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Interactions + complexity

complex network
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Collaboration networks
Online Social Networks (Co-authorship) = -

Source: https://www.facebook.com/zuck

Molecular graphs Gene co-expression network
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Node Classification
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Link Prediction

Gene interaction network



Community Detection (or Graph Clustering)




Outline of the Presentation

Part I. Brief introduction to Graph Neural Networks (GNN)
Part Il. Topics in GNN model design: over-squashing, pooling, generalization

Part lll. Perspectives and ongoing work



Graph Neural Networks (GNNs)

Graph (A, X)

[Defferrard et al., NeurlPS “16], [Kipf and Welling, ICLR “17], [Gilmer et al,, ICML “17], [Velickovic et al., ICLR “18 ], [Bronstein et al., Geometric Deep Learning ‘21]



Graph Neural Networks (GNNs)

Graph (A, X) Embeddings (A, H)

g GNN layer
5 ::@é ?3 E £

h(D = h(l) By hfl),h(l)

]EN \
activation function  aggregation function message function
(e.g.,ReLU) (e.g.,sum)

[Defferrard et al., NeurlPS “16], [Kipf and Welling, ICLR “17], [Gilmer et al,, ICML “17], [Velickovic et al., ICLR “18 ], [Bronstein et al., Geometric Deep Learning ‘21]



Graph Neural Networks (GNNs)

Node classification

Graph (A, X) y; e
Yi = i

5
: E 5 GNN layer

£
= o a0

JEN;

[Defferrard et al., NeurlPS “16], [Kipf and Welling, ICLR “17], [Gilmer et al,, ICML “17], [Velickovic et al., ICLR “18 ], [Bronstein et al., Geometric Deep Learning ‘21] 10



Graph Neural Networks (GNNs)

Graph (A, X) Embeddings (A, H)

£
: g g GNN layer

Graph classification
Y6 = f(®@iev hy)

£
= o a0

jEN;

[Defferrard et al., NeurlPS “16], [Kipf and Welling, ICLR “17], [Gilmer et al., ICML “17], [Veli¢kovic et al., ICLR “18 ], [Bronstein et al., Geometric Deep Learning 21]



Graph Neural Networks (GNNs)

Graph (A, X) Embeddings (A, H)

£
: g g GNN layer
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(+1) _ 0 o Loy T >
hi - (P(hz' ’@¢(hi ’hj ))

jEN;

Yij

Link prediction
yij = f(hi, hj)

[Defferrard et al., NeurlPS “16], [Kipf and Welling, ICLR “17], [Gilmer et al., ICML “17], [Veli¢kovic et al., ICLR “18 ], [Bronstein et al., Geometric Deep Learning 21]



Graph Neural Networks (GNNs)

Graph (A, X) Embeddings (A, H) y; Node classification
yi = f(hy)
5 J = 3
= 5 GNN layer 5 = yo| Graph classification
5 - = yG = f(®icv hy)
H £ Link oredicti
(+1) _ ) 0 () . INK prediction
hi s (P(hi ’@l’b(hi /A )) 7 yij = f(hi hy)
JENi

Different instances of GNN layers

Convolutional GNNs (e.g., ChebNet, GCN, SGC) GNNs with Attention (e.g., GAT)

Y = o, P () D = o D a1 o )

JEN; T jEN; T

node degree attention mechanism

[Defferrard et al., NeurlPS “16], [Kipf and Welling, ICLR ‘17], [Gilmer et al., ICML ‘17], [Veli¢kovic et al., ICLR “18 ], [Wu et al., ICML “19]



Challenges in GNN Model Design

1. How to design deep GNNs?
— Graph rewiring to address over-smoothing and over-squashing (SJLR, TRIGON)

2. How to compute graph-level representations?
— Hierarchical clustering-based graph pooling (HoSCPooOL)

5. (if time permits) How to improve generalization of GNNs?
—  Framework for graph data augmentation (GRATIN)

Leverage structural graph priors: connectivity, geometry, and local patterns

14



Over-smoothing and Over-squashing in GNNs

w/ J.H. Giraldo, H. Attali, K. Skianis, T. Bouwmans, T. Papastergiou, N. Pernelle

CIKM’23,CIKM’25

-

J.H. Giraldo H. Attali
Télécom Paris Univ. Sorbonne Paris Nord




Long-range Dependencies and Deep GNNs

16



Long-range Dependencies and Deep GNNs

‘@ Messages

* Over-smoothing: node embeddings become indistinguishable with more GNN layers

17



Long-range Dependencies and Deep GNNs

‘@ Messages
%en? \': '---,..'s

A

* Over-smoothing: node embeddings become indistinguishable with more GNN layers

 Over-squashing: information from distant nodes is squeezed on bottleneck edges

[Oono and Suzuki, ICLR “20], [Alon and Yahav, ICLR 21]



Overview of Key Findings

* We establish a fundamental topological relationship between over-
smoothing and over-squashing in deep GNNs

« We found that the spectral gap of a graph is intrinsically related to both
problems

* There is an inherent trade-off between over-smoothing and over-squashing

* We introduce a curvature- and triangle-based algorithms to mitigate this
trade-off

19



The Over-smoothing — Over-squashing Trade-off
The stationary distribution on graphs

= g o 5 Bo_ g 5
é&%@ s ME - ... —> é&%@@ over-sm!oothing
5 = :

Layer /=0 Layer [=1 Layer /=s

* (onsider a simple GNN model without nonlinearities (e.g., SGC)
— Repeated message passing is equivalent to applying a random walk operator
* Forarandom walk transition matrix P and initial distribution f: V — R, we
can compute s such that
—s), MaX; \/d_l s: number of GNN layers

oo . A, . spectral gap of L
min; /d;

— GNNs converge exponentially fast to the stationary distribution 7 when stacking
several layers — over-smoothing

||fTPS —Tm|| <e

— The convergence depends on the spectral gap A,

[Chung, Spectral Graph Theory, ‘92], [Oono and Suzuku, ICLR 20], [Wu et al. ICML ‘19] 20



The Over-smoothing — Over-squashing Trade-off
Cheeger constant and bottlenecks

 The Cheeger constant /1 of a graph edge boundary
(# of edges crossing the cut)
| 0S|
he = min

Scv,0<81< Y min(vol(S), vol(V \ S)
sum of node /

degreesin S

— (Captures structural bottlenecks in the graph
hz
* Cheeger constant and spectral gap: 2/ic > A, > 76

— Small Cheeger constant /- and A, imply bottlenecks — over-squashing

[Chung, Spectral Graph Theory, ‘92]

21



The Over-smoothing — Over-squashing Trade-off

The trade-off

e Ifs — 0 then h; — oo: reduce bottlenecks by accelerating
1 ( max: Vd- ) convergence to the stationary distribution. Over-smoothing.
log 1 1

he > —
¢ emin]- \/d_]

25 If hz = 0 then s — co: avoid converging to the stationary

distribution by promoting a bottleneck-like structure. Over-squashing.

Stochastic block model
55 o, 020 * We can increase mixing time by removing some
2| g
1B 400 01 edges
2 300 < — Alleviate over-smoothing
=] 1010 : i : :
no 200 * Weincrease A, by adding edges, improving .
© - 0.05
a 100 . .
s — Alleviate over-squashing
0 1000 2000
Removed/Added Edges

[Chung, Spectral Graph Theory, ‘92] 77



The SJLR Algorithm: Key Ingredients

« We target to manipulate the spectral gap A, via graph rewiring

 We borrow ideas from graph curvature x(7,7)
— Increasing curvature improves the spectral gap

l/ll‘\\
2N 17

AW v

o

I

Kk(i,j) =0 x(i,j) >0 k(i) <0

* SJLR: Stochastic Jost and Liu Curvature (JLC) Rewiring
— JLC: curvature metric based on triangles

[Bronstein, Physics-inspired GNNs 23]

— Greedy algorithm: adds/removes edges during training to locally improve curvature
— Graph structure + node features

— Good performance in graph with both homophily and heterophily

[Topping et al,, ICLR 21], [Ollivier, J. Funct. Anal. ‘09], [Jost and Liu, Discrete Comput. Geom. ‘14] 73



SILR: The Algorithm

Stochastic Jost and Liu Curvature Rewiring

(1) Good edges to add

______________________________________________________ (2) Score of improvement of adding (7, 5) (3) GNN training
E E'" 1 bt oy y ~‘§ Ex Addition softmax(mpa—(l—a)a,g)) ~
Al P & )|("/J’)Z€:5(ns>]LC D Dropping softmax(agp; — (1 —a)d) :
el /99 eoe._ o9 eoa ®x @)
Q/ \@__;;.:x:;@/ Q/ Q/ R / O/ ;O/ \é/ Q/ /1
BN VS B RN EANVZANE I BN NN
.6 - O—0; i © O—0; | © O——O0;

~
.........................................................

..........................................................

(1) Compute a bank of candidate edges to add &,

—  (alculate and sort edges (i, j) based on the Jost and Liu Curvature (JLC)

(2) Associate a score to every edge (7, 5) € &

—  Average improvement of curvature of adding (7, s) to the graph

(3) Graph rewiring during training

—  Add and drop edges stochastically based on the JLC metric + node feature similarity

24



SJLR: Experimental Results

Heterophilous

Homophilous

Method | Cornell Texas Wisconsin Chameleon Squirrel Actor Cora Citeseer = Pubmed | Overall
Baseline 6734, 50 58.05+0.96 52.1040.95 40.3540.48 42.12.029 28.62403¢ 81.814026 68.354035 78.2540.37 57.44
RDC [32] | 63.78+168 59.47+1.00 50.89+1.00 40.3340.51 41.98,,3; 28974033 81.5410.26 68.704035 78.4210.39 57.12
GDC [19] | 64.18+13¢ 56.4311.15 49.6140 .95 38.4940 51 33.204029 31.084027 82.63.023 69.154030 79.04.¢37 55.98
DE [42] | 63.39+1.29 57.4140.93 47.840 36 40;8014).55 41.6840.39 wﬁO.Zl 81.904024 68.99.1036 78.53+0.26 56.73
PN [56] | 64.441139 60.93.1 15 51.7840.95 40.37+0.59 40.924:031 28.214021 78.894032 66.9541040 76.60+0.41 56.57
DGN [57] | 65.194179  58.9140.93 50.7640.92 40.06+0 .60 41.304032 28324036 81.3441031 09.254035 78.0640.42 57.02
FA [1] | 53.57+0.00 59.26+0.00 43.0240.49 27.7640.29 31.5140.00 26.69+050 29.85+10.00 23.2310.00 39.2410.00 37.13
SDRF [48] | 63.88+163 56.4040.89 40.9940.62 40.744+0.45 4144037 28.951033 81.4240.26 ﬂiOBl 77.74+0.42 55.66
FoSR [27] | 56.654+0.93 50.0141.37 93.73,1 08 40.264+9.50 41.831028 28.804035 81.79402¢ 67.994037 78.2640.39 55.48
SJLR (ours) | 71.754150  60.13, g9 55.164¢ 95 41.1940 .46 41.864029 29.89+0.20 wﬁO.ZS 69.504033 78.60, 33 58.89

Classification results for the GCN model

25



Rewiring and the Role of Triangles A

* Increasing the number of triangles can improve over-squashing
— Improves curvature

 Delaunay triangulation-based rewiring [Attali et al, ICML ‘24]

______________________________________

Delaunay | i _
(A, X) i Triangulation | ! '

______________________________________

Delaunay rewiring

Source: Wikipedia

— Planar triangulation: diameter grows proportionally to v# ; also, small
spectral gap

— Local triangles: connects spatially proximal points
— Task-agnostic: geometry-only, ignoring downstream loss

26



TRIGON: Triangle-based Graph Rewiring

(1) Input graphs

[ Original graph Delaunay graph k-NN \

B 4

Trlangle encoding

(2) Triangle encoding v

(& P ,
8> fMLP(Af):H

4 )
selector €= @I «— D§
LeNN

(4) Rewired graph

G =(,&Y)

(3) Triangle selection

Nt D )

Qz 0.14

A N

(p=02  p=08 I
X E\/
®) .
v % gj ?
p=09  p=018 fSGl(H)_’g_’A
Qo
> ..
(2
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TRIGON: Experimental Results

Base (GCN) DIGL FA SRDF FOSR BORF GTR JDR DR TRIGON
Cham. 65.35+0.54 54.82+0.48 26.34+£0.61 63.08+0.37 67.98+0.40 65.35+0.51 68.03+0.61 65.85+0.49 74.28+0.48 75.52+0.50
Squir. 51.30+0.38 40.53+0.29 22.88+0.42 49.11+£0.28 52.63+0.30 >24h 53.32+0.44 53.78 £0.46  65.25+0.26 66.48+0.35
Actor 30.02+0.22 26.75+0.23  26.03+£0.30 31.85+0.22 29.26+0.23 31.36+0.27 31.08+0.28 34.12 +0.33  41.36+0.20 43.81+0.24
Texas 56.19+1.61 45.95+1.58 55.93+1.76  59.79+1.71 61.35+1.25 56.30£1.61 57.18+1.64 69.56 £1.71 70.46+1.61 75.74+1.61
Wisc. 55.12+1.51 46.90+1.28 46.77+1.48 58.49+1.23 55.60+1.25 55.37+1.47 57.22+1.50 67.87 £1.62 70.98+1.50 73.90+1.61
Cornell 44.78+1.45 44.46+1.37 45.33+1.55 47.73£1.51 45.11+1.47 46.81+1.56 47.57+1.52 57.31 £1.60 67.22+1.48 69.11+1.53
R-Emp. 51.66+0.17 53.93+0.14 OOM 52.53+£0.13 52.38+0.21 58.58+0.14 53.31+0.23 71.23 £0.18 61.99+£0.14 66.52+0.13
Cora 87.73+0.25 88.31+0.29  29.86+0.28 87.73+0.31 87.94+0.26 87.72+0.27 87.86+0.28 87.54+0.25 91.39+0.24 91.71+0.29
Citeseer 76.01+£0.25 76.22+0.34 22.31+0.34 76.43+0.32 76.34+0.27 76.49+0.28 76.12+0.28 76.09 £0.29  81.14+0.34 82.85+0.38
Pubmed 88.20+0.10 88.51+0.10 OOM 88.16+0.11 88.42+0.10 88.34+0.10 88.44+0.10 88.14+0.10 88.69+£0.10 90.01+0.13
Classification results for the GCN model
Chameleon Cora
o ] \
80 [~ —
80 [~ =
>
g 60|
5 60 |- =
Q
<
40 40 |- |
20 ool \ \
24 8 12 16 24 32 24 8 12 16 24 32
Number of Layers Number of Layers
—@—  Original Graph =~ ——  Delaunay Triangulation = —&—  TRIGON



Main Takeaways

* Several ongoing research efforts on rewiring techniques

— Batch Ollivier-Ricci Flow (BORF) [Nguyen et al., ICML 23]
— Spectral rewiring: FoSR [Karhadkar et al., ICLR 23]; GOKU [Liang et al., ICML'25]

— Greedy Total Resistance (GTR) rewiring [Black et al., ICML 23]

* (oing further: leverage the internal functioning of GNNs
— Impact of width, depth, and topology on over-squashing [Di Giovanni et al., ICML 23]

© Highly-effective deep GNNs?
— Not quite there yet

29



Clustering and Pooling for GNNs

w/ A.Duval

CIKM 22

Alexandre Duval




Why Structure-aware Graph Pooling?

Graph-level tasks (e.g.,graph classification)

GNN

Global
layers g Pooling BEEEE
% % -
E gl
g
Graph (A, X) Embeddings (A, H?)
Global Pooling

© Fast and easy to compute
@ Discards information about the graph (clustering) structure

B—

YG

Graph classification
yG = f(®iev hy)

31



(Motif) Spectral Clustering with GNNs

X e Rfjvxf;] « (lustering based on both graph structure A € RV
AeR and node features X € RV

* (Compute new node features using GNN layers
X = GNN(A, X; Ocnn)

* Learn a cluster assignment matrix using an MLP
S = FC(X; @) € R™*

 Train GNN and MLP by optimizing a clustering loss

T <+— motif adjacency
motif clustering L. = _l -Tr( S AMS) matrix

loss K

Types of motifs:

— We can allow combinations of motifs I N U
— Hosc model: Higher-order spectral clustering

32



(Motif) Spectral Clustering with GNNs

X e Rfjvxf;] « (lustering based on both graph structure A € RV
AeR and node features X € RV

* (Compute new node features using GNN layers
X = GNN(A, X; Ocnn)

* Learn a cluster assignment matrix using an MLP
S = FC(X; @) € R™*

 Train GNN and MLP by optimizing a clustering loss

gT AMS<)_ motif adjacency

<

matrix

) . 1
motif clustering Lo =—— -Tr(
loss K

Types of motifs:

— We can allow combinations of motifs I N U
— Hosc model: Higher-order spectral clustering

Graph coarsening

33



HoscPooL: Hierachical Clustering-based Pooling

Graph_>

(A, X)

o T e mm e e e e e e m m m m m e e e M e e e e e e e e mm mm e mm e e e e e e e e e e e e e e e m = =

T T —

TN e o e e o e e e o m mm e e e e e M e e M M M e M M e M e M e M M e e M M e M e e M M e e e e

GNN

—>[ HoscPooL j—v

HoscPooL

matrix

X e R
Ae ]RNXN
S = FC(X) € RV*K
cluster assignment

GNN

—»[ HoscPooL j—»

GNN

Xpool — STX € IRKXF

Apool — STAS € IRKXK

motif clustering
loss

L J U SSRGS S U U R p————————

34



HoscPooL: Experiments on Graph Clustering

HoscPooL as an end-to-end higher-order clustering algorithm

 Architecture: message passing layer (GCN) + MLP

spectral  motif spectral
clustering  clustering oo g e+
Dataset SC MSC DirrPoor MinCutPoor HoscPoor-1 HoscPoor-2 HoscPooL
Cora 0.150:&0.002 0.056i0.014 0.30810_023 0-391j:0.028 0-435i0.032 0°464i0.036 0'502i0.029
PubMed 0.18310002 0.002+0000 0.098+0006  0.214-10.066 0.2304 9,071 021540073  0.26040,054
Photo  0.592,0008 045110011 0.17140004  0.086+0014 0.49540.068 0.51340083  0.598. 101
PC 046410002 0.16610009 0.04310008  0.026-0.006 0.497 10,040 0.499 0036  0-528. (041
CS 0.27310006 0.01140009 0.38310048  0.43110.060 0.47910.022 07010029  0.73110018
DBLP 0-027j:0.003 0-00510.006 0.186i0.014 0-33410.026 Mi0,0N 0-284j:0.026 O-312j:0.027
Email-eu 0.48510.030 0.382i0,019 0.096i0,034 0-253j:0.028 0-317i0.026 0.488i0.025 Mi0.0Zl
Syni  0.00049000 1.000+0000 0.035+0000  0.04310.008 0.041+0.006 1.00040000  1.0004(000
Synz  0.003+0000 0.050+40003 0.081+09008  0.90210.028 0.942 10 028 1.00040000  1.0004(000
Syn3  1.00040000 1.000+0000 0.06719001  0.05240002 0.11540.006 0.826 19005  1-00040.000

Clustering results (NMI) for the HoscPooL model

[Benson et al, Science ‘16], [Ying et al., NeurlPS ‘18], [Bianchi et al., ICML 20]



HoscPooL: Experiments on Graph Classification

Graph Global

(A,g()—b GNN —> GNN —>[ HoscPooL j—> GNN ‘\ Pooling /Ly MLP [,
Method Proteins NCI1  Mutagen. DD Reddit-B Cox2-MD ER-MD  b-hard

NoPooL 71.614'1 77-1j:1.9 78.1i1.3 71-212.2 80.112.6 58.713.2 72.212.9 66.5;&0_5
RANDOM 75.713_2 77.0:&1‘7 79-2i1.3 77-1:t1.5 89-3i2.6 62.913‘6 73.0;&4.5 69.1:t2_1

GMT 75044, 749443 794490 781432 867426 589436 743145 701434
MinCutPooL 75-9:t2.4 76.8:&1‘6 78.6i1‘8 7804:t2.8 89.0i1,4 58.9:&5'1 75.5:&4.0 72.6351,5
DirrPooL 73.8:|:3'7 76.7:|:2.1 77-9:t2.3 76.3:|:2_1 87.3:|:2_4 57-1:|:4.8 76.8:|:4_8 70.7:&2.0
EicPooL 74-213.1 75.0;&2.2 75.2:‘:2.7 75°1:t1.8 82.8i2'1 59.8i3.4 73-1:I:3.8 69.1i3.1
SAGPooL 70.613,5 74-1i3.9 74-4i2.7 71-5:t4.1 74.7:|:4.5 56.919‘7 71-718.2 39~6i9.6

ASAP 74-4i2.6 74-3i1.6 76.815 4 732155 84.1i1.1 60.5155 74-5i5.9 70.5417
HoscPootr-1 76.712.5 77-3i1.6 79°8i1.6 Mizo 91-2i1.0 61.6:&3.5 76.2:&4‘2 72-4:t0.8
HoscPoor-2  77.0.3; 803,59 928415 664146 928,15 664,45 779,45 73.5408
HoscPooL  775.,5 799,17 823113 794118 936109 046439 78.2.353 740404

Classification accuracy for the HoscPooL model

[Baek et al., ICLR ‘21], [Bianchi et al, ICML 20], [Ying et al. NeurIPS ‘18], [Ma et al. KDD ‘19], [Lee et al, ICML “19], [Ranjan et al,, AAAI 20]




Main Takeaways

* End-to-end clustering with GNNs
© Leverages graph topology + node features
© Avoids eigenvalue decomposition of the Laplacian matrix
© Allows clustering of out-of-sample graphs

 Higher-order topological information
© Flexible mechanism of HoscPooL

© Performance of hierarchical clustering-based pooling
— Graph classification benchmarks: small molecular graphs

57



Generalization of GNNs

w/ Y.Abbahaddou, J. Lutzeyer, A. Aboussalah, M. Vazirgiannis

ICML 25

Y. Abbahaddou




Generalization on GNNs and Challenges

* Goal: learn a predictor fo that performs well on new graphs G ~ Diest
different from those in the training set Dirain

* Why a challenging problem?

 Regularization

— Topology shift e Architecture refinements
— Size shift  Data augmentation
— Feature distribution shift

Topology shift Size shift Feature distribution shift

0
Oy o b



A Theoretical Framework for Graph Data Augmentation

 Augmentation strategy: For each training graph (G, ¥»),the generator A,
produces M samples

( n/er) A/\(gn/yn)/ m=1,... M

Vanilla training Training with augmentation

Training set Dirain = {(gn/ yn)}z,jzl —> 5traim = Dhrain U {(gzi, %1 }

1 v v 1 v
Empirical risk L(0) = N Z f(gn, 6) —>  La(0) = N Z Z f
1

= n=1 m=1
cross-entropy

Optimal parameters O, ~ 0 = arg m@in L) — éaug = arg m@in Laug(0)

M

40



A Theoretical Framework for Graph Data Augmentation

Goals of augmentation: minimize the generalization error

Excess risk Eg-p |€(G, Oaug) | — Eg-0 [€(G, 6,)]
(generalization error) . )

true risk of true risk of model

augmented model on data distribution

Theorem (informal)

Let £(-,-) € [0,1] be a classification loss function. Then, with a probability at least
1 — 6 over the samples Dyrain, We have Ihg — hgl

\/ 21og(4/0)
N

Eg-» |G, Oasg)| ~ B-0 (G, 0.)] < 2R(Caug) +5 o051, |6~ ]|

generalization error Rademacher complexity augmentation error
capacity of the GNN to fit distance between the original graph and the
random noise augmented samples

2L

R(laug) = Ee,~p. |sup

0e®

1 N
N Y enlaug(Gn, 0) } If augmented graphs are too far from
" originals, the bound becomes large

(bias increases)

[Shalev-Shwartz and Ben-David, Understanding Machine Learning ‘14]

41



GRATIN: GMM-based Augmentation

i Gratln dauph|n0|s e
B
S : / Trained graph Sampled augmenteh
B B representations representations
B B8 NN Pooling oo [T Post- -
Em - | e |77 IO 1 > \| Readout — ¢
g
E .
g0) Pool() OO EEEE w()
Ega \J% = the/6 < D1 H, = {E,E~pc}/
Site - . GMM I
t JaN sample .
Set of train class from Training of message L\ P Fme-tune head on
the same class in Dirain passing layers ;) combined representations

K
p(h) = Y 7N (hlp, )
k=1

—_

. Train GNN f(,0) =W oPoolo g
2. Embed graphs H = {hg,g € Dhirain}

3. Class-wise split H = U?{C,where D, = {Gy € Dygain, Yn = ¢}

4. Fit GMM and sample p. = GMM(H,)

5. Fine-tune head: freeze g(-) and train W(-) on H U H
4



GRATIN: Experimental Results

Model IMDB-BIN IMDB-MUL MUTAG PROTEINS DD

No Aug. 73.00+4.904  47.73+2.64 73.924+5.09  69.99+535  69.69+2.89
DropEdge 71.70+5.42  45.67+2.46 73.39+8.86  70.07+3.86  69.35+3.37
DropNode 74.00+3.44 43.80+3.54 73.89+8.53  69.81+461  69.01+3.95
SubMix 72.7045.59  46.00+2.44 77134969  67.57+4.56  70.11+4.48
G-Mixup 72.1043.27  48.33+3.06 88.77+5.71  65.68+5.03  61.20+3.88
GeoMix 69.69+3.37  49.80+4.71 74.3947.37  69.63+5.37  68.50+3.74
GRATIN 71.00+4.40  49.82+4.26 76.05+6.74 70.97+5.07 71.90+2.81

Graph classification results for the GRATIN model on a GCN backbone

[Rong et al., ICLR ‘20], [Yoo et al, WWW ‘22], [[Han et al,, ICML 22], [Zhao et al., KDD ‘24]
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Main Takeaways

* “Mixup*like techniques on graphs
© Improve generalization through augmentations
— (G-Mixup [Han et al, ICML 22], GeoMix [Zhao et al. KDD ‘24]

* GRATIN: augmentations on the graph embedding-space
© Combines structure + features
© Avoid costly graph alignment
© Scalability

* Augmentations with Gaussian Mixture Models (GMMs)
© Expressive yet simple
© A GMM is a universal approximator of densities
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Outline of the Presentation

Part |. Brief introduction to Graph Neural Networks (GNN)
Part Il. Topics in GNN model design

Part lll. Perspectives and ongoing work
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Perspectives

Leverage structural information and beyond for GNNs
— Rewiring, graph pooling,and generalization

On complex models

— GNNs, Hypergraph GNNs, Simplicial Complex Neural Networks, ...

On proper model evaluation
— Realistic datasets; proper experimental protocol; proper metrics

On problem modeling and practical applications
— Type of graph; node features; which learning problem
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Beware of GNN Evaluation and Benchmarking

Shift focus to natural

1 graph problems with real-
world impact, e.g., com-
binatorial optimization or
relational databases.

Improve conditional diffu-
2 sion models for combina-
torial tasks.

When proposing new
bench- marks discuss
the advantages of graph
structure.

Benchmarks should in-
clude baselines with un-
structured sets to ensure
graph structure’s advan-

par. Reports of marginal

gains w/o stat. signifi-

cance. ]
The community should
shift its focus beyond

Often, datasets have no
standard splits, eval. pro-
tocol, or detailed hyp.-

We support moving to-

1 wards the one model for
all datasets mode.

We encourage building truly
2 large-scale, high-quality
datasets with diverse graph

merely improving perfor- structures.
tages. mance.

[ short-term [l long-term

Position: Graph Learning Will Lose Relevance Due To Poor Benchmarks

Maya Bechler-Speicher ' > Ben Finkelshtein 3 Fabrizio Frasca“* Luis Miiller *> Jan Tonshoff >
Antoine Siraudin> Viktor Zaverkin® Michael M. Bronstein® Mathias Niepert’ Bryan Perozzi®
Mikhail Galkin® Christopher Morris >

[Bechler-Speicher et al., ICML 25]



Spatiotemporal Graph Learning

 Spatiotemporal prediction with GNNs

— Enhance predictions with relational
inductive biases

e Tasks
— Time series forecasting
— Missing value completion (imputation)

— Graph structure learning

time
Continuous Product Graph Neural Networks
Gegenbauer Graph Neural Networks for
e Time-varying Signal Reconstruction
Institut Polytechnique de Paris Université Paris-Saclay

aref.einizade@telecom-paris.fr  fragkiskos.malliaros@centralesupelec.fr Jhon A. Castro-Correa, Jhony H. Giraldo, Mohsen Badiey, Fragkiskos D. Malliaros

[ hony Il Giraldo [Castro-Correa et al,, IEEE Trans. Neural Netw. Learn. Syst. 24]

Institut Polytechnique de Paris
jhony.giraldo@telecom-paris.fr

[Einizade et al., NeurlPS 24] 48



Geometric Graph Neural Networks (GNNs)

for 3D atomic systems

(%

I ]

Small molecules

Accelerate scientific discovery with
Geometric GNNs

Dynamics Simulation

Biomo]ecules Challenges 1 &

. Preserve symmetries and physical constraints Generative Modeling

e Scalability Pt ¥ite

9

Materials Structure Prediction

A Hitchhiker’s Guide to Geometric GNNs

for 3D Atomic Systems

FAENet: Frame Averaging Equivariant GNN for Materials Modeling

Alexandre Duval*':2 Simon V. Mathis*®> Chaitanya K. Joshi** Victor Schmidt*'#

) . ; iroth : oo 2 6
Alexandre Duval “'2 Victor Schmidt“?> Alex Hernandez Garcia’ Santiago Miret> Fragkiskos D. Malliaros ' Santiago Miret”  Fragkiskos D. Malliaros® Taco Cohen
Yoshua Bengio2* David Rolnick 2> Pietro Lid> Yoshua Bengio'* Michael Bronstein’

Mila 2Université Paris-Saclay’ 2University of Cambridge *Université de Montréal

SIntel Labs YQualcomm AI Research! 7University of Oxford

[Duval et al.,, ICML 23] o
[Duval et al.,, arXiv 24]
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Thank You!

Social and
information
network analysis

Spatiotemporal
prediction

MACHINE LEARNING IN NETWORK SCIENCE

GRAPH REPRESENTATION LEARNING

Graph-based
text analytics

Biomedical

GEOMETRIC DEEP LEARNING S ta analysis

GRAPH MINING

GRAPH OPTIMIZATION

Influential

3D atomic systems
spreaders

INSTITUT

Supported
in part by:

©
anr agence nationale

de la recherche

Science des données, Intelligence & Saciété

s i E N TL\ L P I C

i}\\ = Région

Web: http://fragkiskosm.github.io

Email: fragkiskos.malliaros@centralesupelec.fr
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Backup Slides




Motif Spectral Clustering — Reformulation

Motif-based conductance

[Benson., AMS Spring Western Sectional “17]

Motif M /"

H motifs cut _ 1

\(bM(S): motif volume 8

Weighted motif graph A,

A(i, 1) = #{instances of motif M that contain nodes  and j }

52



