetero. No outer | Convergence Memory per replicas
Method comm/comp | hardware | loop Rates (K, N, ¥)=(12, 64, 7.5B)
DDP [31] X X v v (24+2+K)¥ = 120 GB
ZeRO-1 [55] X X v v (24+2+%)¥ =31GB
SlowMo [75] ~ X X ~ (24+242x2+K)¥ = 150 GB
DiLoCo [14] / X X ? (24+2+2x2+K)¥ = 150 GB
CO2 [69] v/ X X v (242+4x2+K)¥ = 180 GB
DPU [60] v/ X v/ X (24+2+2+ %)\Il 46 GB
WP [8] v/ X v/ X (24+2+2+%)¥ =46 GB
ACCO (Ours) v/ v/ / v/ (2+2+2+£)¥ =46 GB

@ Does it work? Yes! -

e TinyStories + 36M-parameter GPT-Neo-based
transtormer with 32 workers on 5B tokens:

* Method
8 —u— ACCO
— DDP

DPU
DPU-warmup 40
DPU-warmup 500

Training loss

0 10000 20000 30000 40000
minibatch

& Method
8 —8— ACCO
% —— DDP
0]
2 6 —— DPU-warmup 500
en
5
5
S 4
-
2
0 20000 40000 60000 80000
minibatch
* Method
8 —u— ACCO
7 — DDP
s}
9 — WP
b0 6
$=
5
S 4
F
2
0 10000 20000 30000 40000

minibatch

©

Timing?

10 | Method
. —u— ACCO
3 3 —— DDP
en
g
=
.é 6
—~

4

0.0 0.5 1.0 1.5 2.0
minibatch le6

Training loss

0

1000

2000 3000
Time (s)

4000

.21

5000

cors 2

Validation loss

Fine tuning

e On the Alpaca dataset, for a GPT-Neo 2.7B models, retrained on
Piles: (mini-batches have heterogeneous sizes: more sync times for
DDPs)

b 4
\ Method

1.20

1.10

Method
0 200 | 400 600 . —x— ACCO
o
8
=
S 1.2 \
=
> \
X
1.1 *%ye3e XX —
0 2000 4000 6000

Time (s)

o

Robustness to straggler
workers:

e TinyStories with 1 worker x4 slower:

Method
8 —e— ACCO
S —— DDP
oo 6
k=
k=
= 4
—
x\\
2 S o e
0 500 1000 1500

Time (s)

.24

Conclusion

e Overlapping can be neatly done by using a novel
dynamic.

e Looking for efficient pipelining for LLMs? Check PETRA!
(spotlight at ICLR2025)

e More papers on distributed optimization:
https://edouardoyallon.github.io/

Thank youl!

https://edouardoyallon.github.io/

