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Background on Failure Detection



Formalization

o Let X C R% and Y = [K] be the input and label spaces, respectively.
o Let P € P(X x Y) be a data distribution.

o Let f: X — Y be a pretrained classifier.

Current Goal: Construct an uncertainty score u : X — [0, 1] for predicting
the occurrence of error:

E=Y # f(x)
forany inputx € X.

Implicit Goal: Approximate the error probability function:

ny.p(x) =PY # f(X) | X =x},

i.e., the regression function of this binary classification problem.
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Limitations of Current Work

v’ Current uncertainty score u performs well on average (e.g., AUROC,
FPR@95).

X But they provide no statistical guarantees on their approximation error.

Our goal: Estimate the error probability function ny p with
valid confidence bounds.
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Confidence Intervals

a—Coverage

An algorithm C,, provides an a—confidence interval if for any data
distribution P € P(X x ) it holds that for any x € X,

Pp, {nf,P(X) € an(X;Dmf)} >1-a,

i.i.d.
where D, "~ P.

Precise Inference: We say that an a—confidence interval C,, is precise with
respectto P € P(X x ) if, forany,

Vx€X, limE [1eb(én(x))] =0

n— o0

Bellairs Workshop



Illustrative Example

o Let Pyjy(- | 0) = N(=1,0), Pyjy(- | 1) = N(1,0), f(x) == 1{x > 0.5}.
P(Y=1|X =x) ifx< 0.5,

o np.p(x) = _
P(Y:O|X:x) ifx > 0.5.
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Impossibility of Estimating the
Point-wise Error Probability



Impossibility in the Distribution-Free setting

Informal Theorem restated from Barber (2020)

Let C,, that provides an a— confidence interval. For any P € P(X x ))
such that Py is nonatomic’, then there exists a constant C,(f, P)
independant of n such that:

E(p,,x) [h?b (@(X; D'mf))] > Co(f, P) > 0.

Intuitions:

o In the distribution-free setting, to infer n; p(x) you can only use
calibration data (X;,Y3) € D, for which X; = x.

X If Pr(x) =0, you will never get in off such calibration point.

"We say that the marginal Px is nonatomic if for any x € X, Px{x} = 0.
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Relaxing Distribution-Free Coverage ?

o If you assume that your regression function lies in a smooth class of

functions, precise inference should be possible.

On which assumptions does 7y, » become smooth?

Theorem for Y = {0,1}:

o The regularity of ns p in the
interior of the level sets of f is
inherited from the one of
x—=»PY =1]|X=x).

e 7y p IS continuous at the
decision boundary of f iff f has
the same decision boundary
than the Bayes classifier.

Probability / density

°
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Overview of Impossibility Results

Constructing distribution-free a-confidence intervals is fundamentally hard:

e The distribution-free requirement renders precise inference infeasible
for many distributions.

e Restricting coverage to “smooth” distributions is not applicable to our
problem, since the error-probability function n; p typically exhibits
irregularities (except in degenerate cases)
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Estimation of the Error Probability at a
Lower Resolution




Coverage at resolution r

Let r : X — Z be a resolution function and define the levels set of r as:

X, ={xe€X:r(x) =1z}

Define the error-probability function at resolution r by

VzeZ, nppe(2) =P{E=1[Xe X} =En;p(X) | X e X

Examples :

o Ifr=1d = X, ={z} = nspr, =nyp - high resolution.

o If r constant = X, =X = 7y p, =P(E =1) - low resolution.
Feasibility of coverage at resolution r : The partition {X, : z € Z} being

countable is a necessary condition for precise inference at resolution r for
any P € P(X x ).
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Partition Algorithm

o Letr: X — Z be any resolution function with |Z]| < co.

o LetD, = {(X1,Y1),..., Xn, Yn)} " p be a calibration set.

For any z € Z, denote by
Ny =|{i€n]: X € X} (M

the (random) number of calibration points that fall in the cell A,. When
N, > 0, define the empirical estimator 7,,(z) = 7.(z; Dn, f) of n.(2) by

fin(2) = N%ZE“IL{XZ' e, 2)

where E; == 1{Y; # f(X;)}. Finally, define the intervals

5 L n(2/a)
Cn(2,Dp, f) = [nn(z) + N, :| n[o,1], (3)

if N, > 0 and set Cy,(z, D, f) = [0,1] if N, = 0.
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Partition Algorithm Guarantees

The confidence interval C,, defined in (3) provides an a—coverage at
resolution r. Moreover,

Vz € Z, Ep, [leb(@n(z;Dn,f))] < min {1, c(a)} , (4)

\/’I’LP)({XZ}

where ¢(a) is a universal constant depending only on a.

Precise Inference: The confidence interval is precise for any P € P(X x )

Trade Off: Larger level sets X, improve the convergence
rate in (4) but may lead to less qualitative resolution.
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Error-Detector with Statistical
Guarantee




Error-Detector with Statistical Guarantee

Misclassifications Detection at resolution r: Given a loss function I,
consider the learning problem

Lo (B, dr(X))]- 5)

Bayes detector: d} p..(z) = 1{ns rr(z) > 7}.
Conservative Detector:  dy,(2; Dn, f) := 1{sup Cn(2; Dn, f) > 7}.

Agreement with Bayes Decision

Forany z € Z such that d} p,.(z) = 1 then,
Pp, {dn(2;Dn, f) =1} 21— a,

and
]P’Dn{c?n(z;’Dn,f) =0} <a
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Experiments




Learning the Resolution Function

Quantization Algorithm: Gaussian Mixture Model on the softmax output of
the model f.

Preprocessing: Reordering the softmax output = invariant to the
predicted class.

Data Splitting: In our results, the resolution function » was fixed ! We use
distinct data sets Dyes and D, to learn the resolution function and
construct C,, respectively.
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Example

Setting: CIFAR10, ResNet34 with P(E = 1) =~ 5%.
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(a) Confidence Intervals C,, per level sets X, (b) Level sets X, visualization
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Level sets interpretation

Setting: ImageNet, ViT-Base-16 with P(E = 1) =~ 20%.

(@) n,-(2) € [38.8, 84.6]% (b) n-(2) € [0, 1.3]%
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Results

e Achieves competitive performance compared to SOTA heuristic methods.

Method Ours Doctor ODIN Rel-U
Dataset Model
CIFAR-10 DenseNet-121 29.2/91.0/15.1 24.1/91.6/15.1 31.4/91.7/16.1 27.1/92.2/16.0
ResNet-34 23.9/93.2/14.1 22.8/93.6/14.1 27.0/92.6/14.0 26.8/90.2/12.0
CIFAR-100 DenseNet-121 48.9/84.8/ 47.8 48.4/86.0/48.7 48.3/85.5/48.6 46.5/82.3/44.7
ResNet-34 44.3/85.6/41.4 42.1/86.8/43.1 42.5/87.4/44.0 41.2/86.7/41.6
ImaceNet-1k ViT-Tiny-16 46.6/84.6/44.6 46.0/86.5/47.6 46.0/86.7/47.8 51.2/80.3/40.6
s ViT-Base-16 42.3/86.4/37.2 42.3/87.7/39.0 42.3/87.7/39.1 49.0/82.9/33.9

Table 1: MisD results in terms of FPR@95/AUROC/AURC.
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