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THE SCALE-FREE PROPERTY 10

Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have ࢭk10  =ࢮ.

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k ࢭݍkࢮ. 

(d) A scale-free network with ਠ=2.1 and ࢭkࢮ= 
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be N ݍ 
1012 nodes; the size of the social network is the Earth’s population, about N 
-These numbers are huge, but finite. Other networks pale in com .109 × �7ݍ
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It  is instructive to perform the calculation first for the exponential dis-
tribution 

For a  network with minimum degree kmin, the normalization  condition                    

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N 
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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Online Social Networks
Source: https://www.facebook.com/zuck

Collaboration networks
(Co-authorship)

Molecular graphs Gene co-expression network
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.

Goh et al. PNAS ! May 22, 2007 ! vol. 104 ! no. 21 ! 8687
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Link Prediction
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.

Goh et al. PNAS ! May 22, 2007 ! vol. 104 ! no. 21 ! 8687
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Community Detection (or Graph Clustering)
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Outline of the Presentation
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Part I. Brief introduction to Graph Neural Networks (GNN)

Part II. Topics in GNN model design: over-squashing, pooling, generalization

Part III. Perspectives and ongoing work 
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GNN layer

(A,X)

<latexit sha1_base64="pH2TjhUJEAWzdwo7BHvtZvH1HOY=">AAACD3icdVDLSsNAFJ34rPXRqEs3g0WoICFpg627qhuXFewD2lAm00k7dPJgZiKWkI9w7Va/wZ249RP8BP/CSVuhFT1w4XDOvdzDcSNGhTTNT21ldW19YzO3ld/e2d0r6PsHLRHGHJMmDlnIOy4ShNGANCWVjHQiTpDvMtJ2x9eZ374nXNAwuJOTiDg+GgbUoxhJJfX1QqnnIzlyveTyDHbS075eNA2zWrMrFlwgduWibJ1DyzCnKII5Gn39qzcIceyTQGKGhOhaZiSdBHFJMSNpvhcLEiE8RkPSVTRAPhFOMg2ewhOlDKAXcjWBhFN18SJBvhAT31WbWUrx28vEv7xuLL2ak9AgiiUJ8OyRFzMoQ5i1AAeUEyzZRBGEOVVZIR4hjrBUXS19iR6yaCKF+bzq5qcA+D9plQ3LNuxbu1i/mreUA0fgGJSABaqgDm5AAzQBBjF4As/gRXvUXrU37X22uqLNbw7BErSPb0gdm8g=</latexit>

Graph

xi

<latexit sha1_base64="FzneNO0zIGz4mD2jGDMTOVbxn5I=">AAACCnicdVDLSsNAFJ34rPFVdelmsAiuQtIGW3dFNy4r2Ac0oUymk3boJBlmJtIS+geu3eo3uBO3/oSf4F84aSu0ogcuHM65l3s4AWdUKtv+NNbWNza3tgs75u7e/sFh8ei4JZNUYNLECUtEJ0CSMBqTpqKKkQ4XBEUBI+1gdJP77QciJE3iezXhxI/QIKYhxUhpyfMipIZBmI2nPdorlmzLrtbcigOXiFu5KjuX0LHsGUpggUav+OX1E5xGJFaYISm7js2VnyGhKGZkanqpJBzhERqQrqYxioj0s1nmKTzXSh+GidATKzhTly8yFEk5iQK9mWeUv71c/Mvrpiqs+RmNeapIjOePwpRBlcC8ANingmDFJpogLKjOCvEQCYSVrmnlCx/n0eQUmqbu5qcA+D9plS3Htdw7t1S/XrRUAKfgDFwAB1RBHdyCBmgCDDh4As/gxXg0Xo03432+umYsbk7ACoyPb2Tim4M=</latexit>

hi

<latexit sha1_base64="kVE9cFYo6AlRVTgmERLjxI/7pKQ=">AAACCnicdVDLSsNAFJ3UV42vqks3g0VwFZI22LorunFZwT6gCWUynbRDJ8kwMxFL6B+4dqvf4E7c+hN+gn/hpK3Qih64cDjnXu7hBJxRqWz70yisrW9sbhW3zZ3dvf2D0uFRWyapwKSFE5aIboAkYTQmLUUVI10uCIoCRjrB+Dr3O/dESJrEd2rCiR+hYUxDipHSkudFSI2CMBtN+7RfKtuWXau7VQcuEbd6WXEuoGPZM5TBAs1+6csbJDiNSKwwQ1L2HJsrP0NCUczI1PRSSTjCYzQkPU1jFBHpZ7PMU3imlQEME6EnVnCmLl9kKJJyEgV6M88of3u5+JfXS1VY9zMa81SRGM8fhSmDKoF5AXBABcGKTTRBWFCdFeIREggrXdPKF/6QR5NTaJq6m58C4P+kXbEc13Jv3XLjatFSEZyAU3AOHFADDXADmqAFMODgCTyDF+PReDXejPf5asFY3ByDFRgf30sCm3M=</latexit>

(A,H)

<latexit sha1_base64="lGxGSzP1PCnAOMXuFIGp+S2dggc=">AAACD3icdVDLSsNAFJ3UV42PRl26GSxCBQlJG2zdVd10WcE+oC1lMp20QycPZiZiCf0I1271G9yJWz/BT/AvnLQVWtEDFw7n3Ms9HDdiVEjL+tQya+sbm1vZbX1nd28/ZxwcNkUYc0waOGQhb7tIEEYD0pBUMtKOOEG+y0jLHd+kfuuecEHD4E5OItLz0TCgHsVIKqlv5ApdH8mR6yVX57A2Pesbecu0yhWnZMMl4pQui/YFtE1rhjxYoN43vrqDEMc+CSRmSIiObUWylyAuKWZkqndjQSKEx2hIOooGyCeil8yCT+GpUgbQC7maQMKZunyRIF+Iie+qzTSl+O2l4l9eJ5ZepZfQIIolCfD8kRczKEOYtgAHlBMs2UQRhDlVWSEeIY6wVF2tfIke0mhiCnVddfNTAPyfNIum7ZjOrZOvXi9ayoJjcAIKwAZlUAU1UAcNgEEMnsAzeNEetVftTXufr2a0xc0RWIH28Q0uTZu4</latexit>

Embeddings

h(l+1)
i = �

 
h(l)

i ,
M

j2Ni

 
⇣
h(l)

i ,h
(l)
j

⌘ !

<latexit sha1_base64="VAZLpQS5QFM0Xas7o12Teb4jNho="></latexit>

aggregation function
(e.g., sum)

message functionactivation function
(e.g., ReLU)
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GNN layer

Node classification
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Graph (A,H)

<latexit sha1_base64="lGxGSzP1PCnAOMXuFIGp+S2dggc=">AAACD3icdVDLSsNAFJ3UV42PRl26GSxCBQlJG2zdVd10WcE+oC1lMp20QycPZiZiCf0I1271G9yJWz/BT/AvnLQVWtEDFw7n3Ms9HDdiVEjL+tQya+sbm1vZbX1nd28/ZxwcNkUYc0waOGQhb7tIEEYD0pBUMtKOOEG+y0jLHd+kfuuecEHD4E5OItLz0TCgHsVIKqlv5ApdH8mR6yVX57A2Pesbecu0yhWnZMMl4pQui/YFtE1rhjxYoN43vrqDEMc+CSRmSIiObUWylyAuKWZkqndjQSKEx2hIOooGyCeil8yCT+GpUgbQC7maQMKZunyRIF+Iie+qzTSl+O2l4l9eJ5ZepZfQIIolCfD8kRczKEOYtgAHlBMs2UQRhDlVWSEeIY6wVF2tfIke0mhiCnVddfNTAPyfNIum7ZjOrZOvXi9ayoJjcAIKwAZlUAU1UAcNgEEMnsAzeNEetVftTXufr2a0xc0RWIH28Q0uTZu4</latexit>

Embeddings

h(l+1)
i = �

 
h(l)

i ,
M

j2Ni

 
⇣
h(l)

i ,h
(l)
j

⌘ !

<latexit sha1_base64="VAZLpQS5QFM0Xas7o12Teb4jNho=">AAACl3icdVFda9RAFJ3EqjX1Y7VP0peLi7CLdUnaYNsHsVSQPkkL3bawWcNkdpJMO5kMMxNxCfkd/jZ/gj9C6GSzha3WCxcO5577wbmJ5Ewb3//luA/WHj56vP7E23j67PmL3stX57qsFKFjUvJSXSZYU84EHRtmOL2UiuIi4fQiuf7c1i++U6VZKc7MXNJpgTPBUkawsVTc+wlRgU2epHXexOxbPeDvgmEDHyGSOYPoiGXZ4B/JsNkGL0pYVkpe6bi+goiJTkUwr79aWWMHaDuA09QM7ulfoa46KlIsy82w2zmMe31/5O/th7sBrIBw92An+ADByF9EHy3jJO79jmYlqQoqDOFY60ngSzOtsTKMcNp4UaWpxOQaZ3RiocAF1dN6YWADby0zg7RUNoWBBbvaUeNC63mRWGV7t/671pL31SaVSfenNROyMlSQblFacTAltN+AGVOUGD63ABPF7K1AcqwwMfZnd7bIH+1pugHPs97cGgD/B+c7oyAchadh//Bo6dI62kJv0AAFaA8domN0gsaIoD9O39l23ruv3U/uF/e4k7rOsmcT3Qn39AZ6mcqv</latexit>

[Defferrard et al., NeurIPS ‘16], [Kipf and Welling, ICLR ‘17], [Gilmer et al., ICML ‘17], [Veličković et al., ICLR ‘18 ], [Bronstein et al., Geometric Deep Learning ‘21]
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GNN layer
xi

<latexit sha1_base64="FzneNO0zIGz4mD2jGDMTOVbxn5I=">AAACCnicdVDLSsNAFJ34rPFVdelmsAiuQtIGW3dFNy4r2Ac0oUymk3boJBlmJtIS+geu3eo3uBO3/oSf4F84aSu0ogcuHM65l3s4AWdUKtv+NNbWNza3tgs75u7e/sFh8ei4JZNUYNLECUtEJ0CSMBqTpqKKkQ4XBEUBI+1gdJP77QciJE3iezXhxI/QIKYhxUhpyfMipIZBmI2nPdorlmzLrtbcigOXiFu5KjuX0LHsGUpggUav+OX1E5xGJFaYISm7js2VnyGhKGZkanqpJBzhERqQrqYxioj0s1nmKTzXSh+GidATKzhTly8yFEk5iQK9mWeUv71c/Mvrpiqs+RmNeapIjOePwpRBlcC8ANingmDFJpogLKjOCvEQCYSVrmnlCx/n0eQUmqbu5qcA+D9plS3Htdw7t1S/XrRUAKfgDFwAB1RBHdyCBmgCDDh4As/gxXg0Xo03432+umYsbk7ACoyPb2Tim4M=</latexit>

hi

<latexit sha1_base64="kVE9cFYo6AlRVTgmERLjxI/7pKQ=">AAACCnicdVDLSsNAFJ3UV42vqks3g0VwFZI22LorunFZwT6gCWUynbRDJ8kwMxFL6B+4dqvf4E7c+hN+gn/hpK3Qih64cDjnXu7hBJxRqWz70yisrW9sbhW3zZ3dvf2D0uFRWyapwKSFE5aIboAkYTQmLUUVI10uCIoCRjrB+Dr3O/dESJrEd2rCiR+hYUxDipHSkudFSI2CMBtN+7RfKtuWXau7VQcuEbd6WXEuoGPZM5TBAs1+6csbJDiNSKwwQ1L2HJsrP0NCUczI1PRSSTjCYzQkPU1jFBHpZ7PMU3imlQEME6EnVnCmLl9kKJJyEgV6M88of3u5+JfXS1VY9zMa81SRGM8fhSmDKoF5AXBABcGKTTRBWFCdFeIREggrXdPKF/6QR5NTaJq6m58C4P+kXbEc13Jv3XLjatFSEZyAU3AOHFADDXADmqAFMODgCTyDF+PReDXejPf5asFY3ByDFRgf30sCm3M=</latexit>

Graph classification
yG = f (�i2V hi)

<latexit sha1_base64="UqhunHT4pRKRnjY6Ik5OGeCXFrY="></latexit>

yG

<latexit sha1_base64="xf3i8iR73N6Us5ZB2ia4NeNDJBU=">AAACCnicdVDLSsNAFJ34rPFVdelmsAiuQtIGW3dFF7qsYB/QhDKZTtqhkwczEzGE/IFrt/oN7sStP+En+BdO2gqt6IELh3Pu5R6OFzMqpGl+aiura+sbm6UtfXtnd2+/fHDYEVHCMWnjiEW85yFBGA1JW1LJSC/mBAUeI11vclX43XvCBY3CO5nGxA3QKKQ+xUgqyXECJMeen6X54HpQrpiGWW/YNQsuELt2UbXOoWWYU1TAHK1B+csZRjgJSCgxQ0L0LTOWboa4pJiRXHcSQWKEJ2hE+oqGKCDCzaaZc3iqlCH0I64mlHCqLl5kKBAiDTy1WWQUv71C/MvrJ9JvuBkN40SSEM8e+QmDMoJFAXBIOcGSpYogzKnKCvEYcYSlqmnpS/xQRBM51HXVzU8B8H/SqRqWbdi3dqV5OW+pBI7BCTgDFqiDJrgBLdAGGMTgCTyDF+1Re9XetPfZ6oo2vzkCS9A+vgEv6pti</latexit>

(A,X)

<latexit sha1_base64="pH2TjhUJEAWzdwo7BHvtZvH1HOY=">AAACD3icdVDLSsNAFJ34rPXRqEs3g0WoICFpg627qhuXFewD2lAm00k7dPJgZiKWkI9w7Va/wZ249RP8BP/CSVuhFT1w4XDOvdzDcSNGhTTNT21ldW19YzO3ld/e2d0r6PsHLRHGHJMmDlnIOy4ShNGANCWVjHQiTpDvMtJ2x9eZ374nXNAwuJOTiDg+GgbUoxhJJfX1QqnnIzlyveTyDHbS075eNA2zWrMrFlwgduWibJ1DyzCnKII5Gn39qzcIceyTQGKGhOhaZiSdBHFJMSNpvhcLEiE8RkPSVTRAPhFOMg2ewhOlDKAXcjWBhFN18SJBvhAT31WbWUrx28vEv7xuLL2ak9AgiiUJ8OyRFzMoQ5i1AAeUEyzZRBGEOVVZIR4hjrBUXS19iR6yaCKF+bzq5qcA+D9plQ3LNuxbu1i/mreUA0fgGJSABaqgDm5AAzQBBjF4As/gRXvUXrU37X22uqLNbw7BErSPb0gdm8g=</latexit>

Graph (A,H)

<latexit sha1_base64="lGxGSzP1PCnAOMXuFIGp+S2dggc=">AAACD3icdVDLSsNAFJ3UV42PRl26GSxCBQlJG2zdVd10WcE+oC1lMp20QycPZiZiCf0I1271G9yJWz/BT/AvnLQVWtEDFw7n3Ms9HDdiVEjL+tQya+sbm1vZbX1nd28/ZxwcNkUYc0waOGQhb7tIEEYD0pBUMtKOOEG+y0jLHd+kfuuecEHD4E5OItLz0TCgHsVIKqlv5ApdH8mR6yVX57A2Pesbecu0yhWnZMMl4pQui/YFtE1rhjxYoN43vrqDEMc+CSRmSIiObUWylyAuKWZkqndjQSKEx2hIOooGyCeil8yCT+GpUgbQC7maQMKZunyRIF+Iie+qzTSl+O2l4l9eJ5ZepZfQIIolCfD8kRczKEOYtgAHlBMs2UQRhDlVWSEeIY6wVF2tfIke0mhiCnVddfNTAPyfNIum7ZjOrZOvXi9ayoJjcAIKwAZlUAU1UAcNgEEMnsAzeNEetVftTXufr2a0xc0RWIH28Q0uTZu4</latexit>

Embeddings

h(l+1)
i = �

 
h(l)

i ,
M

j2Ni

 
⇣
h(l)

i ,h
(l)
j

⌘ !

<latexit sha1_base64="VAZLpQS5QFM0Xas7o12Teb4jNho="></latexit>

[Defferrard et al., NeurIPS ‘16], [Kipf and Welling, ICLR ‘17], [Gilmer et al., ICML ‘17], [Veličković et al., ICLR ‘18 ], [Bronstein et al., Geometric Deep Learning ‘21]
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GNN layer
xi

<latexit sha1_base64="FzneNO0zIGz4mD2jGDMTOVbxn5I=">AAACCnicdVDLSsNAFJ34rPFVdelmsAiuQtIGW3dFNy4r2Ac0oUymk3boJBlmJtIS+geu3eo3uBO3/oSf4F84aSu0ogcuHM65l3s4AWdUKtv+NNbWNza3tgs75u7e/sFh8ei4JZNUYNLECUtEJ0CSMBqTpqKKkQ4XBEUBI+1gdJP77QciJE3iezXhxI/QIKYhxUhpyfMipIZBmI2nPdorlmzLrtbcigOXiFu5KjuX0LHsGUpggUav+OX1E5xGJFaYISm7js2VnyGhKGZkanqpJBzhERqQrqYxioj0s1nmKTzXSh+GidATKzhTly8yFEk5iQK9mWeUv71c/Mvrpiqs+RmNeapIjOePwpRBlcC8ANingmDFJpogLKjOCvEQCYSVrmnlCx/n0eQUmqbu5qcA+D9plS3Htdw7t1S/XrRUAKfgDFwAB1RBHdyCBmgCDDh4As/gxXg0Xo03432+umYsbk7ACoyPb2Tim4M=</latexit>

hi

<latexit sha1_base64="kVE9cFYo6AlRVTgmERLjxI/7pKQ=">AAACCnicdVDLSsNAFJ3UV42vqks3g0VwFZI22LorunFZwT6gCWUynbRDJ8kwMxFL6B+4dqvf4E7c+hN+gn/hpK3Qih64cDjnXu7hBJxRqWz70yisrW9sbhW3zZ3dvf2D0uFRWyapwKSFE5aIboAkYTQmLUUVI10uCIoCRjrB+Dr3O/dESJrEd2rCiR+hYUxDipHSkudFSI2CMBtN+7RfKtuWXau7VQcuEbd6WXEuoGPZM5TBAs1+6csbJDiNSKwwQ1L2HJsrP0NCUczI1PRSSTjCYzQkPU1jFBHpZ7PMU3imlQEME6EnVnCmLl9kKJJyEgV6M88of3u5+JfXS1VY9zMa81SRGM8fhSmDKoF5AXBABcGKTTRBWFCdFeIREggrXdPKF/6QR5NTaJq6m58C4P+kXbEc13Jv3XLjatFSEZyAU3AOHFADDXADmqAFMODgCTyDF+PReDXejPf5asFY3ByDFRgf30sCm3M=</latexit>

yi j

<latexit sha1_base64="sbe0UuMEkqctDUypmKB/qbc+GAE=">AAACD3icdVDLSsNAFJ3UV62PRl26GSyCq5K0wdZd0Y3LCvYBbSmT6aQdO5mEmYkYQj7CtVv9Bnfi1k/wE/wLJ22FVvTAhcM593IPxw0ZlcqyPo3c2vrG5lZ+u7Czu7dfNA8O2zKIBCYtHLBAdF0kCaOctBRVjHRDQZDvMtJxp1eZ37knQtKA36o4JAMfjTn1KEZKS0Oz2PeRmrheEqfDhN6lQ7Nkla1a3anacIk41YuKfQ7tsjVDCSzQHJpf/VGAI59whRmSsmdboRokSCiKGUkL/UiSEOEpGpOephz5RA6SWfAUnmplBL1A6OEKztTliwT5Usa+qzezmPK3l4l/eb1IefVBQnkYKcLx/JEXMagCmLUAR1QQrFisCcKC6qwQT5BAWOmuVr6ED1k0mcJCQXfzUwD8n7QrZdspOzdOqXG5aCkPjsEJOAM2qIEGuAZN0AIYROAJPIMX49F4Nd6M9/lqzljcHIEVGB/fmUGdNQ==</latexit>

h j

<latexit sha1_base64="xcW/a04v2oXCe+RsMabH7eQOJmk=">AAACCnicdVDLSsNAFJ3UV62vqks3g0VwFZIabN0V3bisYB/QhDKZTtqxk0mYmYgl5A9cu9VvcCdu/Qk/wb9w0lZoRQ9cOJxzL/dw/JhRqSzr0yisrK6tbxQ3S1vbO7t75f2DtowSgUkLRywSXR9JwignLUUVI91YEBT6jHT88VXud+6JkDTit2oSEy9EQ04DipHSkuuGSI38IB1l/bt+uWKZVq3unNlwgThnF1X7HNqmNUUFzNHsl7/cQYSTkHCFGZKyZ1ux8lIkFMWMZCU3kSRGeIyGpKcpRyGRXjrNnMETrQxgEAk9XMGpuniRolDKSejrzTyj/O3l4l9eL1FB3UspjxNFOJ49ChIGVQTzAuCACoIVm2iCsKA6K8QjJBBWuqalL/FDHk1msFTS3fwUAP8n7appO6Zz41Qal/OWiuAIHINTYIMaaIBr0AQtgEEMnsAzeDEejVfjzXifrRaM+c0hWILx8Q1MnZt0</latexit>

(A,X)

<latexit sha1_base64="pH2TjhUJEAWzdwo7BHvtZvH1HOY=">AAACD3icdVDLSsNAFJ34rPXRqEs3g0WoICFpg627qhuXFewD2lAm00k7dPJgZiKWkI9w7Va/wZ249RP8BP/CSVuhFT1w4XDOvdzDcSNGhTTNT21ldW19YzO3ld/e2d0r6PsHLRHGHJMmDlnIOy4ShNGANCWVjHQiTpDvMtJ2x9eZ374nXNAwuJOTiDg+GgbUoxhJJfX1QqnnIzlyveTyDHbS075eNA2zWrMrFlwgduWibJ1DyzCnKII5Gn39qzcIceyTQGKGhOhaZiSdBHFJMSNpvhcLEiE8RkPSVTRAPhFOMg2ewhOlDKAXcjWBhFN18SJBvhAT31WbWUrx28vEv7xuLL2ak9AgiiUJ8OyRFzMoQ5i1AAeUEyzZRBGEOVVZIR4hjrBUXS19iR6yaCKF+bzq5qcA+D9plQ3LNuxbu1i/mreUA0fgGJSABaqgDm5AAzQBBjF4As/gRXvUXrU37X22uqLNbw7BErSPb0gdm8g=</latexit>

Graph (A,H)

<latexit sha1_base64="lGxGSzP1PCnAOMXuFIGp+S2dggc=">AAACD3icdVDLSsNAFJ3UV42PRl26GSxCBQlJG2zdVd10WcE+oC1lMp20QycPZiZiCf0I1271G9yJWz/BT/AvnLQVWtEDFw7n3Ms9HDdiVEjL+tQya+sbm1vZbX1nd28/ZxwcNkUYc0waOGQhb7tIEEYD0pBUMtKOOEG+y0jLHd+kfuuecEHD4E5OItLz0TCgHsVIKqlv5ApdH8mR6yVX57A2Pesbecu0yhWnZMMl4pQui/YFtE1rhjxYoN43vrqDEMc+CSRmSIiObUWylyAuKWZkqndjQSKEx2hIOooGyCeil8yCT+GpUgbQC7maQMKZunyRIF+Iie+qzTSl+O2l4l9eJ5ZepZfQIIolCfD8kRczKEOYtgAHlBMs2UQRhDlVWSEeIY6wVF2tfIke0mhiCnVddfNTAPyfNIum7ZjOrZOvXi9ayoJjcAIKwAZlUAU1UAcNgEEMnsAzeNEetVftTXufr2a0xc0RWIH28Q0uTZu4</latexit>

Embeddings

h(l+1)
i = �

 
h(l)

i ,
M

j2Ni

 
⇣
h(l)

i ,h
(l)
j

⌘ !

<latexit sha1_base64="VAZLpQS5QFM0Xas7o12Teb4jNho="></latexit>

[Defferrard et al., NeurIPS ‘16], [Kipf and Welling, ICLR ‘17], [Gilmer et al., ICML ‘17], [Veličković et al., ICLR ‘18 ], [Bronstein et al., Geometric Deep Learning ‘21]

Link prediction
yi j = f (hi,h j)

<latexit sha1_base64="1GA+enGJ8f68tdVTDqkJTlVaw18="></latexit>
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GNN layer
xi

<latexit sha1_base64="FzneNO0zIGz4mD2jGDMTOVbxn5I=">AAACCnicdVDLSsNAFJ34rPFVdelmsAiuQtIGW3dFNy4r2Ac0oUymk3boJBlmJtIS+geu3eo3uBO3/oSf4F84aSu0ogcuHM65l3s4AWdUKtv+NNbWNza3tgs75u7e/sFh8ei4JZNUYNLECUtEJ0CSMBqTpqKKkQ4XBEUBI+1gdJP77QciJE3iezXhxI/QIKYhxUhpyfMipIZBmI2nPdorlmzLrtbcigOXiFu5KjuX0LHsGUpggUav+OX1E5xGJFaYISm7js2VnyGhKGZkanqpJBzhERqQrqYxioj0s1nmKTzXSh+GidATKzhTly8yFEk5iQK9mWeUv71c/Mvrpiqs+RmNeapIjOePwpRBlcC8ANingmDFJpogLKjOCvEQCYSVrmnlCx/n0eQUmqbu5qcA+D9plS3Htdw7t1S/XrRUAKfgDFwAB1RBHdyCBmgCDDh4As/gxXg0Xo03432+umYsbk7ACoyPb2Tim4M=</latexit>

hi

<latexit sha1_base64="kVE9cFYo6AlRVTgmERLjxI/7pKQ=">AAACCnicdVDLSsNAFJ3UV42vqks3g0VwFZI22LorunFZwT6gCWUynbRDJ8kwMxFL6B+4dqvf4E7c+hN+gn/hpK3Qih64cDjnXu7hBJxRqWz70yisrW9sbhW3zZ3dvf2D0uFRWyapwKSFE5aIboAkYTQmLUUVI10uCIoCRjrB+Dr3O/dESJrEd2rCiR+hYUxDipHSkudFSI2CMBtN+7RfKtuWXau7VQcuEbd6WXEuoGPZM5TBAs1+6csbJDiNSKwwQ1L2HJsrP0NCUczI1PRSSTjCYzQkPU1jFBHpZ7PMU3imlQEME6EnVnCmLl9kKJJyEgV6M88of3u5+JfXS1VY9zMa81SRGM8fhSmDKoF5AXBABcGKTTRBWFCdFeIREggrXdPKF/6QR5NTaJq6m58C4P+kXbEc13Jv3XLjatFSEZyAU3AOHFADDXADmqAFMODgCTyDF+PReDXejPf5asFY3ByDFRgf30sCm3M=</latexit>

Link predictionyi j

<latexit sha1_base64="sbe0UuMEkqctDUypmKB/qbc+GAE=">AAACD3icdVDLSsNAFJ3UV62PRl26GSyCq5K0wdZd0Y3LCvYBbSmT6aQdO5mEmYkYQj7CtVv9Bnfi1k/wE/wLJ22FVvTAhcM593IPxw0ZlcqyPo3c2vrG5lZ+u7Czu7dfNA8O2zKIBCYtHLBAdF0kCaOctBRVjHRDQZDvMtJxp1eZ37knQtKA36o4JAMfjTn1KEZKS0Oz2PeRmrheEqfDhN6lQ7Nkla1a3anacIk41YuKfQ7tsjVDCSzQHJpf/VGAI59whRmSsmdboRokSCiKGUkL/UiSEOEpGpOephz5RA6SWfAUnmplBL1A6OEKztTliwT5Usa+qzezmPK3l4l/eb1IefVBQnkYKcLx/JEXMagCmLUAR1QQrFisCcKC6qwQT5BAWOmuVr6ED1k0mcJCQXfzUwD8n7QrZdspOzdOqXG5aCkPjsEJOAM2qIEGuAZN0AIYROAJPIMX49F4Nd6M9/lqzljcHIEVGB/fmUGdNQ==</latexit>

yi j = f (hi,h j)

<latexit sha1_base64="1GA+enGJ8f68tdVTDqkJTlVaw18="></latexit>

Node classificationyi

<latexit sha1_base64="90cNqB9Et13WbkhruWZ1EtAejuE=">AAACCnicdVDLSsNAFJ3UV42vqks3g0VwFZI22LorunFZwT6gCWUynbRDJw9mJmII+QPXbvUb3Ilbf8JP8C+ctBVa0QMXDufcyz0cL2ZUSNP81Epr6xubW+VtfWd3b/+gcnjUFVHCMengiEW87yFBGA1JR1LJSD/mBAUeIz1vel34vXvCBY3CO5nGxA3QOKQ+xUgqyXECJCeen6X5kA4rVdMwG027bsElYtcva9YFtAxzhipYoD2sfDmjCCcBCSVmSIiBZcbSzRCXFDOS604iSIzwFI3JQNEQBUS42SxzDs+UMoJ+xNWEEs7U5YsMBUKkgac2i4zit1eIf3mDRPpNN6NhnEgS4vkjP2FQRrAoAI4oJ1iyVBGEOVVZIZ4gjrBUNa18iR+KaCKHuq66+SkA/k+6NcOyDfvWrrauFi2VwQk4BefAAg3QAjegDToAgxg8gWfwoj1qr9qb9j5fLWmLm2OwAu3jG2aAm4Q=</latexit>

yi = f (hi)

<latexit sha1_base64="261Zk+7lRwDrtEwABlPECh4341I="></latexit>

Graph classification
yG = f (�i2V hi)

<latexit sha1_base64="UqhunHT4pRKRnjY6Ik5OGeCXFrY="></latexit>

yG

<latexit sha1_base64="xf3i8iR73N6Us5ZB2ia4NeNDJBU=">AAACCnicdVDLSsNAFJ34rPFVdelmsAiuQtIGW3dFF7qsYB/QhDKZTtqhkwczEzGE/IFrt/oN7sStP+En+BdO2gqt6IELh3Pu5R6OFzMqpGl+aiura+sbm6UtfXtnd2+/fHDYEVHCMWnjiEW85yFBGA1JW1LJSC/mBAUeI11vclX43XvCBY3CO5nGxA3QKKQ+xUgqyXECJMeen6X54HpQrpiGWW/YNQsuELt2UbXOoWWYU1TAHK1B+csZRjgJSCgxQ0L0LTOWboa4pJiRXHcSQWKEJ2hE+oqGKCDCzaaZc3iqlCH0I64mlHCqLl5kKBAiDTy1WWQUv71C/MvrJ9JvuBkN40SSEM8e+QmDMoJFAXBIOcGSpYogzKnKCvEYcYSlqmnpS/xQRBM51HXVzU8B8H/SqRqWbdi3dqV5OW+pBI7BCTgDFqiDJrgBLdAGGMTgCTyDF+1Re9XetPfZ6oo2vzkCS9A+vgEv6pti</latexit>
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1. How to design deep GNNs?
– Graph rewiring to address over-smoothing and over-squashing (SJLR, TRIGON)

2. How to compute graph-level representations?
– Hierarchical clustering-based graph pooling (HOSCPOOL)

3. (if time permits) How to improve generalization of GNNs?
– Framework for graph data augmentation (GRATIN)

Challenges in GNN Model Design
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Leverage structural graph priors: connectivity, geometry, and local patterns
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Long-range Dependencies and Deep GNNs
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Long-range dependencies



Long-range Dependencies and Deep GNNs
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Long-range dependencies

Messages

• Over-smoothing: node embeddings become indistinguishable with more GNN layers



Long-range Dependencies and Deep GNNs

18

Long-range dependencies

Messages Bottlenecks

• Over-smoothing: node embeddings become indistinguishable with more GNN layers

• Over-squashing: information from distant nodes is squeezed on bottleneck edges

[Oono and Suzuki, ICLR ‘20], [Alon and Yahav, ICLR ‘21]



• We establish a fundamental topological relationship between over-
smoothing and over-squashing in deep GNNs

• We found that the spectral gap of a graph is intrinsically related to both 
problems

• There is an inherent trade-off between over-smoothing and over-squashing

• We introduce a curvature- and triangle-based algorithms to mitigate this 
trade-off

Overview of Key Findings 
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• For a random walk transition matrix     and initial distribution                      ,  we 
can compute s such that 

The Over-smoothing — Over-squashing Trade-off
The stationary distribution on graphs

20
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– GNNs converge exponentially fast to the stationary distribution      when stacking 
several layers          over-smoothing

– The convergence depends on the spectral gap λ2

s: number of GNN layers
λ2 : spectral gap of L

[Chung, Spectral Graph Theory, ‘92], [Oono and Suzuku, ICLR ‘20], [Wu et al. ICML ‘19]
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• Consider a simple GNN model without nonlinearities (e.g., SGC)
– Repeated message passing is equivalent to applying a random walk operator

Layer l=0

…

Layer l=1 Layer l=s

over-smoothing 
⚠



The Over-smoothing — Over-squashing Trade-off
Cheeger constant and bottlenecks

21

• Cheeger constant and spectral gap: 2hG � �2 �
h2

G

2
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– Small Cheeger constant  hG and λ2 imply bottlenecks          over-squashing

[Chung, Spectral Graph Theory, ‘92]

• The Cheeger constant hG of a graph

– Captures structural bottlenecks in the graph

sum of node 
degrees in   

edge boundary
(# of edges crossing the cut)
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The Over-smoothing — Over-squashing Trade-off
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The trade-off
• If s → 0 then hG →	∞: reduce bottlenecks by accelerating 

convergence to the stationary distribution. Over-smoothing. 

• If hG → 0 then s →	∞: avoid converging to the stationary 
distribution by promoting a bottleneck-like structure. Over-squashing.

[Chung, Spectral Graph Theory, ‘92]

• We can increase mixing time by removing some 
edges
– Alleviate over-smoothing

• We increase λ2 by adding edges, improving hG

– Alleviate over-squashing          
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• We target to manipulate the spectral gap λ2 via graph rewiring
• We borrow ideas from graph curvature κ(i,j)

– Increasing curvature improves the spectral gap

The SJLR Algorithm: Key Ingredients
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• SJLR: Stochastic Jost and Liu Curvature (JLC) Rewiring
– JLC: curvature metric based on triangles
– Greedy algorithm: adds/removes edges during training to locally improve curvature
– Graph structure + node features
– Good performance in graph with both homophily and heterophily

[Topping et al., ICLR ‘21], [Ollivier, J. Funct. Anal. ‘09], [Jost and Liu, Discrete Comput. Geom. ‘14]

[Bronstein, Physics-inspired GNNs ‘23]
κ(i,j) = 0 κ(i,j) > 0 κ(i,j) < 0

i
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SJLR: The Algorithm
Stochastic Jost and Liu Curvature Rewiring
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1) Good edges to add 2) Score of improvement of adding 3) GNN training(1) Good edges to add (2) Score of improvement of adding (r, s)

<latexit sha1_base64="ACPVhb8JF0o3hhzsicqLbBRGI6k=">AAACAXicbVDLSsNAFL2pr1pfVZduBotQQUoiBV0W3bisYNpCG8pkOmmHTiZhZiKW0JUf4FY/wZ249Uv8An/DSZuFbT0wcDjnXu6Z48ecKW3b31ZhbX1jc6u4XdrZ3ds/KB8etVSUSEJdEvFIdnysKGeCupppTjuxpDj0OW3749vMbz9SqVgkHvQkpl6Ih4IFjGBtJLcqL9R5v1yxa/YMaJU4OalAjma//NMbRCQJqdCEY6W6jh1rL8VSM8LptNRLFI0xGeMh7RoqcEiVl87CTtGZUQYoiKR5QqOZ+ncjxaFSk9A3kyHWI7XsZeJ/XjfRwbWXMhEnmgoyPxQkHOkIZT9HAyYp0XxiCCaSmayIjLDERJt+Fq7ET1k0NS2ZZpzlHlZJ67Lm1Gv1+3qlcZN3VIQTOIUqOHAFDbiDJrhAgMELvMKb9Wy9Wx/W53y0YOU7x7AA6+sX3z6XHA==</latexit>

(3) GNN training

Ea

<latexit sha1_base64="l93rG8Vvs8m8O0D7SfcQruV45X8="></latexit>

E(r,s)

<latexit sha1_base64="tcEO14ik7//J/qFSZRqXpqwDZD0="></latexit>

1
|E(r,s)|

Â
(i0 ,j0)2E(r,s)

JLC0(i0, j0)� JLC(i0, j0)

<latexit sha1_base64="F+sGmkkHK+352ywXhw8URzgC3GQ="></latexit>

softmax(afa � (1 � a)a(l)n )

<latexit sha1_base64="qeI2/6DrCm0xQ/uo4OxXxVwJo0g="></latexit>

softmax(afd � (1 � a)d(l)
n )

<latexit sha1_base64="Al0f0w4eoTqXHnk5pwpPchKV3lY="></latexit>

Addition

Dropping

(1) Compute a bank of candidate edges to add
– Calculate and sort edges (i, j) based on the Jost and Liu Curvature (JLC)

(2) Associate a score to every edge 
– Average improvement of curvature of adding           to the graph 

<latexit sha1_base64="9c7fwH7zaPcY+Qz7nliDy8W6H5k=">AAACCXicdVDLSsNAFJ34rPVVdelmsAiuQlLbRndFEVxWsA9oQ5lMJ+3QySTOTMQS8gV+gFv9BHfi1q/wC/wNJ32AFT0wcDjnXu6Z40WMSmVZn8bS8srq2npuI7+5tb2zW9jbb8owFpg0cMhC0faQJIxy0lBUMdKOBEGBx0jLG11mfuueCElDfqvGEXEDNODUpxgpLbndAKkhRiy5SnuoVyhapuNUy44NLdOek/NTp1SpQNu0JiiCGeq9wle3H+I4IFxhhqTs2Fak3AQJRTEjab4bSxIhPEID0tGUo4BIN5mETuGxVvrQD4V+XMGJ+nMjQYGU48DTk1lI+dvLxL+8Tqz8MzehPIoV4Xh6yI8ZVCHMGoB9KghWbKwJwoLqrBAPkUBY6Z4WrkQPWTSZ5nUz8+/D/0mzZNpVs3pTLtYuZh3lwCE4AifABg6ogWtQBw2AwR14As/gxXg0Xo034306umTMdg7AAoyPb8bxm5o=</latexit>Ea

(3) Graph rewiring during training
– Add and drop edges stochastically based on the JLC metric + node feature similarity

1) Good edges to add 2) Score of improvement of adding 3) GNN training(1) Good edges to add (2) Score of improvement of adding (r, s)

<latexit sha1_base64="ACPVhb8JF0o3hhzsicqLbBRGI6k=">AAACAXicbVDLSsNAFL2pr1pfVZduBotQQUoiBV0W3bisYNpCG8pkOmmHTiZhZiKW0JUf4FY/wZ249Uv8An/DSZuFbT0wcDjnXu6Z48ecKW3b31ZhbX1jc6u4XdrZ3ds/KB8etVSUSEJdEvFIdnysKGeCupppTjuxpDj0OW3749vMbz9SqVgkHvQkpl6Ih4IFjGBtJLcqL9R5v1yxa/YMaJU4OalAjma//NMbRCQJqdCEY6W6jh1rL8VSM8LptNRLFI0xGeMh7RoqcEiVl87CTtGZUQYoiKR5QqOZ+ncjxaFSk9A3kyHWI7XsZeJ/XjfRwbWXMhEnmgoyPxQkHOkIZT9HAyYp0XxiCCaSmayIjLDERJt+Fq7ET1k0NS2ZZpzlHlZJ67Lm1Gv1+3qlcZN3VIQTOIUqOHAFDbiDJrhAgMELvMKb9Wy9Wx/W53y0YOU7x7AA6+sX3z6XHA==</latexit>

(3) GNN training

Ea

<latexit sha1_base64="l93rG8Vvs8m8O0D7SfcQruV45X8="></latexit>

E(r,s)

<latexit sha1_base64="tcEO14ik7//J/qFSZRqXpqwDZD0="></latexit>

1
|E(r,s)|

Â
(i0 ,j0)2E(r,s)

JLC0(i0, j0)� JLC(i0, j0)

<latexit sha1_base64="F+sGmkkHK+352ywXhw8URzgC3GQ=">AAACq3ichVFdS9xAFJ2kX5p+uNZHHxy6lN0FXRJZaB+lIhTxwdKuSjfLMpm90dHJJMzcFLdDfoW/zp/SNycxBVcLvTDM4dxz5t65NymkMBiGt57/7PmLl69WVoPXb96+W+usvz8xeak5jHkuc32WMANSKBijQAlnhQaWJRJOk6v9On/6C7QRufqBiwKmGTtXIhWcoaNmnZs41YzbqLKxkyGNmydtIktwVMbwgjNpD6qZ7ettM6gq2ujcZcrMkaK3fdkb0Fio/1udCeEa7eHRftX769x5QLbcrNMNh2ET9CmIWtAlbRzP1j0Sz3NeZqCQS2bMJAoLnFqmUXAJVRCXBgrGr9g5TBxULAMztU2/Ff3omDlNc+2OQtqwDx2WZcYsssQp60+Zx7ma/FduUmL6eWqFKkoExe8LpaWkmNN6FXQuNHCUCwcY18L1SvkFc+tAt7ClKsV13ZpZ+oitCxbsd17RIAjczKLHE3oKTnaH0Wg4+jbq7n1pp7dCNskH0icR+UT2yFdyTMaEkz/eltf3Bv6O/93/6cf3Ut9rPRtkKXy4AwDu0Uk=</latexit>

softmax(afa � (1 � a)a(l)n )

<latexit sha1_base64="qeI2/6DrCm0xQ/uo4OxXxVwJo0g="></latexit>

softmax(afd � (1 � a)d(l)
n )

<latexit sha1_base64="Al0f0w4eoTqXHnk5pwpPchKV3lY="></latexit>

Addition

Dropping

1) Good edges to add 2) Score of improvement of adding 3) GNN training(1) Good edges to add (2) Score of improvement of adding (r, s)

<latexit sha1_base64="ACPVhb8JF0o3hhzsicqLbBRGI6k=">AAACAXicbVDLSsNAFL2pr1pfVZduBotQQUoiBV0W3bisYNpCG8pkOmmHTiZhZiKW0JUf4FY/wZ249Uv8An/DSZuFbT0wcDjnXu6Z48ecKW3b31ZhbX1jc6u4XdrZ3ds/KB8etVSUSEJdEvFIdnysKGeCupppTjuxpDj0OW3749vMbz9SqVgkHvQkpl6Ih4IFjGBtJLcqL9R5v1yxa/YMaJU4OalAjma//NMbRCQJqdCEY6W6jh1rL8VSM8LptNRLFI0xGeMh7RoqcEiVl87CTtGZUQYoiKR5QqOZ+ncjxaFSk9A3kyHWI7XsZeJ/XjfRwbWXMhEnmgoyPxQkHOkIZT9HAyYp0XxiCCaSmayIjLDERJt+Fq7ET1k0NS2ZZpzlHlZJ67Lm1Gv1+3qlcZN3VIQTOIUqOHAFDbiDJrhAgMELvMKb9Wy9Wx/W53y0YOU7x7AA6+sX3z6XHA==</latexit>

(3) GNN training

Ea

<latexit sha1_base64="l93rG8Vvs8m8O0D7SfcQruV45X8="></latexit>

E(r,s)

<latexit sha1_base64="tcEO14ik7//J/qFSZRqXpqwDZD0="></latexit>

1
|E(r,s)|

Â
(i0 ,j0)2E(r,s)

JLC0(i0, j0)� JLC(i0, j0)

<latexit sha1_base64="F+sGmkkHK+352ywXhw8URzgC3GQ="></latexit>

softmax(afa � (1 � a)a(l)n )

<latexit sha1_base64="qeI2/6DrCm0xQ/uo4OxXxVwJo0g=">AAACYnicbVBNaxsxEJU3/Ui3X3ZzbA+ipmAfYnaDoTmG9lJ6SqBOAl53mZW1sYhWEtJssSP2P/XXBHpqD/0h0do+1EkHhB7vzfBmXmGkcJgkvzrR3qPHT57uP4ufv3j56nW39+bc6doyPmFaantZgONSKD5BgZJfGsuhKiS/KK4/t/rFD26d0OobrgyfVXClRCkYYKDy7tcM+RK90yVWsGwGGUizAJoVWs7dqgqfz8xCNDnQQzpIDzf6kGYV4KIoPTS5+u4HctgM824/GSXrog9BugV9sq3TvNch2VyzuuIKmQTnpmlicObBomCSN3FWO26AXcMVnwaooOJu5tdHN/RDYOa01DY8hXTN/jvhoXLtBaGz3dXd11ryf9q0xvJ45oUyNXLFNkZlLSlq2iZI58JyhnIVADArwq6ULcACw5DzjotZtqu5nUN8a2jgRjc0juOQWXo/oYfg/GiUjkfjs3H/5NM2vX3ylrwnA5KSj+SEfCGnZEIY+UluyW/yp/M3iqNedLBpjTrbmQOyU9G7O2HtuMg=</latexit>

softmax(afd � (1 � a)d(l)
n )

<latexit sha1_base64="Al0f0w4eoTqXHnk5pwpPchKV3lY="></latexit>

Addition

Dropping

<latexit sha1_base64="OlkQVEBk71iksQGsEtWa6hmB6R4="></latexit>

(r, s) 2 Ea
<latexit sha1_base64="OlkQVEBk71iksQGsEtWa6hmB6R4="></latexit>

(r, s) 2 Ea



SJLR: Experimental Results

25

On the Trade-o� between Over-smoothing and Over-squashing in Deep Graph Neural Networks CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 2: Comparison results of the proposed SJLR algorithm with several state-of-the-art methods to alleviate over-smoothing
and over-squashing with the SGC model as backbone.

Method Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed Overall

Baseline 53.40±2.11 56.69±1.78 47.90±1.73 38.40±0.69 40.52±0.54 29.93±0.16 76.94±1.31 67.45±0.80 71.79±2.13 53.67
GDC [19] 58.65±1.43 57.42±0.74 45.93±1.05 38.13±0.55 36.63±0.31 32.25±0.17 76.02±1.70 66.22±1.13 71.91±2.30 53.68
DE [42] 61.99±1.04 57.88±0.81 54.78±0.89 40.38±0.47 41.28±0.32 30.62±0.17 80.59±0.80 68.63±0.51 74.47±1.65 56.74
PN [56] 53.11±1.36 50.47±1.04 48.72±1.65 41.49±0.68 39.72±0.33 22.58±0.29 75.55±0.42 64.16±0.41 73.81±0.52 52.18

DGN [57] 55.68±1.32 57.42±2.59 50.67±2.08 40.99±0.62 41.72±0.29 29.53±0.18 80.65±0.48 67.65±0.59 74.95±0.59 55.47
SDRF [48] 54.68±1.29 55.36±1.48 47.81±1.51 38.07±0.77 39.94±0.53 30.04±0.17 76.04±1.69 67.60±0.80 69.62±2.35 53.24
FoSR [27] 53.73±1.75 56.33±1.37 47.82±2.14 38.01±0.73 40.68±0.42 30.11±0.18 78.24±0.98 67.04±0.83 72.76±2.35 53.86

SJLR (ours) 67.37±1.64 58.40±1.48 55.42±0.92 40.17±0.49 41.91±0.34 30.81±0.18 81.24±0.77 68.39±0.69 76.28±0.96 57.78

The best and second-best performing methods on each dataset are shown in red and blue, respectively.

Table 3: Comparison results of the proposed SJLR algorithm with several state-of-the-art methods to alleviate over-smoothing
and over-squashing for the GCN model as backbone.

Method Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer Pubmed Overall

Baseline 67.34±1.50 58.05±0.96 52.10±0.95 40.35±0.48 42.12±0.29 28.62±0.36 81.81±0.26 68.35±0.35 78.25±0.37 57.44
RDC [32] 63.78±1.68 59.47±1.00 50.89±1.00 40.33±0.51 41.98±0.31 28.97±0.33 81.54±0.26 68.70±0.35 78.42±0.39 57.12
GDC [19] 64.18±1.36 56.43±1.15 49.61±0.95 38.49±0.51 33.20±0.29 31.08±0.27 82.63±0.23 69.15±0.30 79.04±0.37 55.98
DE [42] 63.39±1.29 57.41±0.93 47.84±0.86 40.80±0.55 41.68±0.39 29.99±0.21 81.90±0.24 68.99±0.36 78.53±0.26 56.73
PN [56] 64.44±1.39 60.93±1.15 51.78±0.95 40.37±0.59 40.92±0.31 28.21±0.21 78.89±0.32 66.95±0.40 76.60±0.41 56.57

DGN [57] 65.19±1.79 58.91±0.93 50.76±0.92 40.06±0.60 41.30±0.32 28.32±0.36 81.34±0.31 69.25±0.35 78.06±0.42 57.02
FA [1] 53.57±0.00 59.26±0.00 43.02±0.49 27.76±0.29 31.51±0.00 26.69±0.50 29.85±0.00 23.23±0.00 39.24±0.00 37.13

SDRF [48] 63.88±1.68 56.40±0.89 40.99±0.62 40.74±0.45 41.44±0.37 28.95±0.33 81.42±0.26 69.37±0.31 77.74±0.42 55.66
FoSR [27] 56.65±0.93 50.01±1.37 53.73±1.08 40.26±0.50 41.83±0.28 28.80±0.35 81.79±0.26 67.99±0.37 78.26±0.39 55.48

SJLR (ours) 71.75±1.50 60.13±0.89 55.16±0.95 41.19±0.46 41.86±0.29 29.89±0.20 81.95±0.25 69.50±0.33 78.60±0.33 58.89

train set contains 20 nodes of each class while the rest of the nodes
are used for validation. As for the other datasets, we use a 60/20/20
split of the nodes, meaning that 60% of the nodes are assigned for
training, 20% for validation, and 20% for testing.

6.2 Implementation Details
All methods are implemented using PyTorch and PyG [15]. We
use the same architectural components in all techniques for a
fair comparison. We use SGC [51] or GCN [29] as graph con-
volutional layers. We implemented SDRF [48] at our best under-
standing because there was not an available implementation of
the method at the time of conducting the experiments. However,
we use JLC instead of BFC in our implementation of SDRF [48]
because of the signi�cant computational resources required to run
the hyperparameter optimization using BFC. The hyperparameter
search space for each method is de�ned as follows: 1) learning
rate ;A 2 [0.005, 0.02]; 2) weight decayF3 2 [0.0001, 0.001]; 3) hid-
den units of each graph convolutional layer ⌘D 2 {16, 32, 64, 128};
4) dropout 3 2 [0.3, 0.7]; 5) the number of layers ! 2 {2, 3, 4};
6) percentage of added and dropped edges ?�, ?⇡ 2 [0, 1]; 7)
U 2 [0, 1]; 8) scale B 2 {0.1, 1, 10, 50, 100} for PN; 9) number of
clusters 2 2 {3, 4, . . . , 10} and balancing factor 15 2 [0.0005, 0.05]
for DGN; 10) UGDC 2 [0.01, 0.2] and : 2 {16, 32, 64, 128} for GDC;
10) stochasticity level g 2 [1, 500], iterations 8C 2 {20, 21, . . . , 4000},
and Ricci curvature upper-bound ⇠+ 2 [0.1, 40] for SDRF; and 11)

number of SoFR iterations 8C� 2 {1, 2, . . . , 150}. We use Recti�ed
Linear Unit (ReLU) and log-softmax as activation functions in our
GNN architectures. For GDC, we apply weight decay regularization
only in the �rst graph convolutional layer, otherwise we do not
get comparable results as in [19]. All methods are trained for 1, 000
epochs using Adam optimizer [28]. We do not use early stopping or
learning schedulers for any method. We make all graphs undirected,
and we also remove all the self-loops from the input graph. The
code is publicly available3 under the MIT license.

6.3 Results
Tables 2 and 3 show the results for SGC and GCN, respectively. SJLR
shows the overall best performance in both cases. We notice two
general trends: 1) rewiring methods such as DE and SJLR dominate
in almost all datasets for the experiment with SGC, and 2) GDC
leads in the homophilous datasets Cora and Pubmed with GCN.
Our theoretical results are based on the assumption that there are
no non-linear activation functions, so perhaps some nuances are
missed for GNNs like GCN. Similarly, we notice that SJLR outper-
forms SDRF [48] and FoSR [27] in all datasets. For SJLR and SDRF,
both methods use the same JLC metric in Tables 2 and 3, and there-
fore we are assessing their performance based on how the edges are
added or removed.We argue that SJLR is a critical improvement over
SDRF regarding the practical adoption of curvature-based methods

3https://github.com/jhonygiraldo/SJLR

Classification results for the GCN model

Heterophilous Homophilous



• Increasing the number of triangles can improve over-squashing
– Improves curvature

• Delaunay triangulation-based rewiring [Attali et al., ICML ‘24]

– Planar triangulation: diameter grows proportionally to       ; also, small 
spectral gap

– Local triangles: connects spatially proximal points 
– Task-agnostic: geometry-only, ignoring downstream loss

Rewiring and the Role of Triangles 
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<latexit sha1_base64="OP49KSjxTNbrcgix9ho4pHxCxrw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArEj0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvUq5Ur8qVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3IPjLg=</latexit>

) <latexit sha1_base64="dfa12l/r87/D93uS51ywGerJGEM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKRC9C0IvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/0iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkuZF2auUK/XLUvU2iyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP5BfjMw=</latexit>=
<latexit sha1_base64="/cnyKmxVdU7M8ID6ozQbNE+/OJU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq8H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A0w+M+A==</latexit>

i

<latexit sha1_base64="MeVe00/0c6YGbDnbinzAefhh3JI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldlr1Ku1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANSTjPk=</latexit>

j
<latexit sha1_base64="NsjKO6FvOGDmdJJbvTvwmNzF414=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqjPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kD1heM+g==</latexit>

k

<latexit sha1_base64="N4kS0slaszFWm2SvnyZ7P2y821g=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclUSkuiy6cVnBPqANYTKdtGMnkzAzKZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j447Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0md4XfnVKpWCwe9SyhXoRHgoWMYG0k37YHEdbjIMxGuZ+xp0nu2zWn7syBVolbkhqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmyfP0blRhiiMpXlCo7n6eyPDkVKzKDCTRU617BXif14/1eGNlzGRpJoKsjgUphzpGBU1oCGTlGg+MwQTyUxWRMZYYqJNWVVTgrv85VXSuay7jXrj4arWvC3rqMApnMEFuHANTbiHFrSBwBSe4RXerMx6sd6tj8XomlXunMAfWJ8/RimUGA==</latexit>gijk

Triangle encoding

③ Triangle selection

<latexit sha1_base64="PyumktKWtoscNHKlUGvqGeL1Yv8=">AAAB+HicbVDLSsNAFJ34rPXRqEs3g0XoqiQi1WXRjcsK9gFtCJPppB06mYSZG7GGfIkbF4q49VPc+TdO2yy09cCFwzn3ztx7gkRwDY7zba2tb2xubZd2yrt7+wcV+/Coo+NUUdamsYhVLyCaCS5ZGzgI1ksUI1EgWDeY3Mz87gNTmsfyHqYJ8yIykjzklICRfLsS+tkA2CNk5o08r/l21ak7c+BV4hakigq0fPtrMIxpGjEJVBCt+66TgJcRBZwKlpcHqWYJoRMyYn1DJYmY9rL54jk+M8oQh7EyJQHP1d8TGYm0nkaB6YwIjPWyNxP/8/ophFdexmWSApN08VGYCgwxnqWAh1wxCmJqCKGKm10xHRNFKJisyiYEd/nkVdI5r7uNeuPuotq8LuIooRN0imrIRZeoiW5RC7URRSl6Rq/ozXqyXqx362PRumYVM8foD6zPH1oak44=</latexit>

fsel(
<latexit sha1_base64="/cnyKmxVdU7M8ID6ozQbNE+/OJU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZq8H6p7FbcOcgq8XJShhz1fumrN4hZGqE0TFCtu56bGD+jynAmcFrspRoTysZ0iF1LJY1Q+9n80Ck5t8qAhLGyJQ2Zq78nMhppPYkC2xlRM9LL3kz8z+umJrzxMy6T1KBki0VhKoiJyexrMuAKmRETSyhT3N5K2IgqyozNpmhD8JZfXiWty4pXrVQbV+XabR5HAU7hDC7Ag2uowT3UoQkMEJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A0w+M+A==</latexit>

i

<latexit sha1_base64="MeVe00/0c6YGbDnbinzAefhh3JI=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNQY9ELx4hkUcCGzI79MLA7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAXj+7nfekKleSwfzSRBP6IDyUPOqLFSfdQrltyyuwBZJ15GSpCh1it+dfsxSyOUhgmqdcdzE+NPqTKcCZwVuqnGhLIxHWDHUkkj1P50ceiMXFilT8JY2ZKGLNTfE1MaaT2JAtsZUTPUq95c/M/rpCa89adcJqlByZaLwlQQE5P516TPFTIjJpZQpri9lbAhVZQZm03BhuCtvrxOmldlr1Ku1K9L1bssjjycwTlcggc3UIUHqEEDGCA8wyu8OSPnxXl3PpatOSebOYU/cD5/ANSTjPk=</latexit>

j
<latexit sha1_base64="NsjKO6FvOGDmdJJbvTvwmNzF414=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vj04rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqjPulsltx5yCrxMtJGXLU+6Wv3iBmaYTSMEG17npuYvyMKsOZwGmxl2pMKBvTIXYtlTRC7WfzQ6fk3CoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m6INwVt+eZW0LitetVJtXJVrt3kcBTiFM7gAD66hBvdQhyYwQHiGV3hzHp0X5935WLSuOfnMCfyB8/kD1heM+g==</latexit>

k
<latexit sha1_base64="N4kS0slaszFWm2SvnyZ7P2y821g=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBFclUSkuiy6cVnBPqANYTKdtGMnkzAzKZSQP3HjQhG3/ok7/8ZJm4W2Hhg4nHMv98wJEs6Udpxva219Y3Nru7JT3d3bPzi0j447Kk4loW0S81j2AqwoZ4K2NdOc9hJJcRRw2g0md4XfnVKpWCwe9SyhXoRHgoWMYG0k37YHEdbjIMxGuZ+xp0nu2zWn7syBVolbkhqUaPn212AYkzSiQhOOleq7TqK9DEvNCKd5dZAqmmAywSPaN1TgiCovmyfP0blRhiiMpXlCo7n6eyPDkVKzKDCTRU617BXif14/1eGNlzGRpJoKsjgUphzpGBU1oCGTlGg+MwQTyUxWRMZYYqJNWVVTgrv85VXSuay7jXrj4arWvC3rqMApnMEFuHANTbiHFrSBwBSe4RXerMx6sd6tj8XomlXunMAfWJ8/RimUGA==</latexit>gijk

<latexit sha1_base64="OP49KSjxTNbrcgix9ho4pHxCxrw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOgl7ArEj0GvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+kWvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6WvUq5Ur8qVW+zOPJwAqdwDh5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A3IPjLg=</latexit>

)

<latexit sha1_base64="9lVyiyelEdzM0ZV0uR3IEv0uJbE=">AAAB+XicbVBNSwMxEM36WevXqkcvwSJ4seyKVI9FD3qsaD+gLSWbZtvQJLsks6Vl6T/x4kERr/4Tb/4b03YP2vpg4PHeDDPzglhwA5737aysrq1vbOa28ts7u3v77sFhzUSJpqxKIxHpRkAME1yxKnAQrBFrRmQgWD0Y3E79+pBpwyP1BOOYtSXpKR5ySsBKHddtARtBenf+GIUgyWjScQte0ZsBLxM/IwWUodJxv1rdiCaSKaCCGNP0vRjaKdHAqWCTfCsxLCZ0QHqsaakikpl2Ort8gk+t0sVhpG0pwDP190RKpDFjGdhOSaBvFr2p+J/XTCC8bqdcxQkwReeLwkRgiPA0BtzlmlEQY0sI1dzeimmfaELBhpW3IfiLLy+T2kXRLxVLD5eF8k0WRw4doxN0hnx0hcroHlVQFVE0RM/oFb05qfPivDsf89YVJ5s5Qn/gfP4AxjmTxQ==</latexit>

G
-S
oftm

ax

<latexit sha1_base64="cSKiVdaTResnNqUld1BpZKELs54=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Ae0oWy2m3bNZrPsboQS+iO8eFDEq7/Hm//GbZqDtj4YeLw3w8y8QHKmjet+O6W19Y3NrfJ2ZWd3b/+genjU0UmqCG2ThCeqF2BNORO0bZjhtCcVxXHAaTeIbud+94kqzRLxYKaS+jEeCxYygo2VunKYscdoNqzW3LqbA60SryA1KNAaVr8Go4SkMRWGcKx133Ol8TOsDCOcziqDVFOJSYTHtG+pwDHVfpafO0NnVhmhMFG2hEG5+nsiw7HW0ziwnTE2E73szcX/vH5qwms/Y0KmhgqyWBSmHJkEzX9HI6YoMXxqCSaK2VsRmWCFibEJVWwI3vLLq6RzUfca9cb9Za15U8RRhhM4hXPw4AqacActaAOBCJ7hFd4c6bw4787HorXkFDPH8AfO5w+uIY/Q</latexit>pijk

<latexit sha1_base64="bZcjTigr5YRpj39mKlYBlOKlT5Y=">AAACAXicbVDLSsNAFL3xWeur6tLNYBFchUS0diMU3bisYB/QhjKZTtqxk2SYmQgldOUPuNU/cCdu/RJ/wO9w0mZhWw8MHM65l3vm+IIzpR3n21pZXVvf2CxsFbd3dvf2SweHTRUnktAGiXks2z5WlLOINjTTnLaFpDj0OW35o9vMbz1RqVgcPeixoF6IBxELGMHaSE1x7djVy16p7NjOFGiZuDkpQ456r/TT7cckCWmkCcdKdVxHaC/FUjPC6aTYTRQVmIzwgHYMjXBIlZdO007QqVH6KIileZFGU/XvRopDpcahbyZDrIdq0cvE/7xOooOql7JIJJpGZHYoSDjSMcq+jvpMUqL52BBMJDNZERliiYk2Bc1dESyLNimaYtzFGpZJ89x2K3bl/qJcu8krKsAxnMAZuHAFNbiDOjSAwCO8wCu8Wc/Wu/Vhfc5GV6x85wjmYH39AmHSlrg=</latexit>

p = 0.85

<latexit sha1_base64="oSpYSnHeEcWKpFOpFc+X0tyIgF4=">AAACAHicbVDLSsNAFL2pr1pfVZdugkVwFRKR1o1QdOOygqmFNpTJdNIOnUyGmYlQQjf+gFv9A3fi1j/xB/wOJ20WtvXAwOGce7lnTigYVdp1v63S2vrG5lZ5u7Kzu7d/UD08aqsklZj4OGGJ7IRIEUY58TXVjHSEJCgOGXkMx7e5//hEpKIJf9ATQYIYDTmNKEbaSL64dp1Gv1pzHXcGe5V4BalBgVa/+tMbJDiNCdeYIaW6nit0kCGpKWZkWumligiEx2hIuoZyFBMVZLOwU/vMKAM7SqR5XNsz9e9GhmKlJnFoJmOkR2rZy8X/vG6qo6sgo1ykmnA8PxSlzNaJnf/cHlBJsGYTQxCW1GS18QhJhLXpZ+GKoHm0acUU4y3XsEraF45Xd+r3l7XmTVFRGU7gFM7BgwY04Q5a4AMGCi/wCm/Ws/VufVif89GSVewcwwKsr1/lcJZ4</latexit>

p = 0.7

<latexit sha1_base64="sMKx+GTam/aNBsh0kOtpSDExuso=">AAACAHicbVDLSsNAFL3xWeur6tLNYBFchaRIdSMU3bisYNpCG8pkOmmHTpJhZiKU0I0/4Fb/wJ249U/8Ab/DSZuFbT0wcDjnXu6ZEwjOlHacb2ttfWNza7u0U97d2z84rBwdt1SSSkI9kvBEdgKsKGcx9TTTnHaEpDgKOG0H47vcbz9RqVgSP+qJoH6EhzELGcHaSJ64cexav1J1bGcGtErcglShQLNf+ekNEpJGNNaEY6W6riO0n2GpGeF0Wu6ligpMxnhIu4bGOKLKz2Zhp+jcKAMUJtK8WKOZ+ncjw5FSkygwkxHWI7Xs5eJ/XjfV4bWfsVikmsZkfihMOdIJyn+OBkxSovnEEEwkM1kRGWGJiTb9LFwRLI82LZti3OUaVkmrZrt1u/5wWW3cFhWV4BTO4AJcuIIG3EMTPCDA4AVe4c16tt6tD+tzPrpmFTsnsADr6xfdeJZz</latexit>

p = 0.2

<latexit sha1_base64="ccR2Dp/e6YNUYWYaOSzInDifxIs=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgKiRSqhuh6MZlBfuANpTJdNKOnUzCzEQooSt/wK3+gTtx65f4A36HkzYL23pg4HDOvdwzx485U9pxvq3C2vrG5lZxu7Szu7d/UD48aqkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH99mfvuJSsUi8aAnMfVCPBQsYARrI7Xia8d2q/1yxbGdGdAqcXNSgRyNfvmnN4hIElKhCcdKdV0n1l6KpWaE02mplygaYzLGQ9o1VOCQKi+dpZ2iM6MMUBBJ84RGM/XvRopDpSahbyZDrEdq2cvE/7xuooMrL2UiTjQVZH4oSDjSEcq+jgZMUqL5xBBMJDNZERlhiYk2BS1ciVkWbVoyxbjLNayS1oXt1uzafbVSv8krKsIJnMI5uHAJdbiDBjSBwCO8wCu8Wc/Wu/Vhfc5HC1a+cwwLsL5+AVULlrA=</latexit>

p = 0.14

<latexit sha1_base64="8N1qiFOZE/YG1rv1gf0GMqcz5d8=">AAACAXicbVDLSsNAFL2pr1pfVZduBovgKiQitRuh6MZlBfuANpTJdNKOnSTDzEQooSt/wK3+gTtx65f4A36HkzYL23pg4HDOvdwzxxecKe0431ZhbX1jc6u4XdrZ3ds/KB8etVScSEKbJOax7PhYUc4i2tRMc9oRkuLQ57Ttj28zv/1EpWJx9KAngnohHkYsYARrI7XEtWO7tX654tjODGiVuDmpQI5Gv/zTG8QkCWmkCcdKdV1HaC/FUjPC6bTUSxQVmIzxkHYNjXBIlZfO0k7RmVEGKIileZFGM/XvRopDpSahbyZDrEdq2cvE/7xuooOal7JIJJpGZH4oSDjSMcq+jgZMUqL5xBBMJDNZERlhiYk2BS1cESyLNi2ZYtzlGlZJ68J2q3b1/rJSv8krKsIJnMI5uHAFdbiDBjSBwCO8wCu8Wc/Wu/Vhfc5HC1a+cwwLsL5+AVtrlrQ=</latexit>

p = 0.18

❌

❌

❌

✓

✓

④ Rewired graph

<latexit sha1_base64="eJd7mQ/OKEt+LjROdeBPqKDkCI4=">AAACJ3icbVDLSsNAFJ3UV62vqEs3g0WoIiURqW6EooguK9gHNLFMppN26GQSZiZCCfkHf8MfcKt/4E506cbvcNIWsdUDA+eeey/3zPEiRqWyrA8jNze/sLiUXy6srK6tb5ibWw0ZxgKTOg5ZKFoekoRRTuqKKkZakSAo8BhpeoOLrN+8J0LSkN+qYUTcAPU49SlGSksd8+DqzpEKCXgGS06AVB8jljTSQ/hTXI4H0v2OWbTK1gjwL7EnpAgmqHXML6cb4jggXGGGpGzbVqTcBAlFMSNpwYkliRAeoB5pa8pRQKSbjP6Uwj2tdKEfCv24giP190aCAimHgacnM6dytpeJ//XasfJP3YTyKFaE4/EhP2ZQhTALCHapIFixoSYIC6q9QtxHAmGlY5y6EtHMWlrQwdizMfwljaOyXSlXbo6L1fNJRHmwA3ZBCdjgBFTBNaiBOsDgATyBZ/BiPBqvxpvxPh7NGZOdbTAF4/MbO6GmGQ==</latexit>

G? = (V, E?)

<latexit sha1_base64="2pnhlXp+JShJWv7RylbprsQL7o4=">AAACBXicbVDLSgMxFM3UV62vqks3wSK4KjMi1WXRha5KBfvAdiiZNNOGZjJDckcsw6z9Abf6B+7Erd/hD/gdZtoubOuBwOGce7knx4sE12Db31ZuZXVtfSO/Wdja3tndK+4fNHUYK8oaNBShantEM8ElawAHwdqRYiTwBGt5o+vMbz0ypXko72EcMTcgA8l9TgkY6aEL7AmSm1ot7RVLdtmeAC8TZ0ZKaIZ6r/jT7Yc0DpgEKojWHceOwE2IAk4FSwvdWLOI0BEZsI6hkgRMu8kkcYpPjNLHfqjMk4An6t+NhARajwPPTAYEhnrRy8T/vE4M/qWbcBnFwCSdHvJjgSHE2fdxnytGQYwNIVRxkxXTIVGEgilp7krEs2hpwRTjLNawTJpnZadSrtydl6pXs4ry6Agdo1PkoAtURbeojhqIIole0Ct6s56td+vD+pyO5qzZziGag/X1CwanmWQ=</latexit>
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Classification results for the GCN model

Dynamic Triangulation-Based Graph Rewiring for Graph Neural Networks CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea

Base (GCN) DIGL FA SRDF FOSR BORF GTR JDR DR TRIGON

Cham. 65.35±0.54 54.82±0.48 26.34±0.61 63.08±0.37 67.98±0.40 65.35±0.51 68.03±0.61 65.85±0.49 74.28±0.48 75.52±0.50
Squir. 51.30±0.38 40.53±0.29 22.88±0.42 49.11±0.28 52.63±0.30 �24h 53.32±0.44 53.78 ±0.46 65.25±0.26 66.48±0.35
Actor 30.02±0.22 26.75±0.23 26.03±0.30 31.85±0.22 29.26±0.23 31.36±0.27 31.08±0.28 34.12 ±0.33 41.36±0.20 43.81±0.24
Texas 56.19±1.61 45.95±1.58 55.93±1.76 59.79±1.71 61.35±1.25 56.30±1.61 57.18±1.64 69.56 ±1.71 70.46±1.61 75.74±1.61
Wisc. 55.12±1.51 46.90±1.28 46.77±1.48 58.49±1.23 55.60±1.25 55.37±1.47 57.22±1.50 67.87 ±1.62 70.98±1.50 73.90±1.61

Cornell 44.78±1.45 44.46±1.37 45.33±1.55 47.73±1.51 45.11±1.47 46.81±1.56 47.57±1.52 57.31 ±1.60 67.22±1.48 69.11±1.53
R-Emp. 51.66±0.17 53.93±0.14 OOM 52.53±0.13 52.38±0.21 58.58±0.14 53.31±0.23 71.23 ±0.18 61.99±0.14 66.52±0.13

Cora 87.73±0.25 88.31±0.29 29.86±0.28 87.73±0.31 87.94±0.26 87.72±0.27 87.86±0.28 87.54±0.25 91.39±0.24 91.71±0.29
Citeseer 76.01±0.25 76.22±0.34 22.31±0.34 76.43±0.32 76.34±0.27 76.49±0.28 76.12±0.28 76.09 ±0.29 81.14±0.34 82.85±0.38
Pubmed 88.20±0.10 88.51±0.10 OOM 88.16±0.11 88.42±0.10 88.34±0.10 88.44±0.10 88.14±0.10 88.69±0.10 90.01±0.13

Table 2: Experimental results (accuracy) on heterophilic and homophilic datasets with GCN as backbone. Best score in bold and
second-best score underlined.

Base (GAT) DIGL FA SRDF FOSR BORF GTR JDR DR TRIGON

Cham. 65.07±0.41 56.34±0.43 27.11±0.56 63.15±0.44 66.61±0.45 66.92±0.51 65.97±0.54 65.30 ±0.59 72.04±0.37 75.54±0.58
Squir. 50.87±0.56 41.65±0.68 21.49±0.71 50.36±0.38 52.02±0.43 � 24⌘ 52.72±0.48 51.21±0.64 61.47±0.29 66.12±0.40
Actor 29.92±0.23 31.22±0.47 28.20±0.51 31.47±0.25 29.73±0.24 29.64±0.33 30.13±0.31 32.71 ±0.40 40.25±0.23 44.02±0.28
Texas 56.84±1.61 46.49±1.63 56.17±1.71 57.45±1.62 61.85±1.41 56.68±1.49 57.88±1.65 64.75 ±1.65 74.30±1.38 77.29±1.55
Wisc. 53.58±1.39 46.29±1.47 46.95±1.52 56.80±1.29 54.06±1.27 55.39±1.23 56.53±1.64 60.06 ±1.45 74.33±1.24 75.81±1.38

Cornell 46.05±1.49 44.05±1.44 44.60±1.74 48.03±1.66 48.30±1.61 48.57±1.56 48.70±1.63 58.19±1.58 68.03±1.62 70.63±1.66
R-Emp. 49.23±0.33 53.89±0.16 OOM 50.75±0.17 49.54±0.31 51.03±0.26 50.60±0.24 62.09 ±0.18 61.80±0.16 64.36±0.20

Cora 87.65±0.24 88.31±0.29 30.44±0.26 88.11±0.28 88.13±0.27 87.72±0.27 87.94±0.23 87.91 ±0.25 91.37±0.23 91.71±0.29
Citeseer 76.20±0.27 76.22±0.34 23.11±0.32 76.26±0.31 75.94±0.32 76.44±0.44 76.35±0.28 77.80 ±0.39 81.61±0.25 82.85±0.38
Pubmed 87.39±0.11 87.96±0.10 OOM 87.44±0.12 87.56±0.11 87.61±0.12 87.31±0.12 87.73 ±0.10 89.14±0.09 90.01±0.13

Table 3: Experimental results (accuracy) on heterophilic and homophilic datasets with GAT as backbone. Best score in bold and
second-best score underlined.

The results validate that augmenting the graph with carefully
selected non-local triangles leads to improved global connectiv-
ity and more e�ective message propagation in GNNs. As we will
observe in Section 5, this in turn leads to more e�ective message
propagation and better downstream performance in GNNs.

We have further examined the diameter and spectral gap of
the rewired graphs. As shown in Table 1, our TRIGON framework
achieves a consistent reduction in graph diameter compared to
the Delaunay graph. This e�ect becomes increasingly pronounced
on larger graphs, where long-range dependencies are critical for
e�ective learning. By selecting both local and distant triangles,
TRIGON overcomes the inherent planarity and locality constraints
of Delaunay constructions, introducing structurally meaningful
shortcuts that shrink path lengths between distant nodes. These
structural modi�cations lead to enhanced expansion capabilities,
re�ected by the observed increase in the spectral gap. Speci�cally,
according to Eq. (1), the Cheeger constant provides a lower bound
on the spectral gap in terms of the graph’s diameter and minimum
degree. Thus, the observed diameter reduction directly implies
stronger spectral connectivity, enabling more e�ective propagation
of information across the graph and alleviating the limitations of
traditional message passing on sparse or high-diameter topologies.

5 EXPERIMENTAL EVALUATION
We have conducted experiments on ten di�erent datasets for the
node classi�cation task, comprising seven heterophilic datasets
[46, 49, 54] and three homophilic datasets [51].

5.1 Baseline Models
We compare TRIGON against eight rewiring methods designed to
mitigate oversquashing or enhance graph connectivity. FA [1] intro-
duces fully connected connections at the �nal GNN layer, aiming to
alleviate oversquashing by enabling global communication. DIGL
[35]2 enhances connectivity through di�usion-based edge augmen-
tation inspired by personalized PageRank. SDRF [55]3 builds upon
Ricci curvature, proposing a stochastic discrete Ricci Flow that
rewires the graph by balancing negatively curved edges. FOSR
[33]4 selects edges that maximize a �rst-order approximation of the
spectral gap, promoting more e�cient message propagation. BORF
[41]5 tackles both oversmoothing and oversquashing by pruning
edges with extreme curvature values. GTR [7]6 is an iterative algo-
rithm to add edges to the graph to minimize total resistance. DR [2]7

2https://github.com/gasteigerjo/gdc
3https://github.com/jctops/understanding-over-squashing/tree/main
4https://github.com/kedar2/FoSR/tree/main
5https://github.com/hieubkvn123/revisiting-gnn-curvature
6https://github.com/blackmit/gtr_rewiring
7https://github.com/Hugo-Attali/Delaunay-Rewiring
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Figure 3: E�ect of GCN model depth on classi�cation accuracy across Chameleon, Cora, and Citeseer. TRIGON outperforms
both the original and Delaunay-rewired graphs, showing greater robustness to oversmoothing

leverages node features to perform Delaunay triangulation-based
rewiring. Finally, JDR[36]8 reconstructs the graph to maximize
spectral alignment between structural and feature information.

5.2 Experimental Setup
To optimize the triangle selector module 5sel, we perform a grid
search over the following hyperparameters: learning rate between
{0.01, 0.005, 0.001}, weight decay values between {5e�5, 5e�6}, and
hidden dimensions between {64, 128, 256}. For the construction
of the :-nearest neighbor (:-NN) graph, we set the number of
neighbors to : 2 {10, 20}, depending on the dataset size and the
density of the feature space. For the GNN backbones, we use two
standard GNN architectures, GCN [34] and GAT [56], to compare
several graph rewiring strategies. We adopt the training framework
introduced in [2, 45]. Speci�cally, we set the number of layers to 2,
dropout rate to 0.5, learning rate to 0.005, patience to 100 epochs,
and weight decay to 5e�6 for Texas, Wisconsin, and Cornell, or
5e�5 for all other datasets. The hidden dimension is set to 32 for
Texas, Wisconsin, Cornell, and Actor; 48 for Squirrel, Chameleon,
and Roman-Empire; and 16 for Cora, Citeseer, and Pubmed. For all
datasets, we follow the same data split: 60% of nodes are used for
training, 20% for validation, and the remaining 20% for testing.

5.3 Results
The node classi�cation results are shown in Tables 2 and 3. As we
can observe, TRIGON outperforms state-of-the-art graph rewiring
techniques across nine out of ten evaluated benchmarks, regardless
of the backbone (GCN or GAT) and under both homophilic and
heterophilic conditions. On average, applying a standard GCN on
TRIGON-rewired graphs yields a classi�cation accuracy improve-
ment exceeding 25% compared to the original graph.

More broadly, these results con�rm that feature-based rewiring
can provide a signi�cant advantage over purely structural meth-
ods, as also observed in [2], where feature-aware approaches such
as TRIGON and DR consistently outperform structural rewiring
baselines. In particular, TRIGON goes beyond static approaches
like Delaunay-based rewiring (DR) by learning to select non-local
8https://github.com/jlinki/JDR/tree/main

triangles that better align with task-speci�c dependencies. This
adaptivity enables the construction of structurally rich triangula-
tions, improving spectral expansion and facilitating more e�ective
long-range message propagation.

5.4 Oversmoothing Analysis
Oversmoothing, typically linked to deeper GNNs [8, 12], can also
arise when structural neighborhoods closely align with feature
similarity. This is notably the case in Delaunay-rewired graphs,
where triangles are formed between spatially adjacent nodes, often
reinforcing local redundancy. Such con�gurations may accelerate
the convergence of node embeddings toward indistinguishable
node representations, sometimes after only a few layers [13]. Since
TRIGON dynamically selects triangles based on their contribution
to the learning objective, it induces more diverse and task-relevant
connectivity patterns. In particular, the inclusion of both local and
long-range triangles diversi�es message passing and helps preserve
feature variability. We therefore investigate whether our method
o�ers greater robustness to oversmoothing.

Figure 3 reports classi�cation accuracy versus GCN depth on
Chameleon, as well as on the homophilic datasets Cora and Cite-
seer, where oversmoothing is known to be more pronounced [59].
As expected, a standard GCN exhibits a steep decline in perfor-
mance as depth increases, con�rming the presence of oversmooth-
ing. Delaunay-based rewiring (DR) provides improvement but still
su�ers from degradation beyond a few layers. In contrast, TRIGON
consistently yields higher accuracy across all depths, indicating a
stronger preservation of representational diversity. These �ndings
suggest that task-aware, non-local triangle selection can e�ectively
delay or mitigate oversmoothing, while also improving global con-
nectivity and information propagation.

5.5 Ablation Studies
We conduct ablation experiments to evaluate the contribution of the
triangle selection mechanism and the associated loss components of
TRIGON. In addition, we assess the impact of the candidate triangle
sources, the original graph and the :-NN graph, to quantify the
bene�t of integrating structural and feature-based information.
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Figure 3: E�ect of GCN model depth on classi�cation accuracy across Chameleon, Cora, and Citeseer. TRIGON outperforms
both the original and Delaunay-rewired graphs, showing greater robustness to oversmoothing

leverages node features to perform Delaunay triangulation-based
rewiring. Finally, JDR[36]8 reconstructs the graph to maximize
spectral alignment between structural and feature information.

5.2 Experimental Setup
To optimize the triangle selector module 5sel, we perform a grid
search over the following hyperparameters: learning rate between
{0.01, 0.005, 0.001}, weight decay values between {5e�5, 5e�6}, and
hidden dimensions between {64, 128, 256}. For the construction
of the :-nearest neighbor (:-NN) graph, we set the number of
neighbors to : 2 {10, 20}, depending on the dataset size and the
density of the feature space. For the GNN backbones, we use two
standard GNN architectures, GCN [34] and GAT [56], to compare
several graph rewiring strategies. We adopt the training framework
introduced in [2, 45]. Speci�cally, we set the number of layers to 2,
dropout rate to 0.5, learning rate to 0.005, patience to 100 epochs,
and weight decay to 5e�6 for Texas, Wisconsin, and Cornell, or
5e�5 for all other datasets. The hidden dimension is set to 32 for
Texas, Wisconsin, Cornell, and Actor; 48 for Squirrel, Chameleon,
and Roman-Empire; and 16 for Cora, Citeseer, and Pubmed. For all
datasets, we follow the same data split: 60% of nodes are used for
training, 20% for validation, and the remaining 20% for testing.

5.3 Results
The node classi�cation results are shown in Tables 2 and 3. As we
can observe, TRIGON outperforms state-of-the-art graph rewiring
techniques across nine out of ten evaluated benchmarks, regardless
of the backbone (GCN or GAT) and under both homophilic and
heterophilic conditions. On average, applying a standard GCN on
TRIGON-rewired graphs yields a classi�cation accuracy improve-
ment exceeding 25% compared to the original graph.

More broadly, these results con�rm that feature-based rewiring
can provide a signi�cant advantage over purely structural meth-
ods, as also observed in [2], where feature-aware approaches such
as TRIGON and DR consistently outperform structural rewiring
baselines. In particular, TRIGON goes beyond static approaches
like Delaunay-based rewiring (DR) by learning to select non-local
8https://github.com/jlinki/JDR/tree/main

triangles that better align with task-speci�c dependencies. This
adaptivity enables the construction of structurally rich triangula-
tions, improving spectral expansion and facilitating more e�ective
long-range message propagation.

5.4 Oversmoothing Analysis
Oversmoothing, typically linked to deeper GNNs [8, 12], can also
arise when structural neighborhoods closely align with feature
similarity. This is notably the case in Delaunay-rewired graphs,
where triangles are formed between spatially adjacent nodes, often
reinforcing local redundancy. Such con�gurations may accelerate
the convergence of node embeddings toward indistinguishable
node representations, sometimes after only a few layers [13]. Since
TRIGON dynamically selects triangles based on their contribution
to the learning objective, it induces more diverse and task-relevant
connectivity patterns. In particular, the inclusion of both local and
long-range triangles diversi�es message passing and helps preserve
feature variability. We therefore investigate whether our method
o�ers greater robustness to oversmoothing.

Figure 3 reports classi�cation accuracy versus GCN depth on
Chameleon, as well as on the homophilic datasets Cora and Cite-
seer, where oversmoothing is known to be more pronounced [59].
As expected, a standard GCN exhibits a steep decline in perfor-
mance as depth increases, con�rming the presence of oversmooth-
ing. Delaunay-based rewiring (DR) provides improvement but still
su�ers from degradation beyond a few layers. In contrast, TRIGON
consistently yields higher accuracy across all depths, indicating a
stronger preservation of representational diversity. These �ndings
suggest that task-aware, non-local triangle selection can e�ectively
delay or mitigate oversmoothing, while also improving global con-
nectivity and information propagation.

5.5 Ablation Studies
We conduct ablation experiments to evaluate the contribution of the
triangle selection mechanism and the associated loss components of
TRIGON. In addition, we assess the impact of the candidate triangle
sources, the original graph and the :-NN graph, to quantify the
bene�t of integrating structural and feature-based information.
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leverages node features to perform Delaunay triangulation-based
rewiring. Finally, JDR[36]8 reconstructs the graph to maximize
spectral alignment between structural and feature information.

5.2 Experimental Setup
To optimize the triangle selector module 5sel, we perform a grid
search over the following hyperparameters: learning rate between
{0.01, 0.005, 0.001}, weight decay values between {5e�5, 5e�6}, and
hidden dimensions between {64, 128, 256}. For the construction
of the :-nearest neighbor (:-NN) graph, we set the number of
neighbors to : 2 {10, 20}, depending on the dataset size and the
density of the feature space. For the GNN backbones, we use two
standard GNN architectures, GCN [34] and GAT [56], to compare
several graph rewiring strategies. We adopt the training framework
introduced in [2, 45]. Speci�cally, we set the number of layers to 2,
dropout rate to 0.5, learning rate to 0.005, patience to 100 epochs,
and weight decay to 5e�6 for Texas, Wisconsin, and Cornell, or
5e�5 for all other datasets. The hidden dimension is set to 32 for
Texas, Wisconsin, Cornell, and Actor; 48 for Squirrel, Chameleon,
and Roman-Empire; and 16 for Cora, Citeseer, and Pubmed. For all
datasets, we follow the same data split: 60% of nodes are used for
training, 20% for validation, and the remaining 20% for testing.

5.3 Results
The node classi�cation results are shown in Tables 2 and 3. As we
can observe, TRIGON outperforms state-of-the-art graph rewiring
techniques across nine out of ten evaluated benchmarks, regardless
of the backbone (GCN or GAT) and under both homophilic and
heterophilic conditions. On average, applying a standard GCN on
TRIGON-rewired graphs yields a classi�cation accuracy improve-
ment exceeding 25% compared to the original graph.

More broadly, these results con�rm that feature-based rewiring
can provide a signi�cant advantage over purely structural meth-
ods, as also observed in [2], where feature-aware approaches such
as TRIGON and DR consistently outperform structural rewiring
baselines. In particular, TRIGON goes beyond static approaches
like Delaunay-based rewiring (DR) by learning to select non-local
8https://github.com/jlinki/JDR/tree/main

triangles that better align with task-speci�c dependencies. This
adaptivity enables the construction of structurally rich triangula-
tions, improving spectral expansion and facilitating more e�ective
long-range message propagation.

5.4 Oversmoothing Analysis
Oversmoothing, typically linked to deeper GNNs [8, 12], can also
arise when structural neighborhoods closely align with feature
similarity. This is notably the case in Delaunay-rewired graphs,
where triangles are formed between spatially adjacent nodes, often
reinforcing local redundancy. Such con�gurations may accelerate
the convergence of node embeddings toward indistinguishable
node representations, sometimes after only a few layers [13]. Since
TRIGON dynamically selects triangles based on their contribution
to the learning objective, it induces more diverse and task-relevant
connectivity patterns. In particular, the inclusion of both local and
long-range triangles diversi�es message passing and helps preserve
feature variability. We therefore investigate whether our method
o�ers greater robustness to oversmoothing.

Figure 3 reports classi�cation accuracy versus GCN depth on
Chameleon, as well as on the homophilic datasets Cora and Cite-
seer, where oversmoothing is known to be more pronounced [59].
As expected, a standard GCN exhibits a steep decline in perfor-
mance as depth increases, con�rming the presence of oversmooth-
ing. Delaunay-based rewiring (DR) provides improvement but still
su�ers from degradation beyond a few layers. In contrast, TRIGON
consistently yields higher accuracy across all depths, indicating a
stronger preservation of representational diversity. These �ndings
suggest that task-aware, non-local triangle selection can e�ectively
delay or mitigate oversmoothing, while also improving global con-
nectivity and information propagation.

5.5 Ablation Studies
We conduct ablation experiments to evaluate the contribution of the
triangle selection mechanism and the associated loss components of
TRIGON. In addition, we assess the impact of the candidate triangle
sources, the original graph and the :-NN graph, to quantify the
bene�t of integrating structural and feature-based information.



•  Several ongoing research efforts on rewiring techniques
– Batch Ollivier-Ricci Flow (BORF) [Nguyen et al., ICML ‘23]

– Spectral rewiring: FoSR [Karhadkar et al., ICLR ‘23]; GOKU [Liang et al., ICML ’25]

– Greedy Total Resistance (GTR) rewiring [Black et al., ICML ‘23]

• Going further: leverage the internal functioning of GNNs
– Impact of width, depth, and topology on over-squashing [Di Giovanni et al., ICML ‘23]

K Highly-effective deep GNNs?
– Not quite there yet
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• Learn a cluster assignment matrix using an MLP

• Train GNN and MLP by optimizing a clustering loss

– We can allow combinations of motifs
– HOSC model: Higher-order spectral clustering

• Compute new node features using GNN layers
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Clustering results (NMI) for the HOSCPOOL model

HOSCPOOL as an end-to-end higher-order clustering algorithm
• Architecture: message passing layer (GCN) + MLP

60 representation learning with graph neural networks

Dataset SC MSC DiffPool MinCutPool HoscPool-1 HoscPool-2 HoscPool

Cora 0.150±0.002 0.056±0.014 0.308±0.023 0.391±0.028 0.435±0.032 0.464±0.036 0.502
±0.029

PubMed 0.183±0.002 0.002±0.000 0.098±0.006 0.214±0.066 0.230±0.071 0.215±0.073 0.260±0.054
Photo 0.592±0.008 0.451±0.011 0.171±0.004 0.086±0.014 0.495±0.068 0.513±0.083 0.598

±0.101
PC 0.464±0.002 0.166±0.009 0.043±0.008 0.026±0.006 0.497±0.040 0.499±0.036 0.528

±0.041
CS 0.273±0.006 0.011±0.009 0.383±0.048 0.431±0.060 0.479±0.022 0.701±0.029 0.731

±0.018
DBLP 0.027±0.003 0.005±0.006 0.186±0.014 0.334

±0.026 0.326±0.027 0.284±0.026 0.312±0.027
Polblogs 0.017±0.000 0.014±0.001 0.317±0.010 0.440±0.390 0.992±0.003 0.994

±0.001 0.994
±0.005

Email-eu 0.485±0.030 0.382±0.019 0.096±0.034 0.253±0.028 0.317±0.026 0.488
±0.025 0.476±0.021

Syn1 0.000±0.000 1.000±0.000 0.035±0.000 0.043±0.008 0.041±0.006 1.000±0.000 1.000±0.000
Syn2 0.003±0.000 0.050±0.003 0.081±0.008 0.902±0.028 0.942±0.028 1.000±0.000 1.000±0.000
Syn3 1.000±0.000 1.000±0.000 0.067±0.001 0.052±0.002 0.115±0.006 0.826±0.005 1.000±0.000

Table 4.4: NMI obtained by clustering the nodes of various networks over ten different runs.

Table 4.4 shows the experimental results using the Normalized Mutual Information
(NMI) clustering metric [For10; MV13a]. HoscPool has a competitive performance
compared to the baseline models across most datasets. This trend is emphasized in
synthetic datasets, where we know that higher-order structure is critical, proving the
benefits of our clustering method. We have observed that DiffPool often fails to converge
to a good solution. Besides, MinCutPool, as also discussed in [Tsi+23], sometimes get
stuck in degenerate solutions (e.g., Amazon PC and Photo – all nodes are assigned to less
than 10% of clusters), failing to converge even when tuning model architecture and hyper-
parameters. HoscPool-1 shows superior performance and alleviates this issue, meaning
that it can be considered as an improved version of MinCutPool. MSC often performs
badly, revealing its excessive dependence on the presence of motifs. On the contrary, our
results highlight the robustness of HoscPool to the limited presence of motifs due to
its consideration for node features. Besides, HoscPool’s attention to finer granularity
levels allows to group nodes primarily based on motifs while still considering edges
when necessary, which may be the reason for the performance improvement with respect
to HoscPool-2. This ablation study proves the relevance of our underlying claims:
incorporating higher-order information leads to better communities, and combining
several motifs further helps. In terms of efficiency, the main complexity of HoscPool lies
in the derivation of AM, which remains relatively fast for triangle motifs: AM = A2

� A.
Despite being slower to compute compared to other coarsening graph techniques such as
MinCutPool, it is still affordable even for the larger graphs considered here.

graph classification. For this task, we consider a fixed network architecture
composed of: GNN – Pooling – GNN – Pooling – GNN – Global Pooling – Dense (⇥2). We
sometimes add skip connections and global pooling to the output of the first and second
GNN; and concatenate the resulting vector to the third GNN’s output. A pooling block
produces a cluster assignment matrix of dimension num nodes ⇥ int(num nodes ⇥ 0.25).

We have used several common benchmark datasets for graph classification, taken from
TUDataset [Mor+20], including three bioinformatics protein datasets Proteins, Enzymes,
and D&D; one mutagen Mutagenicity; one anticancer activity dataset NCI1; two chemical
compound datasets Cox-2-MD, ER-MD; one social network Reddit-Binary. Bench-hard
is taken from this source4 where X and A are completely uninformative if considered
alone. We split them into a training set (80%), validation set (10%), and test set (10%).
For featureless graphs, we use constant features.

4 https://github.com/FilippoMB/Benchmark dataset for graph classification

+
spectral

clustering
motif spectral

clustering

[Benson et al, Science ‘16], [Ying et al., NeurIPS ‘18], [Bianchi et al., ICML ‘20]
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Classification accuracy for the HOSCPOOL model

4.3 clustering and pooling for graph neural networks 61

Method Proteins NCI1 Mutagen. DD Reddit-B Cox2-MD ER-MD b-hard

NoPool 71.6±4.1 77.1±1.9 78.1±1.3 71.2±2.2 80.1±2.6 58.7±3.2 72.2±2.9 66.5±0.5
Random 75.7±3.2 77.0±1.7 79.2±1.3 77.1±1.5 89.3±2.6 62.9±3.6 73.0±4.5 69.1±2.1

GMT 75.0±4.2 74.9±4.3 79.4±2.2 78.1±3.2 86.7±2.6 58.9±3.6 74.3±4.5 70.1±3.4
MinCutPool 75.9±2.4 76.8±1.6 78.6±1.8 78.4±2.8 89.0±1.4 58.9±5.1 75.5±4.0 72.6±1.5

DiffPool 73.8±3.7 76.7±2.1 77.9±2.3 76.3±2.1 87.3±2.4 57.1±4.8 76.8±4.8 70.7±2.0
EigPool 74.2±3.1 75.0±2.2 75.2±2.7 75.1±1.8 82.8±2.1 59.8±3.4 73.1±3.8 69.1±3.1

SAGPool 70.6±3.5 74.1±3.9 74.4±2.7 71.5±4.1 74.7±4.5 56.9±9.7 71.7±8.2 39.6±9.6
ASAP 74.4±2.6 74.3±1.6 76.8±2.4 73.2±2.5 84.1±1.1 60.5±5.5 74.5±5.9 70.5±1.7

HoscPool-1 76.7±2.5 77.3±1.6 79.8±1.6 78.8±2.0 91.2±1.0 61.6±3.5 76.2±4.2 72.4±0.8
HoscPool-2 77.0±3.1 80.3

±2.0 92.8±1.5 66.4
±4.6 92.8

±1.5 66.4
±4.6 77.9±4.3 73.5±0.8

HoscPool 77.5
±2.3 79.9±1.7 82.3

±1.3 79.4
±1.8 93.6

±0.9 64.6±3.9 78.2
±3.8 74.0

±0.4

Table 4.5: Graph classification accuracy of various pooling operators.

We have compared HoscPool to representative graph classification baseline mod-
els, involving pooling operators DiffPool [Yin+18], MinCutPool [BGA20], EigPool
[Ma+19], SAGPool [LLK19], ASAP [RST20], and GMT [BKH21]. We implement a random
pooling operator (Random) to assess the benefits of pooling similar nodes together and a
model with a single global pooling operator (NoPool) to assess how useful leveraging
hierarchical information is.

The graph classification results are reported in Table 4.5, from which we draw the
following conclusions. First of all, we observe that performing pooling proves useful,
contrary to NoPool, in most cases. HoscPool compares favorably on all datasets w.r.t.
other pooling baselines. Higher-order connectivity patterns are more desirable than
first-order ones, and combining both is even better. This observation is aligned with the
findings of the previous paragraph and shows that better clustering (i.e., graph coarsen-
ing) is correlated with better classification performance. However, while the clustering
performance of HoscPool is significantly better than baselines, the performance gap
has slightly closed down on this task. Even more surprising, the benefits of existing
advanced node-grouping or node-dropping methods are not considerable with respect to
the Random pooling baseline.

discussion. From the experiments conducted here, we have noticed that despite
effectively learning a cluster assignment matrix – that assigns nodes to more clusters and
better balances the number of nodes per cluster – the performance gain w.r.t. the Random
baseline model is often not significant. To explain this behavior, we have examined the
properties of the graph datasets used. The experiments are detailed in our article [DM22].
In a nutshell, the benchmark graphs are relatively small, with few node types co-existing
in the same graph, weak homophily, and a relatively poor community structure, which
clustering algorithms aim to exploit. Besides, because most datasets do not have dense
node features (only labels), the node identifiability assumption is shaken and does not
enable our MLP of (4.13) to fully distinguish between same-label-nodes, thus making
it impossible to place them in distinct clusters. On top of that, we now need to learn
a clustering pattern that extends to all graphs, which is a much more complex task
(compared to a single graph in the clustering task). All these points raise questions for
future work regarding the functioning of hierarchical pooling operators for graph-level
prediction tasks.
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• End-to-end clustering with GNNs
J Leverages graph topology + node features
J Avoids eigenvalue decomposition of the Laplacian matrix
J Allows clustering of out-of-sample graphs 

• Higher-order topological information
J Flexible mechanism of HOSCPOOL

K Performance of hierarchical clustering–based pooling
– Graph classification benchmarks: small molecular graphs

Main Takeaways
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Generalization of GNNs

w/ Y. Abbahaddou, J. Lutzeyer, A. Aboussalah, M. Vazirgiannis

ICML ‘25

Y.  Abbahaddou



• Goal: learn a predictor      that performs well on new graphs                         
different from those in the training set    

Generalization on GNNs and Challenges

39
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• Why a challenging problem?
– Topology shift
– Size shift
– Feature distribution shift

2/8

Generalization for Graphs Neural Networks
• Goal: learn a predictor f✓ that performs well on new graphs G ⇠ Dtest, di↵erent from those in the training set

Dtrain.

• Why complex?
• Topology shift: unseen motifs, degree ranges, community structure.
• Size shift: training on small graphs, testing on large (or vice-versa).
• Features Distribution shift: molecular sca↵olds, evolving social networks, etc.

• Examples: molecular sca↵olds, evolving social networks, etc.

• Active research: data augmentation, regularization, architecture refinements, PAC-Bayes bounds, etc.
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Topology shift Size shift Feature distribution shift

• Regularization
• Architecture refinements
• Data augmentation



• Augmentation strategy: For each training graph                , the generator         
produces M samples

A Theoretical Framework for Graph Data Augmentation

40
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Goals of augmentation: minimize the generalization error

A Theoretical Framework for Graph Data Augmentation

41[Shalev-Shwartz and Ben-David, Understanding Machine Learning ‘14]
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Theorem (informal)
Let                        be a classification loss function. Then, with a probability at least                
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generalization error augmentation error
distance between the original graph and the 

augmented samples

Rademacher complexity
capacity of the GNN to fit 

random noise
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1.   Train GNN

GRATIN: GMM-based Augmentation

42
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GNN Generalization with Gaussian Mixture Model Based Augmentation

scores depend not only on the augmented graphs themselves
but also on the model’s weights and architecture. This
highlights the need for a graph data augmentation strategy
tailored specifically to the GNN backbone in use, as opposed
to traditional techniques like DropNode, DropEdge, and
G-Mixup, which are general-purpose methods that can be
applied with any GNN architecture.

Theorem 3.4 is valid for any differentiable loss function.
More specifically, if the chosen loss is the cross entropy
or the negative log-likelihood, then the Hessian matrix cor-
responds to the Fisher information matrix (Barshan et al.,
2020; Lee et al., 2022). Consequently, the norm of H�1

✓̂
,

i.e., the inverse of the Hessian matrix, can be bounded above
using the Cramér–Rao inequality (Nielsen, 2013). There-
fore, a trivial case where the norm of influence scores is zero
arises when the gradient of the loss function with respect
to the input graphs vanishes. This scenario, for instance,
can occur in the DD dataset when using GIN. A detailed
analysis of this phenomenon is provided in Section 4. In
these cases, data augmentation becomes ineffective, having
minimal impact on the GNN’s ability to generalize. We
can measure the average influence I(eGm

n ) of an augmented
graph eGm

n on the test set by averaging the derivatives as
follows,

I(eGm
n ) =

�1

|Dtest|
X

Gtest
k 2Dtest

d`(G test
k , ✓̂✏n,m)

d✏n,m
.

A negative value of I(eGm
n ) indicates that adding the aug-

mented data to the training set would increase the prediction
loss on the test set, negatively affecting the GNN’s gener-
alization. In contrast, a good augmented graph is one with
a positive I(eGm

n ), indicating improved generalization. In
Figure 2, we present the density of the average influence
scores of each augmented data on the test set.

3.5. Fisher-Guided GMM Augmentation

Using influence scores, we can further improve the gen-
eralization of the GNN by filtering candidate augmented
representations. The process consists of three key stages.
(i) Primary GNN training: The GNN model is first trained
on the original training set without incorporating any aug-
mented graphs. (ii) Augmentation and filtering: A pool
of candidate augmented graph representations is generated
using a data augmentation strategy based on GMMs. Be-
cause computing the gradient r✓`(Gtest

k , ✓̂) requires access
to ground-truth labels, we evaluate the influence of each
candidate augmented graph using the set of validation graph
rather than on the unseen test set. This yields a ranking of
augmented graphs by their estimated impact on validation
performance. During this step, we compute both the gradi-
ent and the Hessian only with respect to the post-readout
parameters. (iii) Filtering: Finally, we combine a subset

Table 1. Classification accuracy (± std) on different benchmark
graph classification datasets for the data augmentation baselines
based on the GCN backbone. The higher the accuracy (in %) the
better the model. Highlighted are the first, second best results.

Model IMDB-BIN IMDB-MUL MUTAG PROTEINS DD

No Aug. 73.00±4.94 47.73±2.64 73.92±5.09 69.99±5.35 69.69±2.89

DropEdge 71.70±5.42 45.67±2.46 73.39±8.86 70.07±3.86 69.35±3.37

DropNode 74.00±3.44 43.80±3.54 73.89±8.53 69.81±4.61 69.01±3.95

SubMix 72.70±5.59 46.00±2.44 77.13±9.69 67.57±4.56 70.11±4.48

G-Mixup 72.10±3.27 48.33±3.06 88.77±5.71 65.68±5.03 61.20±3.88

GeoMix 69.69±3.37 49.80±4.71 74.39±7.37 69.63±5.37 68.50±3.74

GRATIN 71.00±4.40 49.82±4.26 76.05±6.74 70.97±5.07 71.90±2.81

Table 2. Classification accuracy (± std) on different benchmark
graph classification datasets for the data augmentation baselines
based on the GIN backbone. The higher the accuracy (in %) the
better the model. Highlighted are the first, second best results.

Model IMDB-BIN IMDB-MUL MUTAG PROTEINS DD

No Aug. 70.30±3.66 48.53±4.05 83.42±2.12 69.54±3.61 68.00±3.18

DropEdge 70.40±4.03 46.80±3.91 74.88±9.62 68.27±5.21 67.82±4.46

DropNode 70.30±3.49 45.20±4.24 75.53±7.89 65.40±4.71 69.01±3.95

SubMix 72.50±4.98 48.13±2.12 81.90±9.21 70.44±2.58 68.59±5.04

G-Mixup 70.70±3.10 47.73±4.95 87.77±7.48 68.82±3.48 63.91±2.09

GeoMix 70.60±4.61 47.20±3.75 81.90±7.55 69.80±5.33 68.34±5.30

GRATIN 71.70±4.24 49.20±2.06 88.83±5.02 71.33±5.04 68.61±4.62

of the highest-ranked augmented graphs with the original
training set to finetune the post-readout function. This filter-
ing setup aligns perfectly with the assumptions of Theorem
3.4, as we first train the post-readout function without any
augmentation, then evaluate each augmentation’s influence,
and only afterward retrain the post-readout layer using the
selected augmented graphs. Our experiments in Section 4
demonstrate that this training paradigm improves general-
ization across various datasets and GNN architectures.

4. Experimental Results
In this section, we present our results and analysis. Our
experimental setup is described in Appendix K.

On the Generalization of GNNs. In Tables 1 and 2, we
compare the test accuracy of our data augmentation strat-
egy against baseline methods. Additional results for the
same experiment on larger datasets can be found in Ap-
pendix L. We trained all baseline models using the same
train/validation/test splits, GNN architectures, and hyper-
parameters to ensure a fair comparison. It is worth noting
that the baselines exhibit high standard deviations, which is
a common characteristic in graph classification tasks. Un-
like node classification, graph classification is known to
have a larger variance in performance metrics (Errica et al.,
2020; Duval & Malliaros, 2022). Overall, our proposed ap-
proach consistently achieves the best or highly competitive
performance for most of the datasets.

Additionally, we observed that the results of the baseline
methods vary depending on the GNN backbone, motivating

7

Graph classification results for the GRATIN model on a GCN backbone

[Rong et al., ICLR ‘20], [Yoo et al., WWW ‘22], [[Han et al., ICML ‘22], [Zhao et al., KDD ‘24]



• “Mixup”-like techniques on graphs
J Improve generalization through augmentations
– G-Mixup [Han et al., ICML ‘22], GeoMix [Zhao et al. KDD ‘24]

• GRATIN: augmentations on the graph embedding-space 
J Combines structure + features 
J Avoid costly graph alignment
J Scalability

• Augmentations with Gaussian Mixture Models (GMMs)
J Expressive yet simple
J A GMM is a universal approximator of densities

Main Takeaways

44



Outline of the Presentation
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Part I. Brief introduction to Graph Neural Networks (GNN)

Part II. Topics in GNN model design

Part III. Perspectives and ongoing work 



• Leverage structural information and beyond for GNNs
– Rewiring, graph pooling, and generalization

• On complex models
– GNNs, Hypergraph GNNs, Simplicial Complex Neural Networks, …

• On proper model evaluation
– Realistic datasets; proper experimental protocol; proper metrics

• On problem modeling and practical applications
– Type of graph; node features; which learning problem

Perspectives
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Abstract

While machine learning on graphs has demon-
strated promise in drug design and molecular
property prediction, significant benchmarking
challenges hinder its further progress and rele-
vance. Current benchmarking practices often lack
focus on transformative, real-world applications,
favoring narrow domains like two-dimensional
molecular graphs over broader, impactful areas
such as combinatorial optimization, relational
databases, or chip design. Additionally, many
benchmark datasets poorly represent the underly-
ing data, leading to inadequate abstractions and
misaligned use cases. Fragmented evaluations
and an excessive focus on accuracy further exac-
erbate these issues, incentivizing overfitting rather
than fostering generalizable insights. These lim-
itations have prevented the development of truly
useful graph foundation models. This position
paper calls for a paradigm shift toward more
meaningful benchmarks, rigorous evaluation pro-
tocols, and stronger collaboration with domain
experts to drive impactful and reliable advances
in graph learning research, unlocking the poten-
tial of graph learning.

1. Introduction

Graphs are versatile mathematical structures capable of mod-
eling complex interactions among entities across a wide
range of disciplines, including the life sciences (Wong et al.,
2023), social sciences (Easley & Kleinberg, 2010), and op-
timization (Cappart et al., 2021), underlining the need for
specialized machine-learning methods to extract meaningful
insights from graph-structured data. Hence, in recent years,

*Equal contribution 1Tel-Aviv University 2Meta 3University of
Oxford 4Technion - Israel Institute of Technology 5RWTH Aachen
University 6NEC Laboratories Europe 7University of Stuttgart
8Google Research. Correspondence to: Maya Bachler-Speicher
<mayab4@mail.tau.ac.il>, Luis Müller <luis.mueller@cs.rwth-
aachen.de>.

message-passing graph neural networks (MPNNs) (Gilmer
et al., 2017) have emerged as the leading architecture for
machine learning on graphs. These architectures—and,
more broadly, graph neural networks (GNNs)—have be-
come prominent topics at top-tier machine learning con-
ferences,1 demonstrating promising performance across a
diverse range of applications. Notable examples include
their role in breakthroughs such as discovering new antibi-
otics (Stokes et al., 2020; Wong et al., 2023) and advance-
ments in weather forecasting (Lam et al., 2023).

Despite these successes, we contend that for graph learn-
ing to remain relevant and impactful, current benchmarks
need to be aligned with such truly transformative real-world
applications. While various benchmarks have been pro-
posed, many existing datasets focus on narrow domains
or address problems with questionable practical relevance.
For instance, popular benchmarks frequently feature two-
dimensional molecular graphs (Hu et al., 2020a; Morris
et al., 2020), neglecting critical three-dimensional geometric
structures. Additionally, many studies report state-of-the-art
results on (synthetic) datasets like ZINC (Dwivedi et al.,
2022b), which lack sufficient (real-world) justification for
their graph-based approach, further complicating their util-
ity. Empirical studies in graph learning often suffer from
methodological shortcomings. Inconsistent dataset splits
and evaluation protocols across studies undermine the va-
lidity of comparisons, while the reliance on small datasets
frequently results in high-variance outcomes with limited
statistical significance. Due to these limitations and the
scarcity of sufficiently large and diverse datasets, MPNNs
and GNNs have shown limited evidence of scalability to
large pre-trained or foundation models.

Present work In this position paper, we argue that graph
learning must significantly revise its current datasets and
benchmarking practices to remain impactful and relevant;
see Figure 1 for an overview. Specifically, we

1. discuss the current shortcomings in graph learning
benchmarks, including the lack of transformative real-
world problems, an overfocus on specific data modali-

1http://tinyurl.com/mpn89vju
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Graph Learning Will Lose Relevance Due To Poor Benchmarks
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real-world applications
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Figure 1. Overview of the current challenges in benchmarking for graph learning and possible remedies.

ties, and fragmented evaluation protocols, resulting in
the absence of true foundation models for graph data;

2. propose possible remedies to address these shortcom-
ings, offering actionable recommendations for the
graph learning community; and

3. based on our assessment of current graph benchmarks,
we tune a variety of new baselines and reference
models on molecular prediction tasks, large-scale het-
erophilic datasets, and study in- and cross-domain
transfer in a pre-training/fine-tuning setup.

Overall, in this position paper, we argue that the bench-

marking aspect of graph learning requires a significant

revision for the field to stay impactful and relevant, includ-

ing the design of current datasets, the investigated data

modalities, and current benchmarking practices.

In the remaining part of this section, we provide a critical
overview of the current state of the field. In the following
four sections, we highlight four current shortcomings of
graph datasets and benchmarking practices and their possi-
ble remedies.

Basic terminology Graph learning comprises several
regimes. The most common ones are graph-level and node-
level predictions (i.e., classification or regression). In the
former, we are given a training set of graphs and aim to
train a GNN to make meaningful graph-level predictions
outside this training set. In the latter, we instead seek to
make predictions for nodes in a given graph or set of graphs;
the setup here is either transductive or inductive. In the
transductive setting, we are given a single graph with a sub-
set of the nodes being the training set, and we aim to train
a model to make correct predictions for the nodes outside
this training set. In the inductive setting, we are given a
training set of graphs with node (class-)labels and aim to
train a model to make correct predictions for the nodes of
unseen graphs. Similarly, we can define edge-level or link
prediction. In addition, graph generation aims to generate
graphs modeled to a given data distribution proxied via a
training dataset.

Related work One of the first efforts towards more prin-
cipled benchmarking of GNNs was taken by Dwivedi et al.
(2020), who proposed a suite of real and synthetic graphs
spanning a variety of node-, edge-, and graph-level tasks
as well as an attempt to standardize evaluation protocols.
However, the majority of the tasks either have a graph struc-
ture superimposed on the original dataset (such as graphs
extracted from vision datasets like CIFAR10 which are
long solved in the vision community) or focus on small
synthetic graphs with a saturated performance. Another
limiting factor is the strongly suggested model size below
500k parameters that was supposed to test models’ inductive
biases. While reasonable for the state of graph learning in
2020, such a manually set parameter count ceiling makes
little sense in modern deep learning where scaling laws
suggest model capabilities grow with both dataset size and
parameter count (Hoffmann et al., 2022; Schaeffer et al.,
2023; Wei et al., 2022).

Soon after, Hu et al. (2020a) released the Open Graph
Benchmark (OGB), a comprehensive suite of datasets en-
compassing various domains, tasks, and graph distributions.
The authors proposed to gather results in a centralized, pub-
licly visible leaderboard. The submission system requires
researchers to provide test results, the corresponding valida-
tion performance, the number of learnable parameters, and
some information about the tuning procedure. This effort
goes in the direction of more informative and standardized
benchmarking practices. Nevertheless, many datasets in the
suite address (such as 2D molecular graphs or academic
citation networks) are still a far cry from transformative real-
world applications. As we discuss later in Sections 2 and 3,
these graphs either fail to encode relevant information (e.g.,
3D spatial arrangements of atoms) or induce a structural
inductive bias that is of unclear advantage for downstream
generalization performance. While we note that some (large-
scale) more impactful benchmarks are exposed by OGB,
the research community has focused on them with relatively
lower priority. This is likely due to the inherent difficulty
of scaling more sophisticated and expressive architectures
to larger graphs or the interest drawn by more specific set-

2



...

...

Time

Graph and Time Series CGProNet

Auto-Regressive Order

• Spatiotemporal prediction with GNNs
– Enhance predictions with relational 

inductive biases

• Tasks
– Time series forecasting
– Missing value completion (imputation)
– Graph structure learning

Spatiotemporal Graph Learning
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G = (V,E,X)
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Gegenbauer Graph Neural Networks for
Time-varying Signal Reconstruction

Jhon A. Castro-Correa, Jhony H. Giraldo, Mohsen Badiey, Fragkiskos D. Malliaros

Abstract—Reconstructing time-varying graph signals (or graph

time-series imputation) is a critical problem in machine learning

and signal processing with broad applications, ranging from

missing data imputation in sensor networks to time-series fore-

casting. Accurately capturing the spatio-temporal information

inherent in these signals is crucial for effectively addressing

these tasks. However, existing approaches relying on smoothness

assumptions of temporal differences and simple convex opti-

mization techniques have inherent limitations. To address these

challenges, we propose a novel approach that incorporates a

learning module to enhance the accuracy of the downstream

task. To this end, we introduce the Gegenbauer-based graph

convolutional (GegenConv) operator, which is a generalization of

the conventional Chebyshev graph convolution by leveraging the

theory of Gegenbauer polynomials. By deviating from traditional

convex problems, we expand the complexity of the model and

offer a more accurate solution for recovering time-varying graph

signals. Building upon GegenConv, we design the Gegenbauer-

based time Graph Neural Network (GegenGNN) architecture,

which adopts an encoder-decoder structure. Likewise, our ap-

proach also utilizes a dedicated loss function that incorporates

a mean squared error component alongside Sobolev smoothness

regularization. This combination enables GegenGNN to capture

both the fidelity to ground truth and the underlying smooth-

ness properties of the signals, enhancing the reconstruction

performance. We conduct extensive experiments on real datasets

to evaluate the effectiveness of our proposed approach. The

experimental results demonstrate that GegenGNN outperforms

state-of-the-art methods, showcasing its superior capability in

recovering time-varying graph signals.

Index Terms—Graph neural networks, Gegenbauer polynomi-

als, graph signal processing, time-varying graph signals

I. INTRODUCTION

The accumulation of complex unstructured data has expe-
rienced a tremendous surge due to the noteworthy advance-
ments in information technology. Undertaking the task of
representing and analyzing such data can present a formidable
challenge. Nevertheless, Graph Signal Processing (GSP) and
Graph Neural Networks (GNNs) have emerged as promising
areas of research that have demonstrated remarkable potential
for unstructured data in recent years [1]–[4]. GSP and GNNs
adopt a data modeling approach wherein data is represented
as signals or vectors residing on a collection of graph nodes.
This framework encompasses the incorporation of both feature
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information and the inherent relational structure of the data.
This approach offers novel insights into data manipulation,
effectively bridging the domains of machine learning and
signal processing [5], and has profound implications across
diverse fields, including semi-supervised learning [3], node
classification, link prediction, graph classification [6]–[9],
clustering [10], computer vision [11]–[13], recommendations
in social networks [14], [15], influence propagation [16] and
misinformation detection [17], materials modeling [18], and
drug discovery [19], among others.

Sampling and reconstructing (or imputing) graph signals
have become crucial tasks that have attracted considerable
interest from both the signal processing and machine learning
fields in recent times [1], [20]–[26]. However, there is a
lack of research on the reconstruction of time-varying graph
signals1 despite its numerous applications in sensor networks,
time-series forecasting, and infectious disease prediction [23],
[27]–[29]. Prior research has primarily concentrated on ex-
panding the concept of smoothness from static graph signals
to those that evolve over time, as evidenced by Qiu et al.
[30]. Furthermore, the rate of convergence of optimization
techniques employed in reconstruction has been analyzed in
several works [23], [28]. Nevertheless, these optimization-
based methods heavily depend on rigid assumptions about
the underlying time-varying graph signals, which can pose
limitations in real-world applications. For example, some
previous approaches in GSP assume that the graph Fourier
transform of the signals are bandlimited [1], i.e., the projection
of the signal into the spectrum of the graph can be represented
with few components. However, in real-world scenarios, this
bandlimitedness assumption is often not satisfied; the signals
typically consist of components spanning the entire spectrum
of the graph and are often corrupted by noise. This non-
bandlimitedness fact also has profound implications regarding
the sample complexity in problems of semi-supervised node
classification for example [12], [31].

From the perspective of GNNs, their applications to the re-
construction of time-varying signals is a relatively unexplored
area that holds immense potential. The ability of GNNs to
capture both spatial and temporal dependencies within graph-
structured data makes them well-suited for handling time-
varying signals observed over interconnected entities, where
the temporal evolution is as crucial as the spatial relationships.
However, existing GNN works lack simultaneous exploration
of both spatial and temporal relationships in time-varying

1The recovery or regression of time-varying graph signals can be viewed
as a matrix completion problem where each column (or row) corresponds to
a specific time and each row (or column) corresponds to a vertex of a graph.
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Abstract

Processing multidomain data defined on multiple graphs holds significant potential
in various practical applications in computer science. However, current meth-
ods are mostly limited to discrete graph filtering operations. Tensorial partial
differential equations on graphs (TPDEGs) provide a principled framework for
modeling structured data across multiple interacting graphs, addressing the limita-
tions of the existing discrete methodologies. In this paper, we introduce Continuous
Product Graph Neural Networks (CITRUS) that emerge as a natural solution to
the TPDEG. CITRUS leverages the separability of continuous heat kernels from
Cartesian graph products to efficiently implement graph spectral decomposition.
We conduct thorough theoretical analyses of the stability and over-smoothing
properties of CITRUS in response to domain-specific graph perturbations and
graph spectra effects on the performance. We evaluate CITRUS on well-known
traffic and weather spatiotemporal forecasting datasets, demonstrating superior
performance over existing approaches. The implementation codes are available at
https://github.com/ArefEinizade2/CITRUS.

1 Introduction

Multidomain (tensorial) data defined on multiple interacting graphs [1–3], referred to as multidomain
graph data in this paper, extend the traditional graph machine learning paradigm, which typically deals
with single graphs [2, 4]. Tensors, which are multi-dimensional generalizations of matrices (order-2
tensors), appear in various fields like hyperspectral image processing [5], video processing [6],
recommendation systems [7], spatiotemporal analysis [8], and brain signal processing [9]. Despite the
importance of these applications, learning from multidomain graph data has received little attention
in the existing literature [2, 10]. Therefore, developing graph-learning strategies for these tensorial
data structures holds significant promise for various practical applications.

The main challenge for learning from multidomain graph data is creating efficient frameworks
that model joint interactions across domain-specific graphs [10, 11]. Previous work in this area
has utilized discrete graph filtering operations in product graphs (PGs) [10, 12] from the field of
graph signal processing (GSP) [13]. However, these methods inherit the well-known issues of over-
smoothing and over-squashing from regular graph neural networks (GNNs) [14–16], which restricts
the graph’s receptive field and hinders long-range interactions [17]. Additionally, these methods often
require computationally intensive grid searches to tune hyperparameters and are typically limited to
two-domain graph data, such as spatial and temporal dimensions [10, 12, 18, 19].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Challenges
• Preserve symmetries and physical constraints

• Scalability

Geometric Graph Neural Networks (GNNs)
for 3D atomic systems
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Abstract

Recent advances in computational modelling of atomic systems, spanning
molecules, proteins, and materials, represent them as geometric graphs with atoms
embedded as nodes in 3D Euclidean space. In these graphs, the geometric attributes
transform according to the inherent physical symmetries of 3D atomic systems, in-
cluding rotations and translations in Euclidean space, as well as node permutations.
In recent years, Geometric Graph Neural Networks have emerged as the preferred
machine learning architecture powering applications ranging from protein structure
prediction to molecular simulations and material generation. Their specificity lies
in the inductive biases they leverage — such as physical symmetries and chemical
properties — to learn informative representations of these geometric graphs.
In this opinionated paper, we provide a comprehensive and self-contained overview
of the field of Geometric GNNs for 3D atomic systems. We cover fundamental
background material and introduce a pedagogical taxonomy of Geometric GNN
architectures: (1) invariant networks, (2) equivariant networks in Cartesian basis,
(3) equivariant networks in spherical basis, and (4) unconstrained networks. Addi-
tionally, we outline key datasets and application areas and suggest future research
directions. The objective of this work is to present a structured perspective on the
field, making it accessible to newcomers and aiding practitioners in gaining an
intuition for its mathematical abstractions.

⇤Equal first authors.
†Université Paris-Saclay, CentraleSupélec, Inria.
‡Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
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FAENet: Frame Averaging Equivariant GNN for Materials Modeling
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Abstract
Applications of machine learning techniques for
materials modeling typically involve functions
known to be equivariant or invariant to spe-
cific symmetries. While graph neural networks
(GNNs) have proven successful in such tasks, they
enforce symmetries via the model architecture,
which often reduces their expressivity, scalability
and comprehensibility. In this paper, we intro-
duce (1) a flexible framework relying on stochas-
tic frame-averaging (SFA) to make any model
E(3)-equivariant or invariant through data trans-
formations. (2) FAENet: a simple, fast and ex-
pressive GNN, optimized for SFA, that processes
geometric information without any symmetry-
preserving design constraints. We prove the va-
lidity of our method theoretically and empirically
demonstrate its superior accuracy and computa-
tional scalability in materials modeling on the
OC20 dataset (S2EF, IS2RE) as well as com-
mon molecular modeling tasks (QM9, QM7-X).
A package implementation is available at https:
//faenet.readthedocs.io.

1. Introduction
Machine Learning (ML) methods have the ability to model
complex physical and chemical interactions. It thus holds
great potential for accelerating material design, which is
essential to various applications such as low-carbon en-
ergy, sustainable agriculture or drug discovery. One particu-
larly promising use case of ML is modeling the properties
of complex materials systems at lower computational cost
compared to expensive quantum mechanical simulation tech-
niques like Density Functional Theory (DFT). The heavy

*Equal contribution 1Université Paris-Saclay, Cen-
traleSupélec, Inria 2Mila – Quebec AI Institute 3Intel
Labs 4Université de Montréal 5McGill Unversity. Cor-
respondence to: Alexandre Duval, Victor Schmidt
<{alexandre.duval,schmidtv}@mila.quebec>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

reliance on DFT for materials property prediction continues
to impose a significant computational barrier to evaluating
large number of material candidates (Chen & Ong, 2022).
Graph Neural Networks (GNNs) based on geometric deep
learning principles have shown promise in their ability to
predict a wide range of molecular properties (Han et al.,
2022). A key factor of the success of GNNs is their ability
to leverage 3D geometric information via the representation
of a collection of atoms in 3D space (Atz et al., 2021), which
is updated based on spatial atomic interactions by passing
messages between them. Another important aspect is the
incorporation of geometric priors that exploit the symmetry
of the data, rendering model predictions invariant or equiv-
ariant1 to Euclidean transformations2, as well as key physics
principles such as the conservation of energy (Smidt, 2021).

Symmetries and physical constraints are typically enforced
directly into the model architecture, which greatly restricts
the flexibility of GNNs to process geometric information
(Gasteiger et al., 2021; Fuchs et al., 2020; Satorras et al.,
2021). As a result, these models either lack expressivity
or present significantly more complex and computationally
expensive architectures, as detailed in Section 2. While
state-of-the-art GNNs remain orders of magnitude faster
than DFT, their inference time still limits the use of ML for
downstream practically-relevant applications, which require
large-scale evaluations (Agrawal & Choudhary, 2016). In-
deed, whether we are trying to discover new drugs, new cat-
alysts or undiscovered material systems, we need to explore
exponentially vast search spaces of potential candidates
(Bohacek et al., 1996). The above ambitions to accelerate
automated material discoveries therefore require designing
expressive, robust and computationally scalable models.

To that end, we propose a novel view of 3D molecular
and solid-state materials modeling, where symmetries are
preserved via data projections instead of architectural con-
straints. Concretely, we make the following contributions:

• Symmetry-Preserving Data Augmentation via Stochas-
1In this work, unless specified otherwise, we consider invari-

ance to be a special case of equivariance and will include invariance
in claims regarding equivariance.

2Rotations, reflections, and translations, which in 3D space
define the group E(3).
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Motif Spectral Clustering — Reformulation
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Motif-based conductance

Graph G Weighted motif graph AM

AM(i, j) = #{instances of motif M that contain nodes i and j }
[Benson., AMS Spring Western Sectional ‘17] 


