

Towards Failure Detection With Statistical Guarantees

Bellairs Worshop

Matteo Sammut – Dec. 17 2025

Supervised by: Pablo Piantanida (ILLS), Yann Chevaleyre (Dauphine PSL),
Rafael Pinot (LPSM - Sorbonne)

Outline of the Talk

- I. Background on Failure Detection
- II. Impossibility of Estimating the Pointwise Error Probability
- III. Estimation at a Lower Resolution
- IV. Error-Detector with Statistical Guarantees
- IV. Experiments

Background on Failure Detection

- Let $\mathcal{X} \subseteq \mathbb{R}^d$ and $\mathcal{Y} = [K]$ be the input and label spaces, respectively.
- Let $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ be a data distribution.
- Let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be a pretrained classifier.

Current Goal: Construct an **uncertainty score** $u : \mathcal{X} \rightarrow [0, 1]$ for predicting the occurrence of error:

$$E := Y \neq f(\mathbf{x})$$

for any input $\mathbf{x} \in \mathcal{X}$.

Implicit Goal: Approximate the error probability function:

$$\eta_{f,P}(\mathbf{x}) := \mathbb{P}\{Y \neq f(\mathbf{X}) \mid \mathbf{X} = \mathbf{x}\},$$

i.e., the **regression function** of this **binary classification** problem.

- ✓ Current uncertainty score u performs well **on average** (e.g., AUROC, FPR@95).
- ✗ But they provide **no statistical guarantees** on their **approximation error**.

Our goal: Estimate the error probability function $\eta_{f,P}$ with valid confidence bounds.

α -Coverage

An algorithm \widehat{C}_n provides an α -confidence interval if for any data distribution $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ it holds that for any $\mathbf{x} \in \mathcal{X}$,

$$\mathbb{P}_{\mathcal{D}_n} \left\{ \eta_{f,P}(\mathbf{x}) \in \widehat{C}_n(\mathbf{x}; \mathcal{D}_n, f) \right\} \geq 1 - \alpha,$$

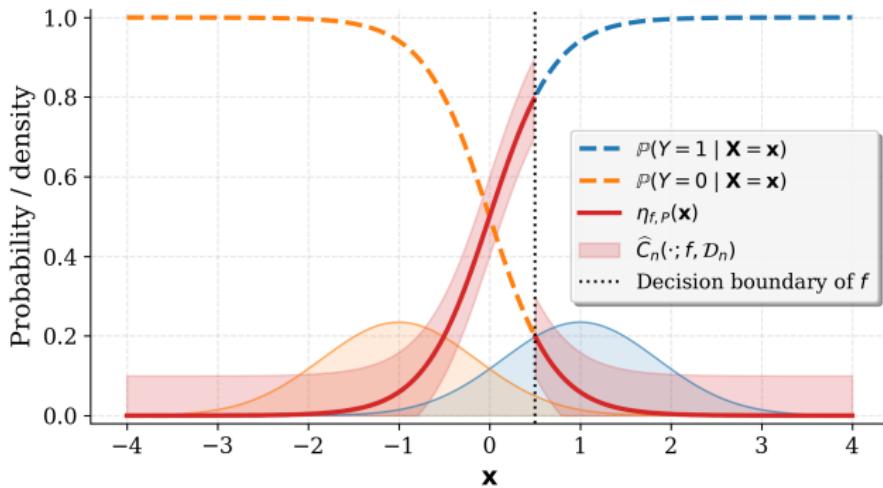
where $\mathcal{D}_n \stackrel{\text{i.i.d.}}{\sim} P$.

Precise Inference: We say that an α -confidence interval \widehat{C}_n is *precise* with respect to $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ if, for any ,

$$\forall \mathbf{x} \in \mathcal{X}, \quad \lim_{n \rightarrow \infty} \mathbb{E} \left[\text{leb}(\widehat{C}_n(\mathbf{x})) \right] = 0$$

Illustrative Example

- Let $P_{\mathcal{X}|\mathcal{Y}}(\cdot | 0) = \mathcal{N}(-1, \sigma)$, $P_{\mathcal{X}|\mathcal{Y}}(\cdot | 1) = \mathcal{N}(1, \sigma)$, $f(\mathbf{x}) \coloneqq \mathbb{1}\{\mathbf{x} \geq 0.5\}$.
- $\eta_{f,P}(\mathbf{x}) = \begin{cases} \mathbb{P}(Y = 1 | X = \mathbf{x}) & \text{if } \mathbf{x} < 0.5, \\ \mathbb{P}(Y = 0 | X = \mathbf{x}) & \text{if } \mathbf{x} \geq 0.5. \end{cases}$



Impossibility of Estimating the Point-wise Error Probability

Informal Theorem restated from Barber (2020)

Let \widehat{C}_n that provides an α -confidence interval. For any $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$ such that $P_{\mathcal{X}}$ is nonatomic¹, then there exists a constant $C_{\alpha}(f, P)$ independant of n such that:

$$\mathbb{E}_{(D_n, X)} \left[\text{leb} \left(\widehat{C}_n(\mathbf{x}; \mathcal{D}_n, f) \right) \right] \geq C_{\alpha}(f, P) > 0.$$

Intuitions:

- In the **distribution-free** setting, to infer $\eta_{f, P}(\mathbf{x})$ you can **only use** calibration data $(X_i, Y_i) \in \mathcal{D}_n$ for which $X_i = \mathbf{x}$.
- ✗ If $P_{\mathcal{X}}(\mathbf{x}) = 0$, you will never get in off such calibration point.

¹We say that the marginal $P_{\mathcal{X}}$ is *nonatomic* if for any $\mathbf{x} \in \mathcal{X}$, $P_{\mathcal{X}}\{\mathbf{x}\} = 0$.

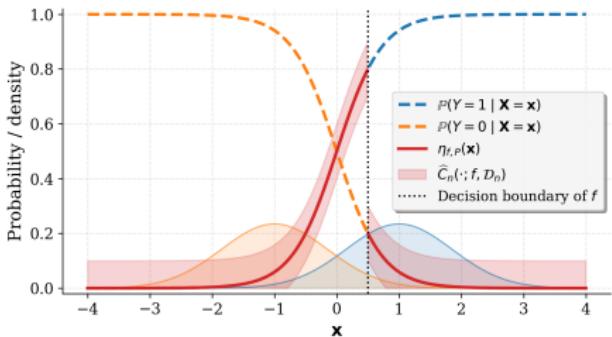
Relaxing Distribution-Free Coverage ?

- If you assume that your **regression function** lies in a **smooth class** of functions, precise inference should be possible.

On which assumptions does $\eta_{f,P}$ become smooth?

Theorem for $\mathcal{Y} = \{0, 1\}$:

- The regularity of $\eta_{f,P}$ in the **interior of the level sets** of f is inherited from the one of $\mathbf{x} \mapsto \mathbb{P}(Y = 1 \mid \mathbf{X} = \mathbf{x})$.
- $\eta_{f,P}$ is continuous at the **decision boundary** of f iff f has the **same decision boundary** than the **Bayes classifier**.



Constructing **distribution-free** α -confidence intervals is fundamentally hard:

- The **distribution-free** requirement renders **precise inference** **infeasible** for many distributions.
- Restricting coverage to “**smooth**” **distributions** is not applicable to our problem, since the **error-probability** function $\eta_{f,P}$ typically **exhibits irregularities** (except in degenerate cases)

Estimation of the Error Probability at a Lower Resolution

Let $r : \mathcal{X} \rightarrow \mathcal{Z}$ be a **resolution function** and define the **levels set** of r as:

$$\mathcal{X}_{\mathbf{z}} := \{\mathbf{x} \in \mathcal{X} : r(\mathbf{x}) = \mathbf{z}\}.$$

Define the **error-probability function at resolution r** by

$$\forall \mathbf{z} \in \mathcal{Z}, \quad \eta_{f,P,r}(\mathbf{z}) := \mathbb{P}\{E = 1 \mid \mathbf{X} \in \mathcal{X}_{\mathbf{z}}\} = \mathbb{E}[\eta_{f,P}(\mathbf{X}) \mid \mathbf{X} \in \mathcal{X}_{\mathbf{z}}]$$

Examples :

- If $r = \text{Id} \implies \mathcal{X}_{\mathbf{z}} = \{\mathbf{z}\} \implies \eta_{f,P,r} = \eta_{f,P}$ - **high resolution**.
- If r constant $\implies \mathcal{X}_{\mathbf{z}} = \mathcal{X} \implies \eta_{f,P,r} = \mathbb{P}(E = 1)$ - **low resolution**.

Feasibility of coverage at resolution r : The partition $\{\mathcal{X}_{\mathbf{z}} : \mathbf{z} \in \mathcal{Z}\}$ being **countable** is a necessary condition for precise inference at resolution r for any $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$.

Partition Algorithm

- Let $r : \mathcal{X} \rightarrow \mathcal{Z}$ be any resolution function with $|\mathcal{Z}| < \infty$.
- Let $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\} \stackrel{\text{i.i.d.}}{\sim} P$ be a calibration set.

For any $\mathbf{z} \in \mathcal{Z}$, denote by

$$N_{\mathbf{z}} := |\{i \in [n] : \mathbf{X}_i \in \mathcal{X}_{\mathbf{z}}\}|. \quad (1)$$

the (random) number of calibration points that fall in the cell $\mathcal{X}_{\mathbf{z}}$. When $N_{\mathbf{z}} > 0$, define the empirical estimator $\hat{\eta}_n(\mathbf{z}) = \hat{\eta}_n(\mathbf{z}; \mathcal{D}_n, f)$ of $\eta_r(z)$ by

$$\hat{\eta}_n(\mathbf{z}) := \frac{1}{N_{\mathbf{z}}} \sum_{i=1}^n E_i \cdot \mathbb{1}\{\mathbf{X}_i \in \mathcal{X}_{\mathbf{z}}\}, \quad (2)$$

where $E_i := \mathbb{1}\{Y_i \neq f(\mathbf{X}_i)\}$. Finally, define the intervals

$$\hat{C}_n(\mathbf{z}, \mathcal{D}_n, f) := \left[\hat{\eta}_n(\mathbf{z}) \pm \sqrt{\frac{\ln(2/\alpha)}{2N_{\mathbf{z}}}} \right] \cap [0, 1], \quad (3)$$

if $N_{\mathbf{z}} > 0$ and set $\hat{C}_n(\mathbf{z}, \mathcal{D}_n, f) = [0, 1]$ if $N_{\mathbf{z}} = 0$.

Theorem

The confidence interval \widehat{C}_n defined in (3) provides an α -coverage at resolution r . Moreover,

$$\forall \mathbf{z} \in \mathcal{Z}, \quad \mathbb{E}_{\mathcal{D}_n} [\text{leb}(\widehat{C}_n(\mathbf{z}; D_n, f))] \leq \min \left\{ 1, \frac{c(\alpha)}{\sqrt{n P_{\mathcal{X}}\{\mathcal{X}_{\mathbf{z}}\}}} \right\}, \quad (4)$$

where $c(\alpha)$ is a universal constant depending only on α .

Precise Inference: The confidence interval is precise for any $P \in \mathcal{P}(\mathcal{X} \times \mathcal{Y})$

Trade Off: Larger level sets $\mathcal{X}_{\mathbf{z}}$ improve the convergence rate in (4) but may lead to less qualitative resolution.

Error-Detector with Statistical Guarantee

Misclassifications Detection at resolution r : Given a loss function l_τ consider the learning problem

$$\inf_{d: \mathcal{Z} \rightarrow \{0,1\}} \mathbb{E}[\ell_\tau(E, d(r(\mathbf{X})))]. \quad (5)$$

Bayes detector: $d_{f,P,r}^*(\mathbf{z}) := \mathbb{1}\{\eta_{f,P,r}(\mathbf{z}) \geq \tau\}.$

Conservative Detector: $\widehat{d}_n(\mathbf{z}; \mathcal{D}_n, f) := \mathbb{1}\{\sup \widehat{C}_n(\mathbf{z}; \mathcal{D}_n, f) \geq \tau\}.$

Agreement with Bayes Decision

For any $\mathbf{z} \in \mathcal{Z}$ such that $d_{f,P,r}^*(\mathbf{z}) = 1$ then,

$$\mathbb{P}_{\mathcal{D}_n}\{\widehat{d}_n(\mathbf{z}; \mathcal{D}_n, f) = 1\} \geq 1 - \alpha,$$

and

$$\mathbb{P}_{\mathcal{D}_n}\{\widehat{d}_n(\mathbf{z}; \mathcal{D}_n, f) = 0\} \leq \alpha.$$

Experiments

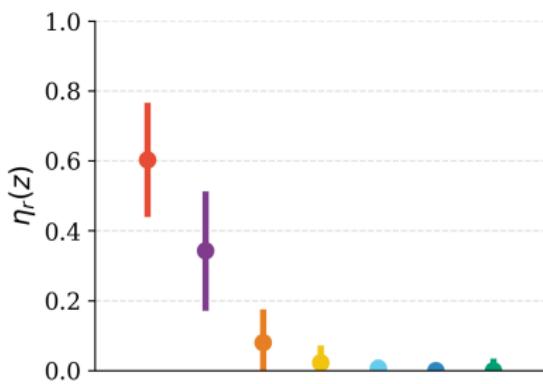
Quantization Algorithm: Gaussian Mixture Model on the softmax output of the model f .

Preprocessing: Reordering the softmax output \implies invariant to the predicted class.

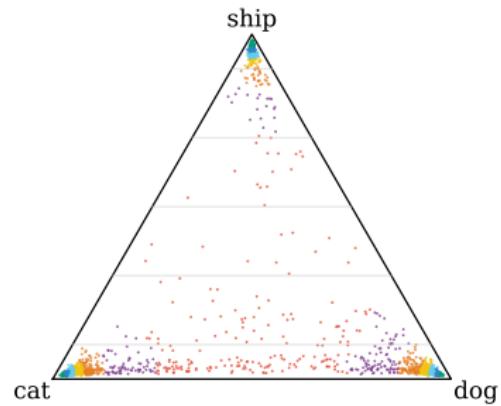
Data Splitting: In our results, the resolution function r was **fixed** ! We use distinct data sets \mathcal{D}_{res} and \mathcal{D}_{cal} to **learn the resolution function** and **construct** \hat{C}_n respectively.

Example

Setting: CIFAR10, ResNet34 with $\mathbb{P}(E = 1) \approx 5\%$.



(a) Confidence Intervals \widehat{C}_n per level sets \mathcal{X}_z



(b) Level sets \mathcal{X}_z visualization

Level sets interpretation

Setting: ImageNet, ViT-Base-16 with $\mathbb{P}(E = 1) \approx 20\%$.

(a) $\eta_r(z) \in [38.8, 84.6]\%$

(b) $\eta_r(z) \in [0, 1.3]\%$

Results

- Achieves competitive performance compared to SOTA heuristic methods.

Dataset	Method Model	Ours	Doctor	ODIN	Rel-U
CIFAR-10	DenseNet-121	29.2/91.0/ 15.1	24.1 /91.6/ 15.1	31.4/ <u>91.7</u> /16.1	<u>27.1</u> /92.2/16.0
	ResNet-34	<u>23.9</u> / <u>93.2</u> /14.1	22.8 / <u>93.6</u> /14.1	27.0/92.6/ <u>14.0</u>	26.8/90.2/ 12.0
CIFAR-100	DenseNet-121	48.9/84.8/ <u>47.8</u>	48.4/ 86.0 /48.7	<u>48.3</u> / <u>85.5</u> /48.6	46.5 /82.3/ 44.7
	ResNet-34	44.3/85.6/ 41.4	<u>42.1</u> / <u>86.8</u> /43.1	42.5/ <u>87.4</u> /44.0	41.2 /86.7/ <u>41.6</u>
ImageNet-1k	ViT-Tiny-16	46.6/84.6/ <u>44.6</u>	46.0 / <u>86.5</u> /47.6	46.0 / <u>86.7</u> /47.8	51.2/80.3/ 40.6
	ViT-Base-16	42.3 /86.4/ <u>37.2</u>	42.3 / <u>87.7</u> /39.0	42.3/ <u>87.7</u> /39.1	49.0/82.9/33.9

Table 1: MisD results in terms of FPR@95/AUROC/AURC.

References

Barber, R. F. (2020). Is distribution-free inference possible for binary regression? *Electronic Journal of Statistics*, 14(2):3487 – 3524.