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Background on Failure Detection



Formalization

• Let X ⊆ Rd and Y = [K] be the input and label spaces, respectively.
• Let P ∈ P(X × Y) be a data distribution.
• Let f : X → Y be a pretrained classifier.

Current Goal: Construct an uncertainty score u : X → [0, 1] for predicting
the occurrence of error:

E := Y ̸= f(x)

for any input x ∈ X .

Implicit Goal: Approximate the error probability function:

ηf,P (x) := P{Y ̸= f(X) | X = x},

i.e., the regression function of this binary classification problem.
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Limitations of Current Work

✓ Current uncertainty score u performs well on average (e.g., AUROC,
FPR@95).

× But they provide no statistical guarantees on their approximation error.

Our goal: Estimate the error probability function ηf,P with
valid confidence bounds.
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Confidence Intervals

α−Coverage
An algorithm Ĉn provides an α−confidence interval if for any data
distribution P ∈ P(X × Y) it holds that for any x ∈ X ,

PDn

{
ηf,P (x) ∈ Ĉn(x;Dn, f)

}
≥ 1− α,

where Dn
i.i.d.∼ P .

Precise Inference: We say that an α−confidence interval Ĉn is precise with
respect to P ∈ P(X × Y) if, for any ,

∀x ∈ X , lim
n→∞

E
[
leb(Ĉn(x))

]
= 0

.
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Illustrative Example

• Let PX|Y(· | 0) = N (−1, σ), PX|Y(· | 1) = N (1, σ), f(x) := 1{x ≥ 0.5}.

• ηf,P (x) =

P(Y = 1 | X = x) if x < 0.5,

P(Y = 0 | X = x) if x ≥ 0.5.
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Impossibility of Estimating the
Point-wise Error Probability



Impossibility in the Distribution-Free setting

Informal Theorem restated from Barber (2020)

Let Ĉn that provides an α− confidence interval. For any P ∈ P(X × Y)

such that PX is nonatomic1, then there exists a constant Cα(f, P )

independant of n such that:

E(Dn,X)

[
leb

(
Ĉn(X;Dn, f)

)]
≥ Cα(f, P ) > 0.

Intuitions:

• In the distribution-free setting, to infer ηf,P (x) you can only use
calibration data (Xi, Yi) ∈ Dn for which Xi = x.

× If PX (x) = 0, you will never get in off such calibration point.

1We say that the marginal PX is nonatomic if for any x ∈ X , PX {x} = 0.
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Relaxing Distribution-Free Coverage ?

• If you assume that your regression function lies in a smooth class of
functions, precise inference should be possible.

On which assumptions does ηf,P become smooth?

Theorem for Y = {0, 1}:
• The regularity of ηf,P in the
interior of the level sets of f is
inherited from the one of
x 7→ P(Y = 1 | X = x).

• ηf,P is continuous at the
decision boundary of f iff f has
the same decision boundary
than the Bayes classifier.
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Overview of Impossibility Results

Constructing distribution-free α-confidence intervals is fundamentally hard:
.

• The distribution-free requirement renders precise inference infeasible
for many distributions.

• Restricting coverage to “smooth” distributions is not applicable to our
problem, since the error-probability function ηf,P typically exhibits
irregularities (except in degenerate cases)
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Estimation of the Error Probability at a
Lower Resolution



Coverage at resolution r

Let r : X → Z be a resolution function and define the levels set of r as:

Xz := {x ∈ X : r(x) = z}.

Define the error-probability function at resolution r by

∀z ∈ Z, ηf,P,r(z) := P{E = 1 | X ∈ Xz} = E [ηf,P (X) | X ∈ Xz]

Examples :
• If r = Id =⇒ Xz = {z} =⇒ ηf,P,r = ηf,P - high resolution.
• If r constant =⇒ Xz = X =⇒ ηf,P,r = P(E = 1) - low resolution.

Feasibility of coverage at resolution r : The partition {Xz : z ∈ Z} being
countable is a necessary condition for precise inference at resolution r for
any P ∈ P(X × Y).
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Partition Algorithm

• Let r : X → Z be any resolution function with |Z| < ∞.
• Let Dn = {(X1, Y1), . . . , (Xn, Yn)}

i.i.d.∼ P be a calibration set.

For any z ∈ Z , denote by

Nz :=
∣∣{ i ∈ [n] : Xi ∈ Xz }

∣∣. (1)

the (random) number of calibration points that fall in the cell Xz. When
Nz > 0, define the empirical estimator η̂n(z) = η̂n(z;Dn, f) of ηr(z) by

η̂n(z) :=
1

Nz

n∑
i=1

Ei · 1{Xi ∈ Xz}, (2)

where Ei := 1{Yi ̸= f(Xi)}. Finally, define the intervals

Ĉn(z,Dn, f) :=

[
η̂n(z)±

√
ln(2/α)

2Nz

]
∩ [0, 1], (3)

if Nz > 0 and set Ĉn(z,Dn, f) = [0, 1] if Nz = 0.
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Partition Algorithm Guarantees

Theorem
The confidence interval Ĉn defined in (3) provides an α−coverage at
resolution r. Moreover,

∀z ∈ Z, EDn

[
leb(Ĉn(z;Dn, f))

]
≤ min

{
1,

c(α)√
nPX{Xz}

}
, (4)

where c(α) is a universal constant depending only on α.

Precise Inference: The confidence interval is precise for any P ∈ P(X × Y)

Trade Off: Larger level sets Xz improve the convergence
rate in (4) but may lead to less qualitative resolution.
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Error-Detector with Statistical
Guarantee



Error-Detector with Statistical Guarantee

Misclassifications Detection at resolution r: Given a loss function lτ

consider the learning problem

inf
d:Z→{0,1}

E
[
ℓτ (E, d(r(X)))

]
. (5)

Bayes detector: d∗f,P,r(z) := 1{ηf,P,r(z) ≥ τ}.

Conservative Detector: d̂n(z;Dn, f) := 1{sup Ĉn(z;Dn, f) ≥ τ}.

Agreement with Bayes Decision
For any z ∈ Z such that d∗f,P,r(z) = 1 then,

PDn{d̂n(z;Dn, f) = 1} ≥ 1− α,

and
PDn{d̂n(z;Dn, f) = 0} ≤ α.
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Experiments



Learning the Resolution Function

Quantization Algorithm: Gaussian Mixture Model on the softmax output of
the model f .

Preprocessing: Reordering the softmax output =⇒ invariant to the
predicted class.

Data Splitting: In our results, the resolution function r was fixed ! We use
distinct data sets Dres and Dcal to learn the resolution function and
construct Ĉn respectively.
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Example

Setting: CIFAR10, ResNet34 with P(E = 1) ≈ 5%.

(a) Confidence Intervals Ĉn per level sets Xz

cat dog

ship

(b) Level sets Xz visualization
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Level sets interpretation

Setting: ImageNet, ViT-Base-16 with P(E = 1) ≈ 20%.

(a) ηr(z) ∈ [38.8, 84.6]% (b) ηr(z) ∈ [0, 1.3]%
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Results

• Achieves competitive performance compared to SOTA heuristic methods.

Method Ours Doctor ODIN Rel-U
Dataset Model

CIFAR-10 DenseNet-121 29.2/91.0/15.1 24.1/91.6/15.1 31.4/91.7/16.1 27.1/92.2/16.0
ResNet-34 23.9/93.2/14.1 22.8/93.6/14.1 27.0/92.6/14.0 26.8/90.2/12.0

CIFAR-100 DenseNet-121 48.9/84.8/ 47.8 48.4/86.0/48.7 48.3/85.5/48.6 46.5/82.3/44.7
ResNet-34 44.3/85.6/41.4 42.1/86.8/43.1 42.5/87.4/44.0 41.2/86.7/41.6

ImageNet-1k ViT-Tiny-16 46.6/84.6/44.6 46.0/86.5/47.6 46.0/86.7/47.8 51.2/80.3/40.6
ViT-Base-16 42.3/86.4/37.2 42.3/87.7/39.0 42.3/87.7/39.1 49.0/82.9/33.9

Table 1: MisD results in terms of FPR@95/AUROC/AURC.
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